
Enhancing people’s quality of life

Action client tutorial

Goal
The goal of this tutorial is to learn how to create an action client in ROS 2 in C++. This
action client will send a goal to the action server /play_motion2 to start a predefined
motion on TIAGo. Furthermore, a new predefined motion is created that can be launched
through this action client.

ROS 2 tutorial: link

Clone the tutorial
Navigate the source folder of your ROS 2 workspace and clone the following package to get
started:

git clone

https://agimus-user:frpTR_--SSsbKWRJkK5V@gitlab.com/pal-robotics/agimus_winte

r_school/tutorials/agimus_action_client_tutorial.git

Create a class

1.
First, in the header file, action_client.hpp, add the necessary dependencies, given below:

#include "rclcpp/rclcpp.hpp"

#include "rclcpp_action/rclcpp_action.hpp"

#include "play_motion2_msgs/action/play_motion2.hpp"

2.
Create a class, PlayMotion2Client, that inherits from the rclcpp::Node class. Use both the files
action_client.cpp and action_client.hpp file. Create a simple constructor for this class initialised in
the header and defined in the source file.

3.
To avoid lengthy lines add the following to the PlayMotion2Client class:

using PlayMotion2Action = play_motion2_msgs::action::PlayMotion2;

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html#writing-an-action-client
mailto:info@pal-robotics.com


Enhancing people’s quality of life

using GoalHandlePlayMotion2 = rclcpp_action::ClientGoalHandle<PlayMotion2Action>;

4.
Register the class as a component node as done in the ROS 2 tutorial. The advantage of using
component nodes is that the node does not require a main function to be started.

5.
Add the following to CmakeLists.txt following the public ROS 2 tutorial. Instead of ament_cmake,
use ament_cmake_auto, this simplifies the structure of CmakeLists.txt.

● Create a library that contains action_client.cpp.
● Register the node as a component node in the previously created library.

6.
Add the required dependencies to the package.xml:

● rclcpp
● rclcpp_actions
● rclcpp_components
● play_motion2_msgs

Create functions
1.
Following the structure of the public ROS 2 tutorial, create the following three functions. For this
tutorial no feedback callback is required.

void send_goal();

void goal_response_callback(const GoalHandlePlayMotion2::SharedPtr & goal_handle);

void result_callback(const GoalHandlePlayMotion2::WrappedResult & result);

2.
To get more information about the action interface run the following command in a terminal, this
shows the required input for the action goal and the received result:

ros2 interface show play_motion2_msgs/action/PlayMotion2

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html#writing-the-action-client-code
https://docs.ros.org/en/foxy/Concepts/About-Composition.html#writing-a-component
https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html#compiling-the-action-client
https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html#writing-the-action-client-code
mailto:info@pal-robotics.com


Enhancing people’s quality of life

3.
In the constructor of PlayMotion2Client, declare a ROS parameter, calledmotion_name, and get the
value of this parameter. Store the motion name as a member variable of the class.

4.
Ensure that the goal that is sent to the action client passes on the motion name of the member
variable created in the previous step.

5.
Ensure the action client only sends the goal once.

Create launch file
Create a launch file, named play_motion_client.launch.py, that launches the previously created
client node. This launch file does the following:

1. Declare a launch argument,motion_name.
2. Create the node that runs the action client from this tutorial. Add as a parameter the value

of the launch argument.
3. Add both the launch argument and the node to the launch description.

To test the launch file, start a simulation of tiago. In another terminal, run the following:

ros2 launch agimus_action_client_tutorial play_motion_client.launch.py

motion_name:=home

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Creating-Launch-Files.html
mailto:info@pal-robotics.com


Enhancing people’s quality of life

Create a new motion
1.
Launch the simulation of tiago, with MoveIt! enabled:

ros2 launch tiago_gazebo tiago_gazebo.launch.py moveit:=true

2.
Open MoveIt! with RViz

ros2 launch tiago_moveit_config moveit_rviz.launch.py

Move the arm of TIAGo using the MoveIt plugin into the desired states (key frames). For every
desired key frame, save the joint states using the subscriber from the previous tutorial.

3.
Add the saved joint states in the file:

sudo vim

/opt/pal/alum/share/tiago_bringup/config/motions/tiago_motions_pal-gripper_schunk-ft.

yaml

Use the layout given below to. Note that the positions should be a matrix of size K x J, where K is
the number of key frames and J is the number of joints. The vector time_from_start should have a
length of K.

custom_motion_name:

joints: [arm_1_joint,

arm_2_joint, arm_3_joint, arm_4_joint, arm_5_joint,

arm_6_joint, arm_7_joint]

positions: [0.20, 0.35, -0.20, 1.94, -1.57, 1.37, 0.0,

0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0,

0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]

times_from_start: [0.5, 4.0, 7.0]

meta:

name: Custom

usage: demo

description: 'This is your custom motion'

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

mailto:info@pal-robotics.com


Enhancing people’s quality of life

4.
Once a motion has been created and saved, restart the simulation of tiago and launch the action
client of this tutorial, with the custom motion name as launch argument.

ros2 launch agimus_action_client_tutorial play_motion_client.launch.py

motion_name:=custom_motion_name

PAL ROBOTICS S.L.

Carrer Pujades, 77, 08005 Barcelona · Tel. 934 14 53 47 · info@pal-robotics.com pal-robotics.com

mailto:info@pal-robotics.com

