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Foreword

The goal of this presentation is to (re)familiarize yourself with concepts from

CONSTRAINED OPTIMIZATION and its difficulties.

We will talk of NONLINEAR PROGRAMS (NLPs) in general and apply the concepts

of proximal methods to tackle them, first in the quadratic programming and later for

optimal control.



Constrained optimization

A kind refresher



Unconstrained optimization

Unconstrained optimization: only needs an objective function c : Rnx → R. The
problem is simply:

minimize
x∈Rnx

c(x). (1)

A point x⋆ ∈ Rnx is a LOCAL MINIMIZER if

for all x ′ in a neighborhood of x⋆, f (x⋆) ≤ f (x ′)

and a strict local min. if f (x⋆) < f (x ′) for x ′ ̸= x⋆.

Remark

c(x) ∈ R⇒ there are no implicit constraints (as introduced in Adrien’s talk)



Recall – Global minima and convexity

A point x⋆ is a GLOBAL MINIMUM if for all x ′ ∈ Rn, f (x⋆) ≤ f (x ′).

When does local imply global?

When the function f is CONVEX:

Definition (Convexity)

f is called convex when for any x , y and

t ∈ [0, 1],

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y).

Strictly convex when for x ̸= y and

t ∈ (0, 1), the inequality is strict.

Alternative characterization: if f has second derivatives, when ∇2f ⪰ 0 (≻ 0 for

strict convexity).
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Finding local minima – Necessary conditions of optimality

Question: how do we know a point x⋆ ∈ Rnx is a (local) minimizer?

STATIONARITY CONDITIONS: if x⋆ is a local optimum, then x⋆ is an optimum

along any line:

for all v ∈ Rnx ,
d

dt
(c(x⋆ + tv))

∣∣∣∣∣
t=0

= ⟨v ,∇c(x⋆)⟩ = 0, (2)

i.e. the first-order condition:

∇c(x⋆) = 0. (3)
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Figure 1: At the minimum, the tangent vectors to the graph g are flat – i.e. they are all of the

form (gx , gy , 0).



Constrained optimization

Consider the (smooth) constrained minimization problem

min
x∈Rnx

c(x) (4a)

s.t. g(x) = 0 (4b)

h(x) ≤ 0. (4c)



diagram source: Wikipedia



Necessary conditions

Given by the KKT CONDITIONS: a point x⋆ ∈ Rnx is a LOCAL MINIMIZER if

there are LAGRANGE MULTIPLIERS (y⋆, z⋆) ∈ Rng × Rnh
+ satisfying

∇c(x⋆) + ∂xg(x
⋆)⊤y⋆ + ∂xh(x

⋆)⊤z⋆ = 0 (stationarity) (5a)

g(x⋆) = 0 (eq. constraint) (5b)

h(x⋆) ≤ 0 (ineq. constraint) (5c)

h(x⋆)⊙ z⋆ = 0 (hizi = 0) (complementarity) (5d)

Equation (5a) above is the gradient of the classical LAGRANGIAN

FUNCTION (Rockafellar 1997)

L (x , y , z) = c(x) + y⊤g(x) + z⊤h(x). (6)

(5d) are called the COMPLEMENTARITY CONDITIONS. The set of i such that

z⋆i > 0 (hi (x
⋆) = 0) is called the ACTIVE SET OF CONSTRAINTS.
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Some things which are NLPs:

▶ quadratic programs (QPs), among which linear-quadratic (LQ) control problems

▶ contact problems (see Quentin’s stuff)

▶ collision detection (talk to Louis)

▶ inverse kinematics

▶ others?...

Convex?

▶ if f , h is convex, and g is affine (sorry)
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As Adrien pointed out, general nonlinear programming is hard.

Many methods exist:

▶ straight sequential quadratic programming (SQP), solving a cascade of

inequality-QPs with linesearch/filter/trust-region strategies, see snopt (Gill et al.

2002)

▶ interior-point methods: add barrier for inequalities then move to equality-SQP,

see ipopt (Wächter and Biegler 2006)

▶ augmented Lagrangian methods, with second-order approaches e.g.

lancelot (A. R. Conn et al. 2010)



Figure 2: The holy book: Numerical Optimization (Nocedal and Wright 2006)



Constrained optimization

ProxQP – AL methods applied to QPs



Equality-constrained QPs (EQPs)

The problem. Let Q ∈ S+
n (R), q ∈ Rn, A ∈ Rm×n and b ∈ Rm. We consider the

simple equality-constrained QP

min
x

1

2
x⊤Qx + q⊤x

s.t. Ax + b = 0
(EQP)

Lagrangian:

L(x , y) = 1
2x

⊤Qx + q⊤x + y⊤(Ax + b). (7)

KKT conditions. Very classically:[
Q A⊤

A

][
x

y

]
= −

[
q

b

]
. (8)

Unique solution iff matrix is invertible.
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Unique solution (x⋆, y⋆) iff KKT matrix
[
Q A⊤

A

]
is invertible.

Proposition (see Nocedal and Wright 2006, chap. 16)

The KKT matrix is nonsingular if:

▶ LICQ (linear independence constraint qualification) i.e. linear independence of rows

of A

▶ if Z basis matrix ker(A) (i.e. Z full rank, AZ = 0), then Z⊤QZ ≻ 0.

(Strict

convexity (Q ≻ 0) is sufficient1)

In practice: not very fun! (no redundant constraints)

1Even required by some solvers e.g. quadprog (https://github.com/quadprog/quadprog) based

on Goldfarb and Idnani 1983 Goldfarb and Idnani 1983

https://github.com/quadprog/quadprog
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Method of multipliers for rank-deficient EQPs

Redundant constraints? Augmented Lagrangians (AL) to the rescue!

The primal way. Let µ > 0. The AL associated with (EQP) is the quadratic

Lµ(x ; ye) def=
1

2
x⊤Qx + q⊤x + y⊤e (Ax + b) + 1

2µ∥Ax + b∥22

= −min
y

{
−L(x , y) + µ

2∥y − ye∥22
}

proximal!

(9)

Method of multipliers. Minimum given by ∇xLµ(x+; ye) = 0 i.e.

(Q + 1
µA

⊤A)x+ = −[q + A⊤(ye +
1
µb)] (10)

and dual step y+ = ye +
1
µ(Ax

+ + b).

Set x ← x+, ye ← y+, rinse and repeat.

Caveat: bad numerical conditioning (matrix eigenvalues might span a large range of

values e.g. 10−6 to 106)
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Primal-dual/saddle-point view. Introduces a regularized KKT matrix:[
Q A⊤

A −µI

][
x+

y+

]
= −

[
q

b + µye

]
(11)

Remark

▶ µ controls convergence speed → lower is faster (but less stable)

▶ clever heuristics for {µk} for good compromises e.g. BCL (A. Conn et al. 1991)

Further explored in the practical session!



A link through linear algebra with Schur complements:

Q + 1
µA

⊤A
Schur compl.⇐=======⇒

[
Q A⊤

A −µI

]
Schur compl.⇐=======⇒ µI + AQ−1A⊤ (12)

2nd variant is similar to Goldfarb and Idnani 1983, also used in Carpentier et al. 2021

(RSS).



Inequality-constrained QPs

A (slightly?) harder problem:

min
x

1

2
x⊤Qx + q⊤x (13a)

s.t. Ax + b = 0 (13b)

Cx + u ≤ 0 (13c)

KKT CONDITIONS are like before, plus

the complementarity:

Qx + q + A⊤y + C⊤z = 0 (14a)

Ax + b = 0 (14b)

Cx + u ≤ 0 (14c)

z ⊙ [Cx + u] = 0 (14d)

Actually WAY HARDER. Many methods employed for this:

▶ dual method (strictly convex) AKA Goldfarb and Idnani 1983 AKA quadprog

▶ solve EQP + ADMM (see the OSQP solver (Stellato et al. 2020))

▶ active-set search sorcery (solver: qpOASES (Ferreau et al. 2014))

▶ and AL! See QPALM (Hermans et al. 2019), QPDO (De Marchi 2022) and ours,

ProxQP (Bambade et al. 2023)
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AL for inequality-constrained problems

(Generalized) AL function. (see Rockafellar 1976)

Lµ(x ; ye , ze) = 1
2x

⊤Qx + q⊤x + y⊤e (Ax + b) + 1
2µ∥Ax + b∥22

equality penalty

+ 1
2µ∥[Cx + u + µze ]+∥22 − µ

2∥ze∥22
inequality penalty

.
(15)

Terrible news!

▶ Not quadratic anymore – just piecewise.

▶ No closed-form minimum.

▶ Not even smooth!

Methods such as ProxQP and QPALM → inexact minimization using semi-smooth

Newton methods (not covered in this session).
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In general, these methods are difficult to implement, especially with performance in

mind.

Try our solver!

conda install -c conda-forge proxsuite



In general, these methods are difficult to implement, especially with performance in

mind.

Try our solver!

conda install -c conda-forge proxsuite



Constrained optimization

Augmented Lagrangians for general NLPs



Assume your initial problem is not a QP (i.e. nonquadratic c(z), nonlinear

constraints. . . ).

AL method is still posed as the iteration:

1. minimize the AL function (HOW?)

Lµ(x ; ye , ze) = c(x) +
1

2µ
∥g(x) + µye∥2 +

1

2µ
∥[h(x) + µze ]+∥2

2. update multipliers:

y+ = ye +
1
µg(x

+), z+ = [ze +
1
µh(x

+)]+ (16)

3. update µ maybe



Constrained trajectory optimization

Problem definition



Constrained trajectory optimization – continuous time

Our objective, in continuous time, is to solve trajectory optimization problem of the form

min
x ,u

∫ T

0
ℓ(t, x(t), u(t))dt + ℓT (x(T )) (17a)

s.t. ẋ(t) = f (t, x(t), u(t)) (17b)

h(t, x(t), u(t)) ≤ 0 (17c)

hT (x(T )) ≤ 0. (17d)



UR10 ballistics video



Quadrotor slalom video



Whole-body MPC on Solo



Constrained trajectory optimization – discrete time

We consider the following discrete-time OCP:

min
x ,u

J(x ,u) =
N−1∑
t=0

ℓt(xt , ut) + ℓN(xN)

s.t. xt+1 = ft(xt , ut), t ∈ J0,N − 1K ←→ λt+1

x0 = x̄0 ←→ λ0

ht(xt , ut) ≤ 0 ←→ νt

hN(xN) ≤ 0 ←→ νN

(18)



Optimality conditions – the Bellman way

The Bellman principle of optimality The optimal trajectory satisfies the relationship

between the cost-to-go functions

Vt(xt) = min
ut

max
νt

ℓt(xt , ut) + ν⊤t ht(xt , ut) + Vt+1(xt+1) (19)

where xt+1 = ft(xt , ut), and boundary condition

VN(x) = max
νN

ℓN(x) + ν⊤N hN(x). (20)



Optimality conditions – the KKT way

The problem Lagrangian is

L (x ,u,λ,ν) =
N−1∑
t=0

ℓt(xt , ut) + λ⊤
t+1(ft(xt , ut)− xt+1) + ν⊤t ht(xt , ut)

+ ℓN(xN) + ν⊤N hN(xN) + λ⊤
0 (x0 − x̄0).

(21)

We can define the Hamiltonian

Ht(x , u, λ, ν) = ℓt(x , u) + λ⊤ft(x , u) + ν⊤ht(x , u) (22)

and terminal Lagrangian

LN(x , ν) = ℓN(x) + ν⊤hN(x). (23)



Thus, the optimality conditions can be written as

λt = ∇xHt(xt , ut , λt+1, νt) (24a)

0 = ∇uHt(xt , ut , λt+1, νt) (24b)

0 = ft(xt , ut)− xt+1 (24c)

0 ≤ ht(xt , ut) ⊥ νt ≥ 0 (24d)

0 ≤ hN(xN) ⊥ νN ≥ 0 (24e)

and boundary conditions

x0 = x̄0 (24f)

λN = ∇xLN(xN , νN). (24g)



Can we SQP?

Yes. Start by defining

Qt = ∇2
xxHt , St = ∇2

xuHt , Rt = ∇2
uuHt

qt = ∇xHt , rt = ∇uHt

At =
∂ft
∂x

, Bt =
∂ft
∂u

, st = ft(xt , ut)

Ct =
∂ht
∂x

, Dt =
∂ht
∂u

, dt = ht(xt , ut)

(25)



We can show that the SQP update (δx , δu,λ+,ν+) is obtained by solving the

structured QP or constrained LQR

min
δx ,δu

N−1∑
t=0

1

2

[
δxt

δut

]⊤ [
Qt St

S⊤
t Rt

][
δxt

δut

]
+ ℓ⊤t,xδxt + ℓ⊤t,uδut (26a)

s.t. δxt+1 = Atδxt + Btδut + γt (26b)

Ctδxt + Dtδut + dt ≤ 0, (26c)

CNδxN + dN ≤ 0 (26d)

This method is often called iLQR in the literature (Li and Todorov 2004; Giftthaler et al.

2018)

▶ not to be confused with the iLQR of Tassa et al. 2012.



(Software) Solutions

▶ acados (Verschueren et al. 2022) implements an SQP-type algorithm, relying on

the interior-point method hpipm for the LQRs (Frison and Diehl 2020).

▶ crocoddyl (Mastalli, Budhiraja, et al. 2020; Mastalli, Chhatoi, et al. 2023) has

support for projection-based methods for equality constraints

▶ fatrop2 (Vanroye et al. 2023) implements an interior-point with an equality-LQR

backend

▶ mim-solvers3 (Jordana et al. 2023) implements a filter line-search SQP

▶ our library aligator, using proximal/augmented Lagrangian methods based on our

prior work (J., Mansard, Carpentier ICRA’22, J., Bambade et al. IROS’22 + J.,

Bambade et al. T-RO journal submission)

2https://github.com/meco-group/fatrop
3https://github.com/machines-in-motion/mim_solvers
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