Line |
Branch |
Exec |
Source |
1 |
|
|
// |
2 |
|
|
// Copyright (c) 2021 CNRS INRIA LORIA |
3 |
|
|
// |
4 |
|
|
// This file is part of tsid |
5 |
|
|
// tsid is free software: you can redistribute it |
6 |
|
|
// and/or modify it under the terms of the GNU Lesser General Public |
7 |
|
|
// License as published by the Free Software Foundation, either version |
8 |
|
|
// 3 of the License, or (at your option) any later version. |
9 |
|
|
// tsid is distributed in the hope that it will be |
10 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
11 |
|
|
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 |
|
|
// General Lesser Public License for more details. You should have |
13 |
|
|
// received a copy of the GNU Lesser General Public License along with |
14 |
|
|
// tsid If not, see |
15 |
|
|
// <http://www.gnu.org/licenses/>. |
16 |
|
|
// |
17 |
|
|
|
18 |
|
|
#include <tsid/tasks/task-actuation-equality.hpp> |
19 |
|
|
#include "tsid/robots/robot-wrapper.hpp" |
20 |
|
|
|
21 |
|
|
namespace tsid { |
22 |
|
|
namespace tasks { |
23 |
|
|
using namespace math; |
24 |
|
|
using namespace pinocchio; |
25 |
|
|
|
26 |
|
✗ |
TaskActuationEquality::TaskActuationEquality(const std::string& name, |
27 |
|
✗ |
RobotWrapper& robot) |
28 |
|
✗ |
: TaskActuation(name, robot), m_constraint(name, robot.na(), robot.na()) { |
29 |
|
✗ |
m_ref = Vector::Zero(robot.na()); |
30 |
|
✗ |
m_weights = Vector::Ones(robot.na()); |
31 |
|
✗ |
Vector m = Vector::Ones(robot.na()); |
32 |
|
✗ |
mask(m); |
33 |
|
|
} |
34 |
|
|
|
35 |
|
✗ |
const Vector& TaskActuationEquality::mask() const { return m_mask; } |
36 |
|
|
|
37 |
|
✗ |
void TaskActuationEquality::mask(const Vector& m) { |
38 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT(m.size() == m_robot.na(), |
39 |
|
|
"The size of the mask vector needs to equal " + |
40 |
|
|
std::to_string(m_robot.na())); |
41 |
|
✗ |
m_mask = m; |
42 |
|
|
|
43 |
|
✗ |
const Vector::Index dim = static_cast<Vector::Index>(m.sum()); |
44 |
|
✗ |
Matrix S = Matrix::Zero(dim, m_robot.na()); |
45 |
|
✗ |
m_activeAxes.resize(dim); |
46 |
|
✗ |
unsigned int j = 0; |
47 |
|
✗ |
for (unsigned int i = 0; i < m.size(); i++) |
48 |
|
✗ |
if (m(i) != 0.0) { |
49 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
50 |
|
|
m(i) == 1.0, |
51 |
|
|
"Entries in the mask vector need to be either 0.0 or 1.0"); |
52 |
|
✗ |
S(j, i) = m_weights(i); |
53 |
|
✗ |
m_activeAxes(j) = i; |
54 |
|
✗ |
j++; |
55 |
|
|
} |
56 |
|
✗ |
m_constraint.resize((unsigned int)dim, m_robot.na()); |
57 |
|
✗ |
m_constraint.setMatrix(S); |
58 |
|
|
|
59 |
|
✗ |
for (unsigned int i = 0; i < m_activeAxes.size(); i++) |
60 |
|
✗ |
m_constraint.vector()(i) = |
61 |
|
✗ |
m_ref(m_activeAxes(i)) * m_weights(m_activeAxes(i)); |
62 |
|
|
} |
63 |
|
|
|
64 |
|
✗ |
int TaskActuationEquality::dim() const { return (int)m_mask.sum(); } |
65 |
|
|
|
66 |
|
|
// Reference should be the same size as robot.na(), even if a mask is used |
67 |
|
|
// (masked dof values will just be ignored) |
68 |
|
✗ |
void TaskActuationEquality::setReference(ConstRefVector ref) { |
69 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
70 |
|
|
ref.size() == m_robot.na(), |
71 |
|
|
"The size of the reference vector needs to equal " + |
72 |
|
|
std::to_string(m_robot.na())); |
73 |
|
✗ |
m_ref = ref; |
74 |
|
|
|
75 |
|
✗ |
for (unsigned int i = 0; i < m_activeAxes.size(); i++) |
76 |
|
✗ |
m_constraint.vector()(i) = |
77 |
|
✗ |
m_ref(m_activeAxes(i)) * m_weights(m_activeAxes(i)); |
78 |
|
|
} |
79 |
|
|
|
80 |
|
✗ |
const Vector& TaskActuationEquality::getReference() const { return m_ref; } |
81 |
|
|
|
82 |
|
|
// Weighting vector should be the same size as robot.na(), even if a mask is |
83 |
|
|
// used (masked dof values will just be ignored) |
84 |
|
✗ |
void TaskActuationEquality::setWeightVector(ConstRefVector weights) { |
85 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
86 |
|
|
weights.size() == m_robot.na(), |
87 |
|
|
"The size of the weight vector needs to equal " + |
88 |
|
|
std::to_string(m_robot.na())); |
89 |
|
✗ |
m_weights = weights; |
90 |
|
|
|
91 |
|
✗ |
for (unsigned int i = 0; i < m_activeAxes.size(); i++) { |
92 |
|
✗ |
m_constraint.matrix()(i, m_activeAxes(i)) = m_weights(m_activeAxes(i)); |
93 |
|
✗ |
m_constraint.vector()(i) = |
94 |
|
✗ |
m_ref(m_activeAxes(i)) * m_weights(m_activeAxes(i)); |
95 |
|
|
} |
96 |
|
|
} |
97 |
|
|
|
98 |
|
✗ |
const Vector& TaskActuationEquality::getWeightVector() const { |
99 |
|
✗ |
return m_weights; |
100 |
|
|
} |
101 |
|
|
|
102 |
|
✗ |
const ConstraintBase& TaskActuationEquality::getConstraint() const { |
103 |
|
✗ |
return m_constraint; |
104 |
|
|
} |
105 |
|
|
|
106 |
|
✗ |
const ConstraintBase& TaskActuationEquality::compute(const double, |
107 |
|
|
ConstRefVector, |
108 |
|
|
ConstRefVector, Data&) { |
109 |
|
✗ |
return m_constraint; |
110 |
|
|
} |
111 |
|
|
|
112 |
|
|
} // namespace tasks |
113 |
|
|
} // namespace tsid |
114 |
|
|
|