
Enhancing people’s quality of life

Subscriber tutorial

Goal
The goal of this tutorial is to learn how to create a subscriber node in ROS 2 in C++. The
subscriber will subscribe to the topic /joint_states and then print the joint names with the
corresponding positions.

PKG repo: <link_here>
ROS 2 tutorial: link

Clone the tutorial
Navigate the source folder (agimus_ws/src) of your ROS 2 workspace and clone the following
package to get started:

git clone

https://agimus-user:frpTR_--SSsbKWRJkK5V@gitlab.com/pal-robotics/agimus_winte

r_school/tutorials/agimus_subscriber_tutorial.git

Create a class

1.
First, in the header file, joint_subscriber.hpp, add the necessary dependencies, given below:

#include <memory>

#include <algorithm>

#include <iostream>

#include "rclcpp/rclcpp.hpp"

#include "sensor_msgs/msg/joint_state.hpp"

2.
Create a class, JointSubscriber, that inherits from the rclcpp::Node class. Use both the files
joint_subscriber.cpp and joint_subscriber.hpp file. Create a simple constructor for this class. You
will find a simple subscriber in the ROS2 tutorials.

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html#write-the-subscriber-node
https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html#write-the-subscriber-node
mailto:info@pal-robotics.com


Enhancing people’s quality of life

3.
Register the class as a component node as done in the ROS 2 tutorial. The advantage of using
component nodes is that the node does not require a main function to be started.

4.
Add the following to CmakeLists.txt following the public ROS 2 tutorial. Instead of ament_cmake,
use ament_cmake_auto, this simplifies the structure of CmakeLists.txt.

● Create a library that contains joint_subscriber.cpp.
● Register the node as a component node in the previously created library.

5.
Add the required dependencies to the package.xml:

● rclcpp
● rclcpp_components
● sensor_msgs

Create functions
1.
To get more information about the topic interface run the following command in a terminal, this
shows the required input for the action goal and the received result:

ros2 interface show sensor_msgs/msg/JointState

2.
Create the following two functions.

void joint_callback(const sensor_msgs::msg::JointState::SharedPtr msg);

void print_joint_states(

const std::vector<std::string> & joint_names,

const std::vector<double> & joint_positions);

The joint_callback is used by the subscriber to receive joint_states of the robot.

The function print_joint_states prints the joint states in the following format. Ensure to only select
the joints of the torso and the arm.

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html#writing-the-action-client-code
https://docs.ros.org/en/foxy/Concepts/About-Composition.html#writing-a-component
https://docs.ros.org/en/foxy/Concepts/About-Composition.html#writing-a-component
https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html#compiling-the-action-client
mailto:info@pal-robotics.com


Enhancing people’s quality of life

joint_names: [torso_lift_joint, arm_1_joint, arm_2_joint, arm_3_joint, arm_6_joint,

arm_7_joint, arm_5_joint, arm_4_joint]

joint_positions: [0.14999, 0.2, -1.34, -0.199999, 1.37001, -2.0535e-06, -1.57,

1.93998]

3.
Ensure that the subscriber node exits after receiving one message.

Test subscriber
1.
Launch the simulation of TIAGo:

ros2 launch tiago_gazebo tiago_gazebo.launch.py

2.
Run the joint_subscriber_node:

ros2 run agimus_subscriber_tutorial joint_subscriber_node

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

mailto:info@pal-robotics.com

