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Object pose tracking

Initial pose Converged

I Assumptions: object detected, matched with model, initial pose
I Local refinement of cTb ∈ SE (3) pose using a single RGB(-D) camera
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Motivation: dynamic manipulation

Human to robot handover [MFB18] Object grasping on the move [Bur+23]

I Low latency estimation to close the loop

I Grasping level precision (∼ cm)
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Handover from point cloud grasp prediction

Model predictive control for fluid human-to-robot handovers [Yan+22]

I Generates grasp proposals from point cloud (GraspNet)
I Runs on 6 GPUs in parallel
I What if we have a decent object model?
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Overview

1. Model based object tracking, a short tour

2. Region based object tracking

3. Object localization and tracking for conrol



Model based object tracking

A short tour
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Edges tracking

RAPID [HS90]

I Model: 3D geometric primitives

I Method: Local search for image edges from
contour points, least squares

I First real time methods

I Sensitive to incorrect matches (background
clutter, self occlusion), additional modelling
step
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Keypoint matching

Hybrid tracking, ViSP [Com+06]

I Model: 3D point with descriptors

I Method: 3D-2D matching, minimize
reprojection error (PnP problem)

I Efficient and robust if rich texture

I Fails for object with low texture



AGIMUS Winter School | Model-based object pose tracking 8 / 30

Keypoint matching

Hybrid tracking, ViSP [Com+06]

I Model: 3D point with descriptors

I Method: 3D-2D matching, minimize
reprojection error (PnP problem)

I Efficient and robust if rich texture

I Fails for object with low texture



AGIMUS Winter School | Model-based object pose tracking 9 / 30

Deep learning

Megapose, tracking mode (2022) [Lab+22]
Also: PoseRBPF [Den+21],
se(3)-TrackNet [Wen+20]...

I Model: textured mesh

I Method: render and compare, regress
delta pose

I Robust to occlusions, clutter, etc. Sota
on standard benchmarks

I High-end GPUs at run-time, costly
training, generalization (∼)
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Region based tracking

PWP3D [PR12]

I Model: mesh (no texture)

I Method: probabilistic silhouette
alignment, Newton’s method

I Robust to occlusions, clutter, very
efficient (1 object → ∼1000 FPS on
CPU)

I Assumes foreground and background
colors sufficiently different
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Region based tracking
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SRT3D, sparse region based tracking [Sto+22]
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Dense region based tracking for pose tracking

Objective: find cTb that maximizes likelihood of segmentation

P(cTb|Img) =
∏
x∈Ω

(hb(φ) · Pb + hf (φ) · Pf )

Foreground/background probability distributions [Zha+14]
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Signed Distance Function (SDF)

Objective: find cTb that maximizes likelihood of segmentation

P(cTb|Img) =
∏
x∈Ω

(hb(φ) · Pb + hf (φ) · Pf )

I φ = f (cTb): SDF, from rendered contour

Contour from cTb SDF
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Color statistics and activation
Objective: find cTb that maximizes likelihood of segmentation

P(cTb|Img) =
∏
x∈Ω

(hb(φ) · Pb + hf (φ) · Pf )

I Pb,Pf : background/foreground color distributions
I hb, hf : background/foreground activation functions

Example of Pf visualization [Keh+17]
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ExecuteTrackingStep
cTb = cT0

b

Pb,Pf = P0
b ,P

0
f

for i = 1 to N update stats do
for j = 1 to N newton do

cost(cTb) = − logP(cTb|Img)
g, H = ComputeCostGradientHessian(cTb,Pb,Pf )
νb = -(H + λtikho I6)−1 · g
cTb = UpdatePose(cTb, νb)

end for
Pb,Pf = UpdateColorStatistics(cTb)

end for
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Are dense computations necessary?

Contour prediction

Residuals − logP(cTb|Img)

Observations:

I Important residuals only close to predicted
contour

I Neighbor contour points produce similar
gradients

I Dense SDF computation is expensive (Repeated
rendering and Direct transform)

Sparse Region based method [Keh+17]

I Idea1: Sample contour control points

I Idea2: Precomputation of template views
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Sparse view precomputations

Typically by using a geodesic polyhedron (e.g. 2562 views)
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Correspondance lines reformulation

Correspondance lines, coarse to fine iterations [Sto+20]
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Hybrid learning + optimization region based tracking

Deep Active Contour for Real-time 6-DoF Object Tracking [Wan+23]

I Replace histograms by learning contour probability prediction

I Trained end to end with differentiable optimization
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Object localization and tracking

An architecture for vision-based feedback control
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Object tracking with manipulator
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System architecture

Perception

Tracker

6D pose localizer

Time delay corrector

Control

OCP
Solver

Ricatti
Linearization

  5 Hz 30 Hz
100 Hz 1 kHz

Input image

Output 6D pose

Buffer

Object localization and tracking architecture [Fou+23]

I Asynchronous object localization and tracking

I Torque level MPC (crocoddyl) with Riccatti based feedback
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Practical session
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Practical session

I Pose detection
I 2D detection
I CosyPose
I Megapose

I Pose tracking
I Recorded sequences
I Webcam
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Questions and Answers

Contact details

Médéric Fourmy
mederic.fourmy@cvut.cz
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