
ABSTRACT

Optimal control is a way to program robots by defining the tasks to be achieved in

terms of quantitative objectives such as cost, reward or constraint functions, rather

than by explicitly programming the motion by sequences or demonstrations. Among

the properties that characterize the methods used to solve it, the most important

are often whether the decision variable that is optimized is the robot trajectory or

its policy; and whether this optimization uses derivatives or not. While trajectory

optimization often benefits from the derivatives, it also makes it less robust in

particular when considering irregular problems such as movements with contacts or

with integer decision. In this project, it is proposed to consider gradient-free

algorithms for optimizing the robot motion, in particular to compare it to gradient-

based optimization, to seek for guarantees in the convergence (such as rate of

convergence or convergence domain), to transfer some algorithmic progress

developed in gradient-based trajectory optimization, and to understand the

importance or limitations of not using the gradient in reinforcement learning.

PROJECT

The objective of this project is to understand the importance of derivatives when

optimizing the movement of a robot. While there is a strong understanding that

predictive control (aka trajectory optimization) and reinforcement learning (aka

policy optimization) are two approaches to compute the unique solution of an

optimal control problems [1], algorithms to tackle both are very different in practice.

Predictive control implies quick optimization at run time, which is mostly achieved

using strong models implementing the derivatives of the objective functions and the

robot simulation [2]. This enables the solver to quickly (super-linearly converge), but

limits the use to mostly regular problems. By solving reinforcement learning off-line

on multicore processing units, the importance of the algorithmic efficiency is relaxed

(actually, we barely have any guarantees on the convergence rate) which enables

the use of gradient free optimization, easier to implement when the system is not

smooth [3].

There are some few research actions in the world to understand this duality. Some

groups highlight the importance of the randomization in approximating the

gradients [4,5], other seeks for exploiting the gradient in reinforcement learning [6].

With this project, we propose to reverse the study by focusing on the properties we

could get from gradient-free trajectory optimization [8,9]. Some early tentative have

been proposed 10 years ago [10,11], yet limited by the capabilities of CPU at this

time. More recently, new algorithms have been proposed combining zero-order

evaluations with local reconstruction approximating the local landscape and leading

to guaranteed convergence rate. More pragmatic algorithms have been explored

taking into account the architecture of available processing units. We propose to

combine these ideas while exploiting the structure of the trajectory optimization

problem, as done in our recent gradient-based solver. We expect that prototype

could significantly advance the state of the art in solving off-line locomotion

problems such as stair climbing and manipulation problem such as re-arrangement.

The understanding gained in studying zero-order trajectory optimization, especially 

for nonsmooth problems, could then be matched with randomized gradient 

estimators and gradient-free reinforcement learning, in particular by proposing a 

new version of the classical guided-policy search suitable to any class of problems.
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ZERO-ORDER TRAJECTORY OPTIMIZATION
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LAAS-CNRS in the Gepetto team in
Toulouse. It will be integrated to
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