| Line |
Branch |
Exec |
Source |
| 1 |
|
|
// |
| 2 |
|
|
// Copyright (c) 2020 CNRS, NYU, MPI Tübingen, PAL Robotics |
| 3 |
|
|
// |
| 4 |
|
|
// This file is part of tsid |
| 5 |
|
|
// tsid is free software: you can redistribute it |
| 6 |
|
|
// and/or modify it under the terms of the GNU Lesser General Public |
| 7 |
|
|
// License as published by the Free Software Foundation, either version |
| 8 |
|
|
// 3 of the License, or (at your option) any later version. |
| 9 |
|
|
// tsid is distributed in the hope that it will be |
| 10 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| 11 |
|
|
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 12 |
|
|
// General Lesser Public License for more details. You should have |
| 13 |
|
|
// received a copy of the GNU Lesser General Public License along with |
| 14 |
|
|
// tsid If not, see |
| 15 |
|
|
// <http://www.gnu.org/licenses/>. |
| 16 |
|
|
// |
| 17 |
|
|
#include <tsid/tasks/task-capture-point-inequality.hpp> |
| 18 |
|
|
#include "tsid/math/utils.hpp" |
| 19 |
|
|
#include "tsid/robots/robot-wrapper.hpp" |
| 20 |
|
|
|
| 21 |
|
|
/** This class has been implemented following : |
| 22 |
|
|
* Ramos, O. E., Mansard, N., & Soueres, P. |
| 23 |
|
|
* (2014). Whole-body Motion Integrating the Capture Point in the Operational |
| 24 |
|
|
* Space Inverse Dynamics Control. In IEEE-RAS International Conference on |
| 25 |
|
|
* Humanoid Robots (Humanoids). |
| 26 |
|
|
*/ |
| 27 |
|
|
namespace tsid { |
| 28 |
|
|
namespace tasks { |
| 29 |
|
|
using namespace math; |
| 30 |
|
|
using namespace trajectories; |
| 31 |
|
|
using namespace pinocchio; |
| 32 |
|
|
|
| 33 |
|
✗ |
TaskCapturePointInequality::TaskCapturePointInequality(const std::string& name, |
| 34 |
|
|
RobotWrapper& robot, |
| 35 |
|
✗ |
const double timeStep) |
| 36 |
|
|
: TaskMotion(name, robot), |
| 37 |
|
✗ |
m_constraint(name, 2, robot.nv()), |
| 38 |
|
✗ |
m_nv(robot.nv()), |
| 39 |
|
✗ |
m_delta_t(timeStep) { |
| 40 |
|
✗ |
m_dim = 2; |
| 41 |
|
✗ |
m_p_com.setZero(3); |
| 42 |
|
✗ |
m_v_com.setZero(3); |
| 43 |
|
|
|
| 44 |
|
✗ |
m_safety_margin.setZero(m_dim); |
| 45 |
|
|
|
| 46 |
|
✗ |
m_support_limits_x.setZero(m_dim); |
| 47 |
|
✗ |
m_support_limits_y.setZero(m_dim); |
| 48 |
|
|
|
| 49 |
|
✗ |
m_rp_max.setZero(m_dim); |
| 50 |
|
✗ |
m_rp_min.setZero(m_dim); |
| 51 |
|
|
|
| 52 |
|
✗ |
b_lower.setZero(m_dim); |
| 53 |
|
✗ |
b_upper.setZero(m_dim); |
| 54 |
|
|
|
| 55 |
|
✗ |
m_g = robot.model().gravity.linear().norm(); |
| 56 |
|
✗ |
m_w = 0; |
| 57 |
|
✗ |
m_ka = 0; |
| 58 |
|
|
} |
| 59 |
|
|
|
| 60 |
|
✗ |
int TaskCapturePointInequality::dim() const { return m_dim; } |
| 61 |
|
|
|
| 62 |
|
✗ |
Vector TaskCapturePointInequality::getAcceleration(ConstRefVector dv) const { |
| 63 |
|
✗ |
return m_constraint.matrix() * dv - m_drift; |
| 64 |
|
|
} |
| 65 |
|
|
|
| 66 |
|
✗ |
const Vector& TaskCapturePointInequality::position() const { return m_p_com; } |
| 67 |
|
✗ |
const ConstraintBase& TaskCapturePointInequality::getConstraint() const { |
| 68 |
|
✗ |
return m_constraint; |
| 69 |
|
|
} |
| 70 |
|
|
|
| 71 |
|
✗ |
void TaskCapturePointInequality::setSupportLimitsXAxis(const double x_min, |
| 72 |
|
|
const double x_max) { |
| 73 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT(x_min >= x_max, |
| 74 |
|
|
"The minimum limit for x needs to be greater " |
| 75 |
|
|
"or equal to the maximum limit"); |
| 76 |
|
✗ |
m_support_limits_x(0) = x_min; |
| 77 |
|
✗ |
m_support_limits_x(1) = x_max; |
| 78 |
|
|
} |
| 79 |
|
|
|
| 80 |
|
✗ |
void TaskCapturePointInequality::setSupportLimitsYAxis(const double y_min, |
| 81 |
|
|
const double y_max) { |
| 82 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT(y_min >= y_max, |
| 83 |
|
|
"The minimum limit for y needs to be greater " |
| 84 |
|
|
"or equal to the maximum limit"); |
| 85 |
|
✗ |
m_support_limits_y(0) = y_min; |
| 86 |
|
✗ |
m_support_limits_y(1) = y_max; |
| 87 |
|
|
} |
| 88 |
|
|
|
| 89 |
|
✗ |
void TaskCapturePointInequality::setSafetyMargin(const double x_margin, |
| 90 |
|
|
const double y_margin) { |
| 91 |
|
✗ |
m_safety_margin(0) = x_margin; |
| 92 |
|
✗ |
m_safety_margin(1) = y_margin; |
| 93 |
|
|
} |
| 94 |
|
|
|
| 95 |
|
✗ |
const ConstraintBase& TaskCapturePointInequality::compute(const double, |
| 96 |
|
|
ConstRefVector, |
| 97 |
|
|
ConstRefVector, |
| 98 |
|
|
Data& data) { |
| 99 |
|
✗ |
m_robot.com(data, m_p_com, m_v_com, m_drift); |
| 100 |
|
|
|
| 101 |
|
✗ |
const Matrix3x& Jcom = m_robot.Jcom(data); |
| 102 |
|
|
|
| 103 |
|
✗ |
m_w = sqrt(m_g / m_p_com(2)); |
| 104 |
|
✗ |
m_ka = (2 * m_w) / ((m_w * m_delta_t + 2) * m_delta_t); |
| 105 |
|
|
|
| 106 |
|
✗ |
m_rp_min(0) = |
| 107 |
|
✗ |
m_support_limits_x(0) + m_safety_margin(0); // x min support polygon |
| 108 |
|
✗ |
m_rp_min(1) = |
| 109 |
|
✗ |
m_support_limits_y(0) + m_safety_margin(1); // y min support polygon |
| 110 |
|
|
|
| 111 |
|
✗ |
m_rp_max(0) = |
| 112 |
|
✗ |
m_support_limits_x(1) - m_safety_margin(0); // x max support polygon |
| 113 |
|
✗ |
m_rp_max(1) = |
| 114 |
|
✗ |
m_support_limits_y(1) - m_safety_margin(1); // y max support polygon |
| 115 |
|
|
|
| 116 |
|
✗ |
for (int i = 0; i < m_dim; i++) { |
| 117 |
|
✗ |
b_lower(i) = |
| 118 |
|
✗ |
m_ka * (m_rp_min(i) - m_p_com(i) - m_v_com(i) * (m_delta_t + 1 / m_w)); |
| 119 |
|
✗ |
b_upper(i) = |
| 120 |
|
✗ |
m_ka * (m_rp_max(i) - m_p_com(i) - m_v_com(i) * (m_delta_t + 1 / m_w)); |
| 121 |
|
|
} |
| 122 |
|
|
|
| 123 |
|
✗ |
m_constraint.lowerBound() = b_lower - m_drift.head(m_dim); |
| 124 |
|
✗ |
m_constraint.upperBound() = b_upper - m_drift.head(m_dim); |
| 125 |
|
|
|
| 126 |
|
✗ |
m_constraint.setMatrix(Jcom.block(0, 0, m_dim, m_nv)); |
| 127 |
|
|
|
| 128 |
|
✗ |
return m_constraint; |
| 129 |
|
|
} |
| 130 |
|
|
|
| 131 |
|
|
} // namespace tasks |
| 132 |
|
|
} // namespace tsid |
| 133 |
|
|
|