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Object pose tracking

Initial pose Converged

> Assumptions: object detected, matched with model, initial pose
» Local refinement of T, € SE(3) pose using a single RGB(-D) camera
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Motivation: dynamic manipulation

Reactive Manipulation On-The-Move

Human to robot handover [MFB18] Object grasping on the move [Bur+23]
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Motivation: dynamic manipulation

> Reactive Manipulation On-The-Move

Human to robot handover [MFB18] Object grasping on the move [Bur+23]

> Low latency estimation to close the loop

» Grasping level precision (~ cm)
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Handover from point cloud grasp prediction

Body Tracking

Task Model

Model predictive control for fluid human-to-robot handovers [Yan+22]
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Handover from point cloud grasp prediction

Body Tracking
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Task Model J

Model predictive control for fluid human-to-robot handovers [Yan+22]

» Generates grasp proposals from point cloud (GraspNet)
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Handover from point cloud grasp prediction

Body Tracking
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Task Model J

Model predictive control for fluid human-to-robot handovers [Yan+22]

» Generates grasp proposals from point cloud (GraspNet)
» Runs on 6 GPUs in parallel
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Handover from point cloud grasp prediction

Body Tracking

\

_ v oy ¥
P
Task Model J

Model predictive control for fluid human-to-robot handovers [Yan+22]

» Generates grasp proposals from point cloud (GraspNet)
» Runs on 6 GPUs in parallel
> What if we have a decent object model?
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Overview

1. Model based object tracking, a short tour
2. Region based object tracking

3. Object localization and tracking for conrol
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NGIMUS

Model based object tracking

A short tour



Edges tracking

» Model: 3D geometric primitives

» Method: Local search for image edges from
contour points, least squares

Figure 2: Diagram to show a sample of
perpendicular distances, I;

RAPID [HS90]
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Edges tracking

» Model: 3D geometric primitives

» Method: Local search for image edges from
contour points, least squares

» First real time methods

Figure 2: Diagram to show a sample of
perpendicular distances, I;

» Sensitive to incorrect matches (background
clutter, self occlusion), additional modelling
step

Figure 4: RAPID tracking box in a static
situation

RAPID [HS90]
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Keypoint matching

» Model: 3D point with descriptors

» Method: 3D-2D matching, minimize
reprojection error (PnP problem)

Hybrid tracking, VISP [Com+06]
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Keypoint matching

» Model: 3D point with descriptors

» Method: 3D-2D matching, minimize
reprojection error (PnP problem)

» Efficient and robust if rich texture

» Fails for object with low texture

Hybrid tracking, VISP [Com+06]
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Deep learning

» Model: textured mesh

Right: Predicted 6D pose of the novel object
Left: Contours of the prediction overlaid on input image

» Method: render and compare, regress
delta pose

Megapose, tracking mode (2022) [Lab+22]
Also: PoseRBPF [Den+-21],
se(3)-TrackNet [Wen+20]...
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Deep learning

» Model: textured mesh

Right: Predicted 6D pose of the novel object
Left: Contours of the prediction overlaid on input image

» Method: render and compare, regress
delta pose

» Robust to occlusions, clutter, etc. Sota
on standard benchmarks

» High-end GPUs at run-time, costly
training, generalization (~)

Megapose, tracking mode (2022) [Lab+22]
Also: PoseRBPF [Den+-21],
se(3)-TrackNet [Wen+20]...
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Region based tracking

» Model: mesh (no texture)

» Method: probabilistic silhouette
alignment, Newton's method

PWP3D [PR12]
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Region based tracking

» Model: mesh (no texture)

» Method: probabilistic silhouette
alignment, Newton's method

» Robust to occlusions, clutter, very
efficient (1 object — ~1000 FPS on
CPU)

» Assumes foreground and background
colors sufficiently different

PWP3D [PR12]
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NGIMUS

Region based tracking



SRT3D, sparse region based tracking [Sto+22]
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Dense region based tracking for pose tracking

Objective: find “T}, that maximizes likelihood of segmentation

P(“Tollmg) = [ (hs(9) - Py + he(9) - Pr)

xEQ

Foreground/background probability distributions [Zha+14]
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Signed Distance Function (SDF)

Objective: find “Tj that maximizes likelihood of segmentation

P(“Ts|Img) = [ [ (hs() - Po+ he(0) - Pr)

xeQ
» ¢ = f(“Tp): SDF, from rendered contour

Contour from T, SDE
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Color statistics and activation

Objective: find “Tj that maximizes likelihood of segmentation

P(“Ty|img) = [ [ (hs() - Py + he(¢) - Pr)
xeN

» Py, Pr: background/foreground color distributions
» hp, he: background/foreground activation functions

Example of Pr visualization [Keh+17]
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ExecuteTrackingStep
CTb — CT(I))
Py, Pr = P2, P?
for i = 1 to N_update_stats do
for j = 1 to N_newton do
cost(“Tp) = —log P(“Tp|Img)
g, H = ComputeCostGradientHessian(“Tp, Py, Pr)
vb = -(H + Atiknols) ' - g
“Tp = UpdatePose(“ Ty, vp)
end for
Py, Pr = UpdateColorStatistics(“T})
end for
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Are dense computations necessary?
A '

Contour prediction

Residuals — log P(“Tj|Img)
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Are dense computations necessary?

PZe
V)

Observations:

» Important residuals only close to predicted
contour

» Neighbor contour points produce similar
gradients

Contour prediction

» Dense SDF computation is expensive (Repeated
rendering and Direct transform)

Residuals — log P(“Tj|Img)

GV@H"IUS AGIMUS Winter School | Model-based object pose tracking 17 / 30



Are dense computations necessary?

e

Observations:

» Important residuals only close to predicted
contour

» Neighbor contour points produce similar

Contour prediction .
gradients

» Dense SDF computation is expensive (Repeated
rendering and Direct transform)

Sparse Region based method [Keh+17]

» Ideal: Sample contour control points

Residuals — log P(ST|Img) » Idea2: Precomputation of template views
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Sparse view precomputations

Typically by using a geodesic polyhedron (e.g. 2562 views)
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Correspondance lines reformulation

Correspondance lines, coarse to fine iterations [Sto+20]
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Hybrid learning + optimization region based tracking

Initial pose P

1. Contour Feature Map Extraction 2. Boundary Map Prediction 3. Pose Optimization
ct B;- Differentiable Newton
Pro ection -
) Boundary - Optimization

—»  prediction |—»

FPN- the module —
K
Input frame Image Contour Boundary =
‘\ feature map | | feature map probability map | i
CAD model Coarse-to-fine P’

Deep Active Contour for Real-time 6-DoF Object Tracking [Wan-+23]
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Hybrid learning + optimization region based tracking

Initial pose P

1. Contour Feature Map Extraction 2. Boundary Map Prediction 3. Pose Optimization
ct B;- Differentiable Newton
Pro ection -
) Boundary B Optimization
—» | prediction —» B
FPN- Llle module — -
1 =25
Input frame Image Contour Boundary =
‘\ feature map | | feature map probability map | i J
CAD model Coarse-to-fine P’

Deep Active Contour for Real-time 6-DoF Object Tracking [Wan-+23]

P Replace histograms by learning contour probability prediction
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Hybrid learning + optimization region based tracking

Initial pose P

1. Contour Feature Map Extraction 2. Boundary Map Prediction 3. Pose Optimization
s
ct Bi- Differentiable Newton
Pro ection -
) ) Boundary B Optimization
—» | prediction |—» SN #
FPN Lite module — -
1 =22
Input frame Image Contour Boundary =
‘\ feature map | | feature map probability map | i J
CAD model Coarse-to-fine P’
k

Deep Active Contour for Real-time 6-DoF Object Tracking [Wan-+23]

P Replace histograms by learning contour probability prediction
» Trained end to end with differentiable optimization

AGIMUS
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NGIMUS

Object localization and tracking

An architecture for vision-based feedback control



Object tracking with manipulator

Run #1 Run #2
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System architecture

et Yoo . ® 5Hz ®30Hz

E Perception . ! | Control " @100 Hz ®1 kHz
|

; Tracker ]——kﬂ Output 6D pose T}, : ‘ OCP ‘ T

' Ty— ' Solver w

| o Time delay corrector | : |

| v v Ko, T oi w

| I |

: 6D pose localizer Ti—n ¥ Ricatti 1 :

I K = .. q,9

! Buffer 1 |Linearization| o

——— Input image [}, [§———————— R —

Object localization and tracking architecture [Fou+23]
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System architecture

et Yoo . ® 5Hz ®30Hz
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Object localization and tracking architecture [Fou+23]

» Asynchronous object localization and tracking
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System architecture

et Yoo . ® 5Hz ®30Hz

E Perception . ! | Control " @100 Hz ®1 kHz
|

; Tracker ]——kﬂ Output 6D pose T}, : ‘ OCP ‘ T

' Ty— ' Solver w

| o Time delay corrector | : |

| v v Ko, T oi w

| I |

: 6D pose localizer Ti—n ¥ Ricatti 1 :

I K = .. q,9

! Buffer 1 |Linearization| o

——— Input image [}, [§———————— R — -

Object localization and tracking architecture [Fou+23]

» Asynchronous object localization and tracking
» Torque level MPC (crocoddyl) with Riccatti based feedback
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NGIMUS

Practical session



Practical session

» Pose detection
» 2D detection
» CosyPose
» Megapose
» Pose tracking

» Recorded sequences
> Webcam
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Questions and Answers

Contact details

Médéric Fourmy
mederic.fourmy@cvut.cz
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