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Abstract

Humanoid robots have been an active field of research during the
past few decades owing to the wide variety of motions and interac-
tions possible via Humanoid. Nevertheless, planning motions is still
challenging in many cases. This thesis tackles the problem of object
manipulation. A graph of constraints is introduced to transform object
manipulation tasks in sequences of constraints. Then, a constrained
motion planner, using the graph of constraints, is used to find a suit-
able statically balanced path for a sliding robot. Affordance is used to
provide the required information to build the graph of constraints. An
algorithm based on Rapidly exploring Random Tree navigates through
the graph of constraints. Basic experiments of this method were per-
formed with the humanoid robot HRP-2.



Sammanfattning
Objektmanipulation för humanoida robotar.

Humanoida robotar har varit ett aktivit området för forskning under
de senaste årtiondena på grund av deras stora möjligheter för rörelser
och interaktioner. Rörelseplanering är fortfarande problematiskt i mån-
ga fall. Detta examensarbete tar itu med problemet med objektma-
nipulation. En graf av bivillkor införs för att omvandla objektmanip-
ulationsupgifter till sekvenser av bivillkor. Denna graf änvands av rn
rörelseplanerare för att hitta en lämplig statiskt balanserade väg för
en glidande robot. Affordance används för att tillhandahålla den infor-
mation som krävs för att bygga upp grafen och en algoritm baserad på
Rapidly exploring Random Tree änvands för att navigera genom graffen.
Grundläggande försök med denna metod utförts med den humanoida
roboten HRP-2.
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Chapter 1

Introduction

1.1 Overview

A humanoid robot is, by definition, a system looking like human beings, that is a
highly redundant and complex system. In the last few decades, our interest in such
systems has raised a lot of new problems. Walking turned out to be much harder
than driving a car. Moreover, making a humanoid robot walk is not sufficient to
make it useful for humans. Like human being, a humanoid robot needs to be able
to perform actions in its environment, by manipulating external objects. Its own
motions must remain only a means and not the ultimate goal. In such a context,
object manipulation becomes a key problem.

The high redundancy of humanoid robots gives them great capabilities for both
navigation and manipulation. Navigation, a means, and manipulation, an require-
ment, makes for a global and a very challenging problem. Because manipulation
involves external objects and the robot itself, it is a harder problem than navigation.
Actually, a manipulation problem can be seen as a navigation problem of a more
complex system.

A humanoid robot is a system with many actuators and sensors. The actuators
are motors, one for each joints, and the sensors give measurements of the angle of
each joint. A humanoid robot is usually equipped with more sensors like cameras,
inertial measurement unit, force and torque sensors and sonar sensors. These sensors
will not have any influence on our work, so we do not consider them.

Motion planning refers to a fundamental need in robotics: algorithms that con-
vert high-level specifications from humans into low-level descriptions of how to move.
For example, from a task like “Put the blue box in the drawer” to a sequence of con-
figuration the robot can follow. The algorithm must determine how to move the
robots active degrees of freedom, i.e. actuated degrees of freedom, in order to move
the box, which position is defined by passive degrees of freedom, without hitting
obstacles or loosing balance. Motion planning focuses primarily on geometrical
planning, considering translations and rotations and ignoring dynamics and other
differential constraints. Trajectory planning refers to the problem of taking the so-
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CHAPTER 1. INTRODUCTION

lution from a robot motion planning algorithm and determining how to move along
the solution in a way that respects the mechanical limitations of the robot.

The position of all the joints are not enough to represent the position of the robot
in the 3D world because it they do not give the position of the robot relatively to
the world. The position of one body of the robot, called free-flyer, is needed. A
configuration of the robot is a vector where the first six values represent the position
of the free-flyer and the following values represent the internal degrees of freedom
of the robot. A configuration fully represents the robot in the 3D world.

Figure 1.1 represents this system from a control point of view. The right part
is the feedback control loop and the left part is planning.

The control loop input is a configuration of the robot, called qi. The control
loop corrects the error e so that the measurement qm of the real configuration, q,
of the robot tends to qi.

Planning can have different kinds of inputs, depending on the way the tasks are
specified. In Figure 1.1, the input is a configuration to be reached. Many other
inputs are possible, like a goal position of the hand. Because planning takes too
much time, computations are done offline. Planning requires the initial configuration
of the robot and a map of the world. In Figure 1.1, planning is divided in two
phases: path planning and trajectory planning. A path is a sequence of configuration
without the notion of time. A trajectory is a path parameterized in time. It means
that we cannot take speed or acceleration into account during the path planning
step. The dynamic balance of the robot is thus achieved in the second step, while
the first step can ensure no more than a statically-balanced path. Section 3.2 of
this report explains why the problem can be split. As it will be explained, this “two
phases” approach makes a hard dynamic problem into a geometrical problem and
an easier dynamic problem, thus simplifying the problem.

Path
planning

q0, Map

Trajectory
planning

Time

Controller Robot

Disturbances

u

Sensor
data

p

Offline computation

qgoal qi e q

−

qm

Figure 1.1. Robot control loop.
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1.2 Path planning

Path planning consists in finding a feasible collision-free path between an initial
configuration and a goal configuration [15]. A path is feasible if there exists a
parameterization in time that allows the robot able to physically execute it. For
instance, assuming that the robot does not jump, one foot should always be in
contact with the floor. In practice, the contact has to be planar. A path is collision-
free if the robot never collides with its environment when executing it.

In a discrete - or discretized - environment, path planning is a graph search.
Classical algorithms such as Breadth First Search, Dijkstra’s or A* algorithms pro-
vide powerful tools for path planning in these environments. These algorithms
require an explicit representation of the environment. In a continuous environment,
an explicit representation of the entire environment is practically impossible. It is
possible to discretize the environment and use a classic graph search but, in prac-
tice, as the space of search is high dimensional, this method takes too much time
to be considered as a possible solution.

In the last decades, randomized techniques have been developed. The main idea
is to randomly sample the environment and try to connect the samples. Section 3.1
gives more details about sampling-based techniques.

In the framework of object manipulation, path planning is subject to constraint.
Typically, an object cannot move by itself. The robot must hold it. Such restric-
tions of motion are called “constraints”. A mathematical definition is given in
Section 4.1.2. By reducing the number of configurations accessible from a given
configuration, constraints make classic random methods fail. A path planner for
such problems is called constrained path planner. The difference is that it uses
information provided by the constraints inside a classic path planner.

Optimality has not been a focus in this thesis. Finding a feasible path is al-
ready hard and a classic approach is to search a feasible path and then optimize it.
Optimality for a path depends on a cost function. This cost function is designed
according to criteria, such as path length, execution time, energy spent, human-like
motion, or a compromise between them.

1.3 Problem statement

This thesis tackles the problem of path planning when object manipulation is in-
volved. We focus on integrating objects in a path planning algorithm in order to
make task specification easier. A geometric analysis is enough to make the robot
capable of completing a task involving secondary action, without explicitly speci-
fying them. Figure 1.2 represents the environment used for experiments. In this
apartment, the task “Put the blue box in the drawer” requires several secondary
tasks: two door openings and eventually manipulation of the drawer. A systematic
way of finding this secondary tasks simplifies specification of tasks - in this example,
from four tasks to one task.

3



CHAPTER 1. INTRODUCTION

Figure 1.2. HRP-2 in an apartment with objects.

In this thesis, we integrate a graph of constraints in a constrained path planner.
The graph of constraints can be seen as an interface between a classic constrained
path planner and object manipulation. The method is scalable to any number of
objects, but has been only tested with one single object.

The related work on this topic are presented in Part I. Then, we introduce in
Part II a graph representation of constraints that provides an abstract structure
for object manipulation. Then, this representation is integrated in an algorithm
based on Rapidly exploring Random Tree. Eventually, the experimental results are
shown.
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Chapter 2

Background

This chapter gives background knowledge in motion planning. The first section
describes the model used to represent robots as mechanical systems. Then, two
important notions in object manipulation planning are introduced: configuration
space and passive degrees of freedom. Eventually, a mathematical formulation of
path planning problems is given.

2.1 Robot modeling

A robot is a sequence of bodies, linked by joints. It can also be seen as a sequence
of joints linked by bodies. For example, “arm” and “forearm” are bodies linked by
“elbow”, a joint. “shoulder” and “elbow” are linked by “arm”.

Focusing only on kinematics, the robot is a tree of joints, starting from a chosen
root joint. A frame is associated to each joint. The transformation between the
frame of a joint and its parent depends only on the parent joint parameter, i.e. its
angle for a rotation joint. This joint tree forms a kinematic chain, which will give
the position of any point of any body in the world frame.

The joint tree is extended with the bodies in order to allow collision detection.
A body is linked to its parent joint. For instance, “arm” is linked to “shoulder”.
Thus, from a configuration, joints are located in the world frame. Then bodies are
located in the world frame, and we can check for collision between two bodies of
the robot and with a static environment. Bodies have the notion of inertia so that
it is possible to compute the center of mass of the robot.

In this context, the object to be manipulated is integrated in the model. The
root joint is an anchor joint with two children, one for the robot and one for the
object, as shown in Figure 2.1. The latter represents an object with only one joint,
but it can have more joints.
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Anchor
Joint

Object
Joint

Free-flyer
Joint

Torso
Joint

Right
hip Joint

Left hip
Joint

Object Body

Robot waist

Torso

Right thigh

Left thigh

Figure 2.1. Tree of joints of the system R×O.

2.2 Configuration space
Several ways of representing the environment in which a robot evolves have been
developed and used. A representation can be explicit or implicit. In mathematics,
an implicit definition of a function f is of the form R(f(x), x) = 0, where R(x, y) is
a function - that can also be implicit, whereas an explicit definition is defined by a
formula, f(x) = R(x), where R is known. For instance,

x2 + f(x)2 − 1 = 0, withf(x) ≥ 0

is an implicit definition of f and

f(x) =
√

1− x2

is explicit. A representation of the world is explicit if its elements are known. Typi-
cally, with an explicit representation, obstacles are directly represented and collision
checking is fast. In general, an explicit representation requires a bigger amount of
memory and is easier to deal with. A representation can also be continuous or dis-
crete. It is harder to plan with continuous representation but a good and feasible
discretization of the world is not always possible and depends strongly on cases.

In this work, we use a classical representation, continuous and implicit. Let n
be the number of joints of the robot. A position of the robot is represented by a
configuration

q = (x, y, z, α, β, γ, θ1, · · · , θn) (2.1)

where:

6
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− (x, y, z, α, β, γ) is a 6-dimension transformation (3 translations and 3 rota-
tions). It represents the position of one body of the robot, called free-flyer.

− (θ1, · · · , θn) represents the angular position of each joint of the robot. It also
represents the internal degrees of freedom of the robot.

The set of possible configurations for the robot is called the configuration space,
and denoted as CS. By construction, CS ⊂ Rn+6. As the joints motions are usually
bounded, CS is usually not equal to Rn+6. The transformation between the 3D
world and CS depends only on the kinematic chain of a robot.

Obstacles of the 3D world can be represented in the configuration space. Thus,
we can define CSfree, the set of collision-free configurations. It is a subset of CS.
It is important to understand that this space is only implicitly defined and not
explicitly. To know if a configuration is in the set, collision checking has to be
performed. Path planning consists of finding a feasible collision-free curve in CS
from initial to goal configuration, or a feasible curve in CSfree. In this thesis, we
focus on geometric planning. As time is not taken into account, time-dependent
notions, like balance of the robot, are transformed into geometric conditions.

Let us consider a robot R with NR degrees of freedom in a 3-dimensional
workspace. The workspace contains a movable object O that has 1 ≤ NO ≤ 6
degrees of freedom. The configuration space of the system R × O is the Carte-
sian product of both configuration spaces. The subset of valid grasp configurations
of O by R is denoted CSgrasp and is a sub-manifold of CS. The domain in CS
corresponding to valid placements of O is denoted CSplcmt.

2.3 Passive degrees of freedom
The robot internal degrees of freedom (DOF) are all actuated and their restrictions
are basically bounds on their position, speed and/or acceleration. These are the
active DOF. In the representation described earlier, the free-flyer joint represents
an external and non-actuated DOF, Object joints are also not actuated because they
can only be manipulated by the robot through its end-effectors. Hence, they are
passive DOF. To modify their values, other actuated DOF are involved. Thus, the
variables become coupled. The same holds with Objects too. Section 3.2 explains a
two step planning method that transforms the free-flyer passive DOF into an active
DOF. Nevertheless, object DOF remain passive.

Movable objects can have constraints on both motion and/or placement:
− Constraints on their motions refer to their kinematic chain. A door, for in-

stance, is stable in every valid configuration but its motions are restricted to a
rotation (or a translation for sliding door). Typically, for this kind of object,
NM ≤ 5.

− Constraints on their placements refer to their stability constraints. We can
think about any free flying object, like a cup, for instance. It is not always in
a stable configuration but it has no constraint on its motion.

7
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Our work has first addressed objects without constraints on their placement,
like a door or a drawer. To extend our approach to more objects, the two following
concepts are needed:

− a placement validator integrated into the configuration validator.

− a definition of placement as constraints on which we can project random con-
figurations. This is needed because the sub-manifold of valid placements has
no volume so randomly sampling a statically balanced configuration has a zero
probability.

The constraints of valid placement can then be integrated in the graph of con-
straints, explained in Section 5.2.

2.4 Motion planning

Before giving more details about sampling-based methods, it is important to under-
stand why these methods are relevant for our problem. The main characteristics of
the problem are the continuity of the search space, and its high dimension.

Humanoid robots have many degrees of freedom; so CSfree is a high dimensional
space. An explicit representation of such a space is impossible in practice. A
discretization of CS with a good resolution would lead to a gigantic search space, as
its size grows exponentially with the dimension of CS. This makes explicit methods
intractable for planning in high-dimensional continuous space. In other words, the
problem can be solved in theory but, in practice, solving requires a too large an
amount of time for the solution to be useful. These types of methods are usually
complete. If a solution exists, it will be found in a finite amount of time. If no
solution exists, the algorithm will return failure.

As an explicit representation of CS does not seem feasible, an implicit represen-
tation is used. It uses collision detection methods to sample configurations. The
samples are generated while a discrete search is running. The search is guided bit
randomness. Unlike the previous one, this approach is not complete. Our inter-
est in sampling methods has grown during the past two decades because they can
solve problem in continuous search spaces in a relatively short time. Two of the most
fundamental sampling-based motion planning algorithms are Probabilistic Roadmap
(PRM) [13] and Rapidly exploring Random Trees (RRT) [14].

Although sampling-based, these techniques are proven to be probabilistically
complete [2]. That is, if a solution exists, the algorithm will find it. In manipulation
planning, the configuration space is constrained and foliated. A definition and
explanations of foliations are given in Section 4.1. The main issue that arises when
dealing with constrained environments is that sub-manifolds have no volume. So the
probability of randomly sampling a configuration in a sub-manifold is zero. A basic
PRM or RRT is not able to solve such planning problem. Works on this matter
have led to improvements, like [16], but, to our best knowledge, there has been no

8
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general solution to it. In this thesis, we use the RRT based algorithm introduced
by Dalibard et al. [5].

As said earlier, planning a path is finding a curve in CS. So a path planning
problem can be define as follow:

Problem. Given CSfree ⊂ Rn, (qs, qe) ∈ CS2
free, find γ : [0, 1] → CSfree

such that γ(0) = qs and γ(1) = qe.
where CSfree is given implicitly, that is to say by a collision detection function.

This definition of path planning problems is not well adapted to computer pro-
gramming. As it is hard to find a continuous unknown function, we provide a
definition of the problem that is usually used when planning with random sampling
methods.

A path is a sequence of direct paths. A direct path is made of two ending
configurations and a method to interpolate configurations between its ends. A
steering method builds a direct path between two configurations. For instance, a
linear steering method builds direct paths that interpolate linearly between its ends.

A possible definition of a path planning problem is:

Problem. Given CSfree ⊂ Rn, (qs, qe) ∈ CS2
free, find (qi)0≤i≤l such that:

− q0 = qs and ql = qe;
− a valid direct path between qi and qi+1, where 0 ≤ i ≤ l − 1, exists.

9
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Chapter 3

Algorithms

3.1 Planning algorithms
Humanoid robots are very frequently designed in open kinematic chains. They are
easier to design and control this way. Navigation aims at finding a collision-free path
in a given environment. Manipulation differs from navigation because it involves
external passive objects. They are passive because their joints cannot be controlled
directly, with actuators, but only indirectly, through the end-effectors of the robot.
As a consequence, a closed kinematic chain may appear. It makes the process of
finding a manipulation path more difficult, as explained by LaValle in [15, p. 338]
or Cortés and Siméon in [3].

The main focus of the work in this thesis is to address this problem of ma-
nipulation using sampling-based motion planning. This method has already shown
good results for high dimensional problems, which would be practically impossible to
solve using techniques that explicitly represent the configuration space [15, chap. 5].
Several ideas have been implemented to reduce the complexity of navigation, like
primitives [10] or PCA analysis [4].

In the following sections, a short review of sampling-based planning algorithms
is provided. Some are better for single-query planning, others for multi-query plan-
ning. Single-query planning refers to planning a path between two configurations.
Multi-query planning refers to several single-query on the same environment. For
multi-query planning, it is generally faster to build a graph called roadmap that
represents well the CSfree and then try to perform the queries. For single-query, a
good representation of the environment is not important.

3.1.1 Rapidly exploring Random Tree

A short description of the classic algorithm is given here. For a full understanding, it
is well presented in [15]. An RRT algorithm grows a tree from an initial configuration
by repeating the following steps:

− sample a random configuration qrand in CS.

11
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Algorithm 3.1. Randomly exploring Random Tree

Description: Randomly exploring Random Tree from q0

1: procedure exploreTree(q0)
2: T .init(q0)
3: for i = 1→ K do
4: qrand ← Rand(CS)
5: qnear ← Nearest(qrand,T )
6: Extend(T , qnear, qrand)
7: end for
8: end procedure

− find the nearest configuration qnear of qrand in the tree.
− extend qnear toward qrand

The vertices of the tree are configurations and the edges are direct paths. Al-
gorithm 3.1 shows these steps. The random sample is taken in CS and the collision
detection, seen as a black box, has to be done before inserting of the extended con-
figuration in the tree. This way, the tree is a subset of CSfree. The extension step
adds a new configuration by moving from qnear in the direction of qrand. Several
variants exist. A fixed increment can be used to move qnear, as in [14]. qnear can also
be moved until there is a collision, as in [15, Sec. 5.5.1]. In Algorithm 3.1, the tree
is grown from q0. In a single-query approach, a tree is grown from the initial and
goal configuration, thus creating two connected component in the resulting graph.
Whenever a node is added to one of the trees, we try to connect it to the other tree.
If the trees can be connected, a path has been found.

RRT are well designed for single-query problem [15, sec. 5.5.1]. A variant of this
algorithm, detailed in Section 6, has been used in this thesis.

3.1.2 Probabilistic Roadmap

Probabilistic Roadmap planners are designed in two phases: a learning phase and
a query phase [12]. They are well designed for multi-query planning. During the
learning phase, a roadmap is populated such that it represents as well as possible
CSfree. A roadmap is a set of collision-free configurations and collision-free paths. It
is a graph in CSfree. A roadmap represents well the CSfree if the nodes are equally
distributed in CSfree, if every region of CSfree is covered and if the connectivity of
the roadmap represents the connectivity of CSfree. Indeed, two connected regions
of CSfree should be in the same connected component of the roadmap. This may
be hard to achieve in case of narrow passages, as discussed in Section 4.2.

To build the roadmap, during the learning phases, the two following steps are
repeated:
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− Pick a random configuration in CS, test it for collision and repeat until it is
in CSfree.

− Try to connect the former configuration to the roadmap.

During the query phase, a path between an initial and goal configuration is to
be found. First, an attempt to connect these configuration to the roadmap is made.
Then, a search in the roadmap is performed.

If no path is found, it is possible to improve the roadmap by going back to
the learning phase. Thus, the planner can adapt the size of the roadmap to the
difficulties encountered.

3.1.3 Visibility Roadmap
Visibility Roadmap is another useful variation of sampling-based roadmaps [18],
[15, sec. 5.6.2]. Like PRM, the idea is to represent CSfree but the representation is
kept small. The roadmap contains two kinds of nodes:

Guard Guards cannot see each other. Thus, each guard’s visibility region is empty
of other guards.

Connectors Each connector sees at least two guards.

The algorithm is similar to PRM’s algorithm. During the learning phase, three
cases may happen when a random configuration qrand is collision-free:

− qrand cannot be connected to any guards. Thus, it becomes a guard itself and
it is inserted in the roadmap.

− qrand can be connected to guards from at least two connected components of
the roadmap. Thus, it becomes a connector.

− In any other situations, qrand is discarded because it does not provide useful
information in terms of visibility.

3.2 Small-space controllability
In this section, we define two notions that are crucial for the method developed in
this work: statically balanced path and small-space controllability.

A configuration q is statically balanced if the corresponding robot can stay in q
without moving. The robot does not fall. Using the fundamental principle of static,
it is easy to understand that a configuration is statically balanced if the projection
of the robot center of mass (COM) onto the ground is inside the support polygon of
the robot. The support polygon is the convex hull of its contacts with the ground. A
path is statically balanced if every configuration of this path is statically balanced.
Let’s assume that we have a humanoid robot that has the ability to slide on the
floor. This assumption will make sense at the end of this section. In that case, it is
possible to express in simple constraints what is a statically balanced path:
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− the feet are always in planar contact with the floor;
− the COM is inside the support polygon.

Using the cart-table model, described in Appendix B, legged robots have been
proven to be small-space controllable by Dalibard et al. in [7]. To describe this
notion, let Traj(qf , qt, T ) denote the proposition “There exists a trajectory going
from qf to qt in time T”. A definition of controllability is:

(∀(q1, q2) ∈ CS2), (∃T > 0), T raj(q1, q2, T ) is True (3.1)

From this property, the small-space controllability is derived. It is:

(∀(q, T, ε) ∈ (CS × R+ × R+)), (∃η > 0), (∀q′ ∈ Ball(q, η)),
q′ is reachable in time T by a trajectory included in Ball(q, ε) (3.2)

It typically means that, when the cart-table model is relevant, a collision-free
and admissible trajectory can be found between two configurations that can be
connected by a collision-free path. As a result, planning for dynamic systems can
be reduced to geometric planning. In [7], the author also shows that it is always
possible to obtain a collision-free and admissible dynamic trajectory for a humanoid
robot from a collision-free statically balanced path for the corresponding sliding
robot.

This is a very convenient result. It reduces the complexity of the problem. In
this work, the two step trajectory planning algorithm presented in [7] is considered.
The first consists of finding a statically balanced path. The second consists of
generating a dynamically balanced walk trajectory. They are the two steps that
can be seen in the control graph in Figure 1.1.

To ensure that it is always possible to approximate a collision-free statically
balanced path for the sliding robot by a collision-free dynamically balanced path for
the real robot, the cart-table model must be valid. Thus, two additional constraints
are added to make the model valid:

− the COM is at a constant height;
− the robot waist is kept vertical.

Thereafter, the focus is on the first step, that is to say, finding a statically bal-
anced manipulation path for a sliding robot. The constraint on the projection of the
COM inside the support polygon is an inequality constraint, whereas the others are
equality constraints. For practical reasons, this constraint will be transformed into
a stricter constraint: the projection must lie at the center of the support polygon.
The robot being more stable if the center of mass is centered with respect to the
support polygon, this also helps the trajectory planning, as it gives more stability
to the robot.

We will focus on geometric planning with the following stability constraints:
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− the right foot is parallel to the floor;
− the right foot is at a constant height;
− the transformation from the right foot to the left foot is constant;
− the projection of the COM on the floor is at a fixed position with respect to

the right foot;
− the COM is at constant height;
− the waist is vertical.

3.3 Affordance
Affordance is a relation between an object and an organism that affords the oppor-
tunity for that organism to perform an action. In our framework, it corresponds
to the ability of providing helpful information to the planner. For instance, a door
providing information about its handle.

Using affordance, the work of Dalibard et al. in [7] introduces a software archi-
tecture to implement a planner for the manipulation planning problem.

The architecture described is based on a graph of possible transitions. Figure
3.1 represents this graph in the context of a door manipulation problem. In this
graph, each node of the graph represents a set of constraints on configurations and
each edge represents a possible transition. The planning is done in two steps:

− a bounding box of the robot is generated. It encapsulates the object in such
a way that a collision-free configuration for the bounding box is necessarily
collision-free for the robot. It is very easy to plan for a bounding box as the
dimensionality is drastically reduced, from 36 to 3 for the robot HRP-2. A
plan for the bounding box is computed using a RRT-based algorithm.

− the path for the bounding box is transformed in a path for the robot. The
footsteps are computed using a prioritized inverse kinematics solver1.

The authors tackle the problem of door opening, and propose a good solution,
providing to the planner the graph of possible transitions and the projections corre-
sponding to the constraints. This approach is very interesting and this work aims at
generalizing the idea of using constraints to help the planner to find a manipulation
path. Nevertheless, although it makes planning very fast, the bounding box model
will not be able to solve complex tasks because it hides a part of CSfree. A sliding
robot assumption is weaker than the bounding box model and is used instead.

1The solver is hpp-gik. More information about the solver are provided in Section 4.1.2 of this
report.
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Away from
the door

Hold door
with right

hand

Hold door
with left
hand

Hold door
with both
hands

Figure 3.1. Graph representing the system R × O seen as a finite state machine,
when opening and closing a door using two hands.
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Chapter 4

Manipulation planning

4.1 Foliation and constraint
As manipulation planning involves passive DOF, the configuration space has a fo-
liated structure. As explained in [20] and [19], finding a solution to a manipulation
planning problem is finding a sequence of paths in CSfree that are of two kinds:

Transit paths: the object O is in a valid placement and only the robot R moves.
Along this path, the configuration of O remains constant. A path is a transit
path if it is in CSplcmt and if the constraint of motionless object is respected.
So a path in CSplcmt is generally not a transit path.

Transfer paths: both the robot and the object can move, R holding O. Such
paths are in CSgrasp.

The set of sub-manifolds of CSplcmt with a constant configuration of O makes
a foliation. The leaves of this foliation of O represents also all the configurations
reachable from a configuration in CSplcmt by a transit path. Once R is in a leaf
of this foliation of CSplcmt, it cannot leave it without grasping an object. CSgrasp
has the same structure. Given such a structure, a solution path is a sequence of
transit/transfer path, that makesR navigating in various leaves of the two described
foliations. Experiments using this structure for planning, in [20] and [19], have
shown good results. This structure has been widely used in this work.

4.1.1 Foliation definition
Mathematically, a foliation of a n-dimensional manifold M is an indexed family Lα
of arc-wise connected m-dimensional sub-manifolds m < n, called leaves ofM , such
that:

− Lα ∪ Lα′ = ∅ if α 6= α′

− ∪αLα = M
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− every point in M has a local coordinate system such that n−m coordinates
are constant.

To understand this definition, one can think about a book. In the classic 3D
space, it forms the space M , and n = 3. We assume that it’s shape is smooth
enough to form a manifold. A foliation of the book is the family formed by all its
pages, and the index is the page number. The i-th leaf of the foliation is thus the
page i, a 2D sub-manifold. There is 3 − 2 = 1 constant coordinate in the frame of
the book, along the axis perpendicular to every page.

4.1.2 Constraint definition
To implement the constraints, we have used the Generalized Inverse Kinematic
software called hpp-gik. We provide a quick description of how the constraints are
implemented. For a complete description, see [21]. Let NR (resp. NO) be the
number of degrees of freedom of the robot (resp. the object).

A set of m constraints is defined by a non-linear function f :

f(q) = 0Rm (4.1)

where f ∈ C1
(
RNR+NO+6,Rm

)
and m is the dimension of the constraint.

Algorithm 4.1 implements a Newton-Raphson method. Using the Moore-Penrose
pseudo-inverse of the Jacobian of the constraint, it iteratively updates q to decrease
||f(q)|| with the update rule in Eq. 4.2. In Algorithm 4.1, α is an adaptive gain
that helps the convergence stability.

∆q = −α
(
∂f

∂q
(q)
)+

f(q) (4.2)

This algorithm projects any configuration on the kernel of f . This can be used
to generate configurations that satisfy the constraints.

4.1.3 Example
To picture the notion of constraint and foliation in our context, consider Figure 4.1.
In this example, two constraints need to be defined:

− a grasping constraint: fg(q) = GripperPosition(q)−BoxPosition(q) = 0

− a null velocity constraint of the object: fo,pref
(q) = BoxPosition(q)−pref = 0.

where the function GripperPosition(q) (respectively BoxPosition(q)) returns
the position of the gripper (resp. the box) in the configuration q and pref is the
reference position of the box during a constrained path. This value is set to the
BoxPosition(qfrom).
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Algorithm 4.1. Constraint solver

Description: Find q such that f(q) ≤ ε
1: procedure solveConstraint(q, f, ε)
2: i ← 0
3: while ||f(q)|| > ε and i ≤ imax do
4: q ← q − α

(
∂f
∂q (q)

)+
f(q)

5: i ← i+1
6: α ← αmax − w(αmax − α)
7:
8: end while
9: if ||f(q)|| ≤ ε then

10: return q
11: else
12: return failure
13: end if
14: end procedure

(1) (2)

(3) (4)

Figure 4.1. A 3-axis arm and an object (hatched box).

In configuration q2 and q3, the arm is holding the hatched box, while in con-
figuration q1 and q4, it is not. The box has not moved from q1 to q2, and from q3
to q4. Thus, q1 and q2 are in the same leaf of CSplcmt. The path between these
configurations is admissible regarding the fo. This is also true for q3 and q4.

As for q1 and q4, the box has moved without being grasped, they cannot see
each other, they are not in the same leaf. Thus a path from q1 to q4 necessarily
contains configurations in CSgrasp, for instance q2 and q3.
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To build a path from q1 to q4, without knowing q2 and q3, one has to project
configurations using both fo and fg. After sampling a configuration qrand, its nearest
neighbor is found. Let’s say q1. To be able to connect q1 and qrand, the latter has
to be projected in the same leaf of CSplcmt as q1, i.e. using fo. In order to generate
a configuration looking like q2, fg is also used. A configuration looking like q3 will
be generated if the nearest neighbor is q4.

An important remark has to be made at this step. A difference appears between
constraints for paths and constraints for configurations. After having sampled qrand,
both fo and fg are required to generate q2. But, a path between q1 and q2 needs
only fo.

4.2 Cluttered environment

For high dimensional problems, sampling-based algorithms are particularly pow-
erful path planners. In cluttered environments however, classic sampling-based
algorithms have poor performances. Two reasons explain the loss of efficiency.

First, the subspace of CSfree containing only feasible configurations may have a
lower dimension than CS. This especially happens when there are degrees of freedom
that are passive, i.e. not directly actuated. For example, the first six elements of a
configuration for a humanoid robot are not directly actuated. To move them, you
need to be in contact with the ground. In this case, the subspace of admissible
configurations is of a lower dimension than CS so it has no volume inside CS. The
volume of a plane in R3 is zero. As sampling in a zero-volume space has a zero
probability, the problem has a null probability of being solved. This problem is
specifically called constrained motion planning. Recent works on this topic have led
to efficient solutions. This topic is addressed in section 4.3.

Then, the second reason for the loss of efficiency is cluttered environments. Sup-
pose that a good solution to the first problem is used, that is to say the sampling
space has the same dimension as the space of collision-free and feasible config-
urations. In cluttered environments, a narrow passage problem appears. These
passages do not have a null probability of being sampled, but this probability is
small. Thus, sampling-based method takes a long time to find narrow passages. For
example in Figure 4.2, the green ball has to go through the channel to reach the red
circle. Sampling inside the channel has a very low probability so it would take very
long for classic sampling-based algorithm to solve this very basic problem. Some
solutions have been proposed, for instance using principal component analysis in [4].
Constrained motion planning aims at finding paths in a zero volume sub-manifold.
It can thus be a solution to the narrow passage problem. See [15, chap. 7.4] or [9]
for more in-depth knowledge.
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Figure 4.2. Basic example of cluttered environment. RRT will not find easily a
path from green ball to red circle.

Algorithm 4.2. Constrained extend

Description: Extend qnear towards qrand while staying on the manifoldM defined
by f
1: procedure constrainedExtend(T ,qnear,qrand,f ,ε)
2: d ← Distance(qnear,qrand)
3: q ← qnear
4: while d > ε do
5: q′rand ← OrthogonalProject(qrand, TqM)
6: . TqM : tangent space toM at q
7: q′′rand ← SolveConstraints(q′rand, f, ε)
8: . Refers to algorithm 4.1
9: d ← Distance(q, q′′rand)

10: q ← q′′rand
11:
12: end while
13: qnew ← RRT::Extend(T ,qnear,q′′rand)
14: end procedure

4.3 Constrained RRT
To generate configurations onto the sub-manifold defined by a set of constraints, Al-
gorithm 4.1 can be inserted in the RRT [8]. Dalibard et al. have developed a variant
of RRT that projects random configurations on this manifold and extends towards
the projected configuration. The result is Algorithm 4.2. This procedure replaces
the extension step in the classic RRT algorithm. This ensures that configurations in
the tree lie in the constrained sub-manifold. We will integrate the constraint graph
so that configurations are extended onto an admissible sub-manifold.

4.4 Grasping task
Interactions between the robot and the object considered in this work are very basic.
The goal is a high-level manipulation planning. Though it is not the main focus,
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grasping has several aspects that directly impact on it. It is thus interesting to
mention them.

Objects that have constrained motion can apply force on the robot, that does
not come from gravity. Our approach does not take these forces into account.
For a more realistic planning, it would be important to take them into account
because they change the balance of the robot. It may not be possible to go from a
statically balanced path of the sliding robot to a dynamically balanced trajectory of
the walking humanoid robot. Not considering these forces means that our approach
is only valid for manipulation tasks that require negligible efforts compared to the
weight of the robot.

Grasping objects is also a challenging task because the robot has to know how to
grasp an object and how much grasping force to apply to have a stable manipulation.
For an overview of object grasping, see [17]. This particular topic is a field of research
that is not covered here but it is possible to integrate more complex grasping. High-
level planning means that grasping is part of a larger task that the robot is expected
to do, as mentioned in Chapter 2. So goal-oriented grasp, as presented in [1], could
be interesting.

Our goal being a high-level manipulation planning, our end-effector will just be
a two states gripper, considered as opened or closed.

In our implementation, the grasping constraint is a position constraint. A point
in the frame of the hand must match a point in the frame of the object. To grasp
an object, the required information is thus limited to a 3D point in its frame. It
is possible to give more information to the planner. For instance, a constraint on
the orientation of the hand when grasping can be added. On one hand, it would
give a more human-like motion and would help the planner as there would be less
collision between the hand and the object. On the other hand, adding a not-required
constraint reduces the sub-manifold of search and may thus make unreachable some
valid paths.
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Chapter 5

Constraint graph

5.1 Overview

This chapter explains the structure that has been developed for manipulation plan-
ning. After giving the motivations to build such a struture, Section 5.2 defines the
constraint graph and the following sections provide more details about the different
types of constraint.

In sampling-based algorithms, sampling and connecting are different steps. Re-
member the remark at the end of Section 4.1. Both steps may require projections,
but the set of constraints is different for each projection. Integrating it directly in
the planning algorithm would complicate it and a goal of the constraint graph is to
decouple the continuous search and the discrete search lying behind manipulation
planning.

Algorithm 3.1, a classic RRT algorithm, is very abstract. It has no notion of
robots or objects and is simply populating a tree with vectors. It only has the notion
of distances. Collision checking is a black box. The goal of the constraint graph
is to isolate the issues raised by the foliated configuration space from the planning
algorithm. The latter is kept abstract and as simple as possible. It stays at a
higher level than the notion of robots, objects and even foliations. These notions
are transformed in sets of constraints that the planner uses to project configurations.

Manipulating an object means navigating in a foliation of the configuration
space. As we want the planner to be abstract and not aware of object manipulation,
it should not be aware of this navigation. For the planner, the actions “grasp”,
“move freely” or “move while holding” will all be translated into “extend qnear
towards qrand under the set of constraint f”. The difference between the possible
actions is hidden in the set f . The planner has no understanding of f , it does not
change its behaviour when f changes. It stays at a more abstract level than object
manipulation.
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5.2 Constraint graph
The solution to a manipulation problem is a sequence of transit path and transfer
path, as explained in Section 4.1. A transit path evolves in a leaf of the foliation
in which the object does not move. Transfer paths connect these leaves together.
The representation of a manipulation problem we want to introduce is based on this
foliated structure. Let us consider an end-effector of a robot and an object O and
define six sets of constraints:

− Cch (resp. Cch̄) represents the set of constraints that a configuration must respect
to be in CSgrasp (resp. CSplcmt).

− Cmg (resp. Cmḡ ) represents the set of constraints that a motion must respect to
go from CSgrasp to CSplcmt (resp. from CSplcmt to CSgrasp).

− Cmh (resp. Cm
h̄
) represents the set of constraints that a motion must respect to

stay in a foliation of CSgrasp (resp. in CSplcmt).

Figure 5.1 represents this graph. The two following sections provide more detail
about these sets. Before going further, it is interesting to make a few remarks. When
the object O is always in a stable placement, for instance a door, a configuration
where the end effector holds O is both in CSgrasp and CSplcmt. So, in this case, the
two sets of constraints Cmḡ and Cm

h̄
must be identical because going from CSgrasp to

CSplcmt is equivalent to going from CSplcmt to CSplcmt.

Not holding
Cc

h̄
O fixed Cmh̄

Holding
Cc

h

Grasp
Cmg

Ungrasp

Cmḡ

Keep the
graspCmh

Figure 5.1. Graph of constraints for a grasping task.

The graph will help to implement the RRT algorithm to generate both valid and
reachable configurations from a given configuration. For the system R×O, we first
extend a configuration qfrom towards the projection of a configuration qrand into a
leaf of CSgrasp or CSplcmt (i.e. a leaf defined by a set of constraints). The resulting
connection between qfrom and qextended will be valid regarding the manipulation
constraints but may not be collision free. Let’s say qfrom ∈ CSplcmt is the closest
configuration to a random configuration qrand. In both cases, with a graph such as
5.1, there are two options for extending qfrom: toward CSgrasp or toward CSplcmt.
For instance, we choose CSgrasp. In order to get a configuration reachable from
qfrom, qrand will be projected using the union of two sets of constraints:
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− Cmg : the set of possible future paths. This will ensure the existence of a
(possibly colliding) path.

− Cch: the set of destinations. The path is in CSplcmt but must end in CSgrasp.

To generate the path from qfrom to qext, the linear interpolation is projected using
Cmg .

5.3 Constrained configuration
The two sets of constraints Cch and Cc

h̄
(i.e. applied to configurations) contain at least

the stability constraints of the robot. The small-space controllability, described in
Section 3.2, allows us to consider a sliding robot instead of a humanoid robot.
Finding first a path for the arms and the center of mass and extending it to a
whole-body trajectory, as done in [8]. Instead of using a bounding box, as in [6],
of R, we use a sliding robot. This increases the complexity of the problem to be
solved but the bounding box approach would not be able to reach an object on a
table. Moreover, the bounding box approach is a very strong assumption regarding
collision detection and it invalidates many valid paths.

To summarize, Cc
h̄
consists of:

− the stability constraints of the sliding humanoid robot.
− the stability constraints of the objects. For a door, this is empty.

And Cch consists of:

− the stability constraints of the sliding humanoid robot.
− the grasping constraints.

As stated in Section 4.4, planning a grasp was not our focus. However, to plan
a high level object manipulation path, planning a low-level grasp is required. The
end-effector is a simple gripper which can only be open or closed. The grasping
constraint is simply a reaching constraint. It is satisfied if the center of the hand is
at a given position in the frame of the object.

Using a simple grasp planning simplifies the implementation but many other
grasp planning would be acceptable regarding the graph 5.1, in which the notion of
grasping is abstract.

5.4 Constrained motion
In the framework of this thesis, the four sets of constraints Cmg , Cmḡ , Cmh and Cm

h̄
(i.e.

applied to motion) are composed of the two following types of constraint:

− configuration constraints that every configuration of the motion must respect.
When O is a door, these constraints, for Cmg , Cm

h̄
and Cmḡ , are Cc

h̄
and only Cch

for Cm
h̄
.
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− a zero velocity constraint on O, to stay in the same foliation during all the
path.

More complex velocity constraints may be needed in a different framework but
it is not our focus here.

It is important to realize that these sets of constraints are sufficient to interpolate
valid configurations between the two ends of a constrained path. Indeed, they are
sufficient to project the path in the corresponding leaf, when the two ends are in the
same leaf. Yet the extension step builds a path from qnear, by first projecting qrand
into a reachable leaf. One end of the desired path is not known. We must ensure
that the projected configuration is in a reachable leaf but is also in the targeted
state (the destination of the corresponding edge). Thus these sets of constraints are
not sufficient to build a path, the targeted state set is also required. An example of
this is given in Section 4.1.
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Constrained RRT using a constraint
graph

6.1 Constrained manifold selector

To integrate our graph of constraints to the algorithm, the latter needs to know
how to select the set of constraints to be used by Algorithm 4.2. Analysing the
configuration qnear gives the list of constraints sets that can be selected to generate
a valid direct path.

Ordering the possible states is the first step. Taking the basic example of
one end effector and an object with only one possible grasp, the two possible states
are holding and not holding. If the object is always in a valid placement, for instance
a door, then CSgrasp is a submanifold of CSplcmt. The state holding can then always
be considered as not holding. Regarding the constraint graph, it means that one
state become useless and the planning is not done properly. holding must have a
higher priority than not holding, that is to say that if the conditions for holding are
verified, then it is holding and cannot be not holding.

Let’s now think about ne ≥ 1 end-effectors and the same object. There is one
constraint graph for each end-effector and states are independents. If we extend
the number of possible grasps to ng ≥ 1, on one or more objects, then there are
ne constraint graphs with ng + 1 nodes (one for each grasp plus one when the end-
effector is free). The graph 6.1 represents the case ng = 4. Each edge is a set of
constraints.

Choose the leaf in which the configuration will be extended. This is done
by selecting, for each end-effector, an edge going from the considered end effector
state. This step corresponds to the discrete part of the search, selecting a new set of
constraints. To our best knowledge, there are no good ways of knowing which are the
foliations likely to be useful. The choice is done randomly. The main advantage of
randomness is its generality. Very likely, there are special cases admitting far better
strategies, but they would not work in the general cases. The main inconvenience
of randomness is the necessity to set transition probabilities. Their influence will be
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Not holding Grasp 1Grasp 2

Grasp 3

Grasp 4

Figure 6.1. Graph of constraints for one end-effector and 4 possible grasps.

discussed in details in Section 7.3. It is possible to tune this step in different ways:

− disable impossible simultaneous grasp. It may be impossible for geometrical
reasons to grasp both a door and a drawer, because they are too far from each
other for instance.

− set a higher probability of staying in the same state, since we prefer to ma-
nipulate an object without releasing it.

Build the sets of constraints needed by the planner. There are two sets to
build: one for the extension, one for the built path. An extension generates an end
configuration and a path, so the constraint set for the extension is the union of:

− the set that applies to the targeted state (destination of the randomly chosen
edge);

− the set that applies to the path (the randomly chosen edge).

Once the extension is done, the set for extension is forgotten and the set for path
is inserted in the generated path. In other words, a generated path remembers the
edge of the constraint graph it corresponds to so that it knows how to interpolate
configuration between its two ends.

29



CHAPTER 6. CONSTRAINED RRT USING A CONSTRAINT GRAPH

Algorithm 6.1. Select a set of constraints

Description: Select an admissible sets of constraint to build a path from q.
1: procedure selectConstraintSet(q)
2: extendSet ← EmptySet()
3: pathSet ← EmptySet()
4: for all end-effector as e do
5: state ← State(e, q)
6: edge ← SelectOneOutgoingEdge(state)
7: . GetDestinationConstraints return the constraints of the targeted

state.
8: extendSet.add(edge.GetDestinationConstraints())
9: extendSet.add(edge.GetConstraints())

10: pathSet.add(edge.GetConstraints())
11: end for
12: return motionSet,stateSet
13: end procedure

Algorithm 6.1 integrates these steps and returns two sets of constraints. From
these sets, a projector for the extension step is built, typically the function f in
Algorithm 4.2, and another to project a path in the leaf it belongs to.

6.2 RRT using a constraint graph

The navigation between leaves of the foliated configuration space is done by the
constraint graph. The latter is inserted in the RRT-based algorithm, as shown in
Algorithm 6.2. After a classic sampling, the closest neighbor qnear of qrand is found.
From qnear are deduced the sets of constraints for extension, and for the generated
path. Finally, a constrained extension is performed from qnear to the projection of
qrand.

It is important to remark that, if the tree is grown only from an initial configu-
ration, the algorithm has a zero probability of reaching any goal configuration that
lies in a leaf different from the initial configuration.

6.3 Distance evaluator

An RRT algorithm needs to compute distances between configurations. Exact dis-
tance can be computationally expensive so a rough and cheap estimation is used
instead, as distances are very frequently computed. The distance should reflect the
fact that the configuration space is foliated. Distance between two configurations
lying in different leaves of CSplcmt (i.e. the object has moved without being grasped)
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Algorithm 6.2. Constrained RRT

Description: Randomly exploring Random Tree from q0 using the constraint
graph
1: procedure exploreTree(q0)
2: T .init(q0)
3: for i = 1→ K do
4: qrand ← Rand(CS)
5: qnear ← Nearest(qrand,T )
6: fextend, fpath ← selectConstraintSet(q)
7: constrainedExtend(T , qnear, qrand, fextend, fpath)
8: end for
9: end procedure

must reflect the fact that they do not see each other directly. We have decided to
implement the same as in [6].

This distance evaluator is very basic. It just adds a high penalty for configu-
rations that are not in the same leaf of a foliation. It would be possible to find
an estimate of the distance with projections. In Figure 4.1 for instance, to esti-
mate the distance between q1 and q3, a configuration like q2 is needed since there
is no other way q1 and q3 can actually see each other. With our distance evaluator,
Distance(q1, q3) and Distance(q1, q4) include the high penalty, but q3 appears fur-
ther than q4 from q1, which is not true. The distance evaluator is a weakness and
would be a useful extension of this thesis.
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Chapter 7

Experimental results

This chapter presents the results of our experimental evaluation. After a description
of the practical problem that we solve, we introduce the estimators used to analyse
the results. The last section presents our results.

7.1 Problem and implementation

Experimentations were done on HRP-2 and PR2 and we have reused the simulated
environment from a previous work [5], shown in Figure 1.2. The environment is an
apartment with basic objects. We have focused on the manipulation of a door and a
drawer. The goal of our experiments was to validate our approach by showing that
it is possible to find a statically balanced manipulation path in a 3D environment,
using constraints to guide the planner. We provide to the solver an initial and a
final configuration for the system R×O, the object having moved between the two.
And the planner has to find a path respecting the manipulation rules. Each object
has only one possible grasp and objects are considered separately, so we consider
two similar problems: door opening and drawer opening.

The experimental evaluation has two goals. First, we wish to validate our ap-
proach to solve the manipulation problem. Second, we wish to understand better
the influence of the transition probabilities on the planner.

Given this framework and the method we intended to implement, the following
problems have been faced:

− Section 4.2 presents the difficulties to find a path in a narrow environment.
Grasping the door is a narrow path because HRP-2 hands are of a comparable
size with the handles of the door. In our experiments, HRP-2 hand stays at
5 cm before the handle (at a fixed position with respect to the door).

− there is no obvious way of choosing the transition probabilities in the graph of
constraints. Experiments with different values have been conducted in order
to evaluate their influence.
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− A good collision checking algorithm is essential for fast planning. During
an initialization phase, a list of all the possible pairs of bodies is generated.
To check for collision, we can simply loop over this list to check if one pair is
colliding. To speed it up, the pairs of bodies of the robot that will never collide
can be removed from the list. For instance, an arm and the corresponding
forearm will never collide due to joint bounds. It has been reduced to 407 for
PR2 and 317 for HRP-21.

7.2 Estimators

To compare two runs of the same experiment, several estimators are used. The most
obvious ones are the global time to solve the problem and the number of timeouts.
Yet, they do not tell us how well the configuration space has been explored. Let
Nf be the number of explored foliations and ni, 1 ≤ i ≤ Nf the number of node in
the i-th explored foliation. The total number of nodes is then NT =

∑
1≤i≤Nf

ni. Let

the “distribution” of a roadmap be the sequence (ni/NT )1≤i≤Nf
. It is important

to remark that the distribution is scalable regarding NT so that it is possible to
compare roadmaps of different size. A high variance of the distribution of a roadmap
means that some foliations have been more explored than others so there were
preferred foliations. A low variance means each foliation has about the same number
of nodes so there were no preferred foliations. Thus an estimator of the distribution
is

edistri = V ar( ni
NT

) (7.1)

The lower edistri, the better.
Nevertheless, a very low variance does not mean that the nodes are well spread

over the foliations. Indeed, if only two foliations are equally explored, the variance
is zero but the exploration may not have been very efficient. It is hard to know how
many foliations should be explored but it is interesting to compare this number for
different runs. To have a scalable estimator, the chosen estimator is

efoliation = Nf

NT
(7.2)

Obviously, we have 0 < efoliation ≤ 1. There is no ideal value for this estima-
tor, but extrema are to be avoided preferably. A value close to zero means many
foliations have been explored, but very poorly. A value close to one means a few
foliations have been explored a lot.

1 The list of non-colliding pairs has been automatically generated using the ROS package
MoveIt! available at http://moveit.ros.org/.
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7.3 Results

7.3.1 Overview

Figures 7.1 and 7.2 show a sequence of configurations found by the planner, for
respectively the door opening problem and the drawer opening problem. The plan-
ner has been able to find a path using the constraint graph. Our first goal is thus
achieved.

No path optimizer was used, so we can observe a side effect of random sampling.
The motion is not looking like human motion. As the left hand is not considered
as an end effector, the only constraint that can modify the left arm DOF is the
constraint on the center of mass. As HRP-2 left arm does not weight much compared
to the whole robot, its configuration is almost random.

Figure 7.1. HRP-2 - Sequence of configurations found by the planner to open a
door.

Collision checking is a bit slower for PR2 because our PR2 model has more
collision pairs to check than our HRP-2 model. As most of the time is spent checking
whether a configuration or a path is in collision, we can expect the planner to be
slower with PR2. This can be observed by comparing Figure 7.5 and Figure 7.8.
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Figure 7.2. HRP-2 - Sequence of configurations found by the planner to open a
drawer.

7.3.2 Analysis
Planning has been done using different values for the transition probabilities PNH→H
and PH→NH , where NH stands for “Not Holding” and H for “Holding”. For each
set of parameters, the same problem has been run twenty times, with a different
random seed for each run. A problem is considered unsolved if no solution is found
in less than an hour, that is to say a problem is considered unsolved when the
planner times out.

Figures 7.3 and 7.4 (resp. 7.6 and 7.7) show the influence of the transition
probabilities for HRP-2 (resp. PR2). The following points can be drawn from the
graphs:

− Very roughly, we can observe that curves are monotonous and not crossing,
so it seems that PH→NH has more influence than PNH→H .

− A high value for PH→NH tends to have a lower ratio of unsolved problem and
less nodes are required to solve the problem, which is better.

− The variance is decreasing when PH→NH decreases and PNH→H increases.

− The ratio Nf

NT
evolves in a inverse manner, it decreases when PH→NH increases

and PNH→H decreases. The former relationship can be understood as follows:
a new leaf (the object does move) is explored when you stay in the state
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“Holding”, which happens more often when PNH→H is high and PH→NH
is low. Indeed, the higher PNH→H and the lower PH→NH , the more likely
configurations are projected in state “Holding”.

− Performances for PR2 and HRP-2 are alike. The time to solve is generally
longer for PR2 because of collision detection. The door problem is harder
because the door leaves make a narrow passage. The passage does not seem
to penalize more one robot than the other, probably because they have similar
sizes.

Figures 7.5 and 7.8 show the average time to solve a problem. Though it is not
really clear, high values of PH→NH tends to give a solution faster. It seems hard
to draw any conclusion regarding the influence of PNH→H on the average time to
solve.

To summarize, it seems better to choose a high value for both PH→NH and
PNH→H because less timeouts were observed and exploration of the configuration
space is better distributed for these settings.

Figure 7.3. HRP-2 - Influence of the transition propabilities on the door problem.
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Figure 7.4. HRP-2 - Influence of the transition propabilities on the drawer problem.

Figure 7.5. HRP-2 - Average time to solve for the door (left) and the drawer (right)
problems.
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Figure 7.6. PR2 - Influence of the transition propabilities on the door problem.
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Figure 7.7. PR2 - Influence of the transition propabilities on the drawer problem.

Figure 7.8. PR2 - Average time to solve for the door (left) and the drawer (right)
problems.
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Chapter 8

Conclusion

8.1 Achievements
This thesis tackles the problem of high level manipulation planning. Manipulation
planning is seen as finding a path between two configurations in a foliated config-
uration space. A graph of numerical constraints represents interactions between
robot end-effectors and objects. To find a path respecting manipulation rules, the
presented planner uses the constraint graph. The planner and the constraint graph
are kept general so that it is theoretically possible to solve any problem that can be
specified with constraints. In practice, planning may become extremely long.

The main issue faced along this thesis, as in any manipulation planning work,
is the introduction of passive degrees of freedom. They have had two undesirable
effects: they introduce discrete planning and they foliate the configuration space.

Discrete planning has been hidden from the path planner by the constraint
graph. Indeed, the general idea of RRT algorithm remains the same: sample a
configuration and extend towards it. But the discrete search is hidden behind
discrete choices done during the extension step. This raises two problems. First, it
means that we are solving a discrete problem with a random sampling method. It
is not well adapted to discrete search. Second, the discrete search, that leads the
continuous search, is ruled by transition probabilities that are hard to set.

The foliation of the configuration is explored using constraints and their corre-
sponding projectors. The latter are discretely chosen and direct the search towards
a leaf. This helps the sampling of configurations that are reachable from another
configuration. The problem with the foliated structure is that there is no easy way
to know how to lead the exploration. When to start exploring a new leaf? When a
leaf can be considered as explored?

In a basic case, we have successfully shown that planning a path using the con-
straint graph is possible. Nevertheless, no experimentations on complex case were
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done and a deeper analysis is required to fully validate the developed concepts. As
many tasks can be specified using constraints, constrained planning could achieve
complex tasks. The constraint graph provides a convenient way of giving the re-
quired information to the planner.

Path planning using constraints has thus a promising future in terms of task
specification.

8.2 Future work

This work has mainly been practical and a theoretical analysis would provide a
better understanding of what is happening. The graph of constraints adds discrete
planning to an RRT, which is a continuous planner. As we have seen earlier, the
transition probabilities have an influence on the performance of the planner. A
theoretical analysis, similar to [13], could help to choose good values or even to
dynamically adapt their values during the search. Adapting this probabilities dy-
namically could be a good improvement of the discrete search because it would
mean forcing the continuous search towards a direction that is thought good.

Another idea that could be worth exploring is to decouple the planning. To
picture this idea, one can think about two leaves of a foliation: leaf A and leaf
B. In a leaf, the object is at a constant position but this position is different in
leaf A and leaf B. Let’s say that leaf A has been explored but not leaf B. If the
object has moved only a little between leaf A and leaf B, then from most of the
configuration in leaf A, a collision-free configuration in leaf B could be generated by
simply changing the object DOF. This could be seen as transporting the exploration
of a leaf into a neighboring leaf. This may be efficient when building a visibility
roadmap for example, as most of the guards would be transported from one leaf to
another. Nevertheless, a way of connecting the leaf is needed and it is the hardest
part of manipulation planning.

The problem tackled is high level manipulation planning. To make this kind
of planning useful, low level planning is required. Very basically, it is possible to
give all the information to the robot, i.e. hand position, grasping procedure, etc.
Another possibility is to provide the planner the ability to plan the grasp. Part of
this planning could be done with the graph of constraints.

Experiment has been conducted only with one object, and with only equality
constraints. As explained earlier, this method is theoretically valid for more than
one object and one end-effector. An obvious extension of this work is to implement
and test the graph of constraints to support more objects. With this approach, one
could think of generating walking motions on a flat ground with a constrained path
planner. Indeed, the free-flyer DOF are passive DOF and their interaction can be
modeled with constraints. For such a planning, there would be two end-effectors,
the feet, and one object, the ground. Constraints on configuration between a foot
and the ground are: foot is parallel to the ground, constant height of the foot. It
would be possible to find a statically balanced path, but it can always be followed
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as slowly as necessary to be transformed in a dynamically balanced trajectory.
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Appendix A

Notations

R: the humanoid robot

O: an object

CS: configuration space

CSgrasp: sub-manifold of grasping configuration of CS

CSplcmt: sub-manifold of valid placement of CS

CSfree: collision-free configuration space

For the next notations, see Figure 5.1, page 25. “hold” refers to a state of the
robot, i.e. a configuration, “grasp” to an action, i.e. a motion.

Cmg , Cmḡ , Cmh , Cm
h̄
, Cch, Cch̄: Constraints sets. c, m, h, g stands respectively for

Configuration, Motion, Holding and Grasping.
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Appendix B

Cart-Table Model

The cart-table model consists in a running cart of mass m on a mass-less table. It
has been introduced by [11]. The cart represents the robot center of mass. The
table foot represents the supporting foot. This model supposes that the center of
mass is at constant height.

The distributed floor reaction force can be replaced by a single force acting on
the Zero-momentum point (ZMP). Using the notations defined in Figure B.1, the
two momentums that applies to the table at ZMP are:

− M × g × (xM − xZMP ), the momentum induced by the gravitational forces.

− M × ẍ× zM , the momentum induced by the inertia forces.

O x

z

m

~F

ẍ

ZMP

Figure B.1. Cart table model.

Thus, the ZMP coordinates (xZMP , 0) satisfy the zero-momentum equationM×
g × (xM − xZMP )−M × ẍ× zM = 0. Finally, we have:

xZMP = xM −
zM
g
ẍ (B.1)

Using the ZMP, it is very easy to have a criteria for the table balance. If the ZMP
is outside the table foot, the table falls. This criteria is an inequality constraint on
xZMP . This model is used for generation of walking trajectories. The basic result
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obtained above can be expressed as follows, for a humanoid robot: a walking motion
is balanced as long as the ZMP stays inside the support polygon.
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