GCC Code Coverage Report


Directory: ./
File: src/math/utils.cpp
Date: 2024-11-10 01:12:44
Exec Total Coverage
Lines: 0 85 0.0%
Branches: 0 250 0.0%

Line Branch Exec Source
1 //
2 // Copyright (c) 2017 CNRS
3 //
4 // This file is part of tsid
5 // tsid is free software: you can redistribute it
6 // and/or modify it under the terms of the GNU Lesser General Public
7 // License as published by the Free Software Foundation, either version
8 // 3 of the License, or (at your option) any later version.
9 // tsid is distributed in the hope that it will be
10 // useful, but WITHOUT ANY WARRANTY; without even the implied warranty
11 // of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // General Lesser Public License for more details. You should have
13 // received a copy of the GNU Lesser General Public License along with
14 // tsid If not, see
15 // <http://www.gnu.org/licenses/>.
16 //
17
18 #include <tsid/math/utils.hpp>
19
20 namespace tsid {
21 namespace math {
22
23 void SE3ToXYZQUAT(const pinocchio::SE3 &M, RefVector xyzQuat) {
24 PINOCCHIO_CHECK_INPUT_ARGUMENT(
25 xyzQuat.size() == 7, "The size of the xyzQuat vector needs to equal 7");
26 xyzQuat.head<3>() = M.translation();
27 xyzQuat.tail<4>() = Eigen::Quaterniond(M.rotation()).coeffs();
28 }
29
30 void SE3ToVector(const pinocchio::SE3 &M, RefVector vec) {
31 PINOCCHIO_CHECK_INPUT_ARGUMENT(
32 vec.size() == 12, "The size of the vec vector needs to equal 12");
33 vec.head<3>() = M.translation();
34 typedef Eigen::Matrix<double, 9, 1> Vector9;
35 vec.tail<9>() = Eigen::Map<const Vector9>(&M.rotation()(0), 9);
36 }
37
38 void vectorToSE3(RefVector vec, pinocchio::SE3 &M) {
39 PINOCCHIO_CHECK_INPUT_ARGUMENT(vec.size() == 12,
40 "vec needs to contain 12 rows");
41 M.translation(vec.head<3>());
42 typedef Eigen::Matrix<double, 3, 3> Matrix3;
43 M.rotation(Eigen::Map<const Matrix3>(&vec(3), 3, 3));
44 }
45
46 void errorInSE3(const pinocchio::SE3 &M, const pinocchio::SE3 &Mdes,
47 pinocchio::Motion &error) {
48 // error = pinocchio::log6(Mdes.inverse() * M);
49 // pinocchio::SE3 M_err = Mdes.inverse() * M;
50 pinocchio::SE3 M_err = M.inverse() * Mdes;
51 error.linear() = M_err.translation();
52 error.angular() = pinocchio::log3(M_err.rotation());
53 }
54
55 void solveWithDampingFromSvd(Eigen::JacobiSVD<Eigen::MatrixXd> &svd,
56 ConstRefVector b, RefVector sol, double damping) {
57 assert(svd.rows() == b.size());
58 const double d2 = damping * damping;
59 const long int nzsv = svd.nonzeroSingularValues();
60 Eigen::VectorXd tmp(svd.cols());
61 tmp.noalias() = svd.matrixU().leftCols(nzsv).adjoint() * b;
62 double sv;
63 for (long int i = 0; i < nzsv; i++) {
64 sv = svd.singularValues()(i);
65 tmp(i) *= sv / (sv * sv + d2);
66 }
67 sol = svd.matrixV().leftCols(nzsv) * tmp;
68 // cout<<"sing val = "+toString(svd.singularValues(),3);
69 // cout<<"solution with damp "+toString(damping)+" = "+toString(res.norm());
70 // cout<<"solution without damping ="+toString(svd.solve(b).norm());
71 }
72
73 void svdSolveWithDamping(ConstRefMatrix A, ConstRefVector b, RefVector sol,
74 double damping) {
75 assert(A.rows() == b.size());
76 Eigen::JacobiSVD<Eigen::MatrixXd> svd(A.rows(), A.cols());
77 svd.compute(A, Eigen::ComputeThinU | Eigen::ComputeThinV);
78
79 solveWithDampingFromSvd(svd, b, sol, damping);
80 }
81
82 void pseudoInverse(ConstRefMatrix A, RefMatrix Apinv, double tolerance,
83 unsigned int computationOptions)
84
85 {
86 Eigen::JacobiSVD<Eigen::MatrixXd> svdDecomposition(A.rows(), A.cols());
87 pseudoInverse(A, svdDecomposition, Apinv, tolerance, computationOptions);
88 }
89
90 void pseudoInverse(ConstRefMatrix A,
91 Eigen::JacobiSVD<Eigen::MatrixXd> &svdDecomposition,
92 RefMatrix Apinv, double tolerance,
93 unsigned int computationOptions) {
94 using namespace Eigen;
95 int nullSpaceRows = -1, nullSpaceCols = -1;
96 pseudoInverse(A, svdDecomposition, Apinv, tolerance, (double *)0,
97 nullSpaceRows, nullSpaceCols, computationOptions);
98 }
99
100 void pseudoInverse(ConstRefMatrix A,
101 Eigen::JacobiSVD<Eigen::MatrixXd> &svdDecomposition,
102 RefMatrix Apinv, double tolerance, double *nullSpaceBasisOfA,
103 int &nullSpaceRows, int &nullSpaceCols,
104 unsigned int computationOptions) {
105 using namespace Eigen;
106
107 if (computationOptions == 0)
108 return; // if no computation options we cannot compute the pseudo inverse
109 svdDecomposition.compute(A, computationOptions);
110
111 JacobiSVD<MatrixXd>::SingularValuesType singularValues =
112 svdDecomposition.singularValues();
113 long int singularValuesSize = singularValues.size();
114 int rank = 0;
115 for (long int idx = 0; idx < singularValuesSize; idx++) {
116 if (tolerance > 0 && singularValues(idx) > tolerance) {
117 singularValues(idx) = 1.0 / singularValues(idx);
118 rank++;
119 } else {
120 singularValues(idx) = 0.0;
121 }
122 }
123
124 // equivalent to this U/V matrix in case they are computed full
125 Apinv = svdDecomposition.matrixV().leftCols(singularValuesSize) *
126 singularValues.asDiagonal() *
127 svdDecomposition.matrixU().leftCols(singularValuesSize).adjoint();
128
129 if (nullSpaceBasisOfA && (computationOptions & ComputeFullV)) {
130 // we can compute the null space basis for A
131 nullSpaceBasisFromDecomposition(svdDecomposition, rank, nullSpaceBasisOfA,
132 nullSpaceRows, nullSpaceCols);
133 }
134 }
135
136 void dampedPseudoInverse(ConstRefMatrix A,
137 Eigen::JacobiSVD<Eigen::MatrixXd> &svdDecomposition,
138 RefMatrix Apinv, double tolerance,
139 double dampingFactor, unsigned int computationOptions,
140 double *nullSpaceBasisOfA, int *nullSpaceRows,
141 int *nullSpaceCols) {
142 using namespace Eigen;
143
144 if (computationOptions == 0)
145 return; // if no computation options we cannot compute the pseudo inverse
146 svdDecomposition.compute(A, computationOptions);
147
148 JacobiSVD<MatrixXd>::SingularValuesType singularValues =
149 svdDecomposition.singularValues();
150
151 // rank will be used for the null space basis.
152 // not sure if this is correct
153 const long int singularValuesSize = singularValues.size();
154 const double d2 = dampingFactor * dampingFactor;
155 int rank = 0;
156 for (int idx = 0; idx < singularValuesSize; idx++) {
157 if (singularValues(idx) > tolerance) rank++;
158 singularValues(idx) = singularValues(idx) /
159 ((singularValues(idx) * singularValues(idx)) + d2);
160 }
161
162 // equivalent to this U/V matrix in case they are computed full
163 Apinv = svdDecomposition.matrixV().leftCols(singularValuesSize) *
164 singularValues.asDiagonal() *
165 svdDecomposition.matrixU().leftCols(singularValuesSize).adjoint();
166
167 if (nullSpaceBasisOfA && nullSpaceRows && nullSpaceCols &&
168 (computationOptions & ComputeFullV)) {
169 // we can compute the null space basis for A
170 nullSpaceBasisFromDecomposition(svdDecomposition, rank, nullSpaceBasisOfA,
171 *nullSpaceRows, *nullSpaceCols);
172 }
173 }
174
175 void nullSpaceBasisFromDecomposition(
176 const Eigen::JacobiSVD<Eigen::MatrixXd> &svdDecomposition, double tolerance,
177 double *nullSpaceBasisMatrix, int &rows, int &cols) {
178 using namespace Eigen;
179 JacobiSVD<MatrixXd>::SingularValuesType singularValues =
180 svdDecomposition.singularValues();
181 int rank = 0;
182 for (int idx = 0; idx < singularValues.size(); idx++) {
183 if (tolerance > 0 && singularValues(idx) > tolerance) {
184 rank++;
185 }
186 }
187 nullSpaceBasisFromDecomposition(svdDecomposition, rank, nullSpaceBasisMatrix,
188 rows, cols);
189 }
190
191 void nullSpaceBasisFromDecomposition(
192 const Eigen::JacobiSVD<Eigen::MatrixXd> &svdDecomposition, int rank,
193 double *nullSpaceBasisMatrix, int &rows, int &cols) {
194 using namespace Eigen;
195 const MatrixXd &vMatrix = svdDecomposition.matrixV();
196 // A \in \mathbb{R}^{uMatrix.rows() \times vMatrix.cols()}
197 rows = (int)vMatrix.cols();
198 cols = (int)vMatrix.cols() - rank;
199 Map<MatrixXd> map(nullSpaceBasisMatrix, rows, cols);
200 map = vMatrix.rightCols(vMatrix.cols() - rank);
201 }
202
203 } // namespace math
204 } // namespace tsid
205