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Contact: the Physical Problem

. . Joseph-Louis Lagrange
The poly-articulated system dynamics
'

(8 Mass Coriolis Motor

, Matrix centrifugal Gravity torque

(reeia— Simulation #3: contact dynamics - from bilateral to unilateral contact modelling 3 1 | PSL*

: \‘~ IS driven by the so-called Lagrangian dynamics:
| FS M@ + Ca.9) + Gl@) = T




Contact: the Physical Problem

. . Joseph-Louis Lagrange
The poly-articulated system dynamics
'

(8 Mass Coriolis Motor

, Matrix centrifugal Gravity torque

(reeia— Simulation #3: contact dynamics - from bilateral to unilateral contact modelling 3 1 | PSL*

: \‘~ IS driven by the so-called Lagrangian dynamics:
| FS M@ + Ca.9) + Gl@) = T




Contact: the Physical Problem

Joseph-Louis Lagrange

The poly-articulated system dynamics
IS driven by the so-called Lagrangian dynamics:

gfavityl M(q)g + Clgq.q) + Glq) = 7
Mass Coriolis Gravit Motor
Matrix centrifugal avity torque
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Joseph-Louis Lagrange

The poly-articulated system dynamics
IS driven by the so-called Lagrangian dynamics:

M(g)§ + Clg,q) + G(@) = 7 + J (@)

Mass Coriolis Gravit Motor External
Matrix centrifugal y torque forces

contact/interaction forces
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The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree

Rigid Body ~ 7

Dynamics

The Articulated Body Algorithm Algorithms

j = ForwardDynamics (g, ¢,7, /)

SI Mmu |at | on Roy Featherstone
Control

7 = InverseDynamics (g, ¢. 4, /.)

The Recursive Newton-Euler Algorithm

Mg + Clq.q) + Glg) = v + J (@A,

Mass Coriolis Motor External

Gravity

Matrix centrifugal torque forces
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Gaol of this class

Understand the various approaches of the state of the art to compute /IC IN:

Mg + Clq.q) + Glg) = 7 + J (g)A,

contact/interaction forces
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Gaol of this class

Understand the various approaches of the state of the art to compute /IC N:

Mg + Clq.q) + Glg) = v + J(q) A

Soft contact | 2 spring-damper model

2 bilateral contact model

Rigid contact .
J Z unlilateral contact model

contact/interaction forces
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Gaol of this class

Understand the various approaches of the state of the art to compute /IC N:

Mg + Clq.q) + Glg) = v + J(q) A

Soft contact | 2 spring-damper model

2 bilateral contact model

Rigid contact .
J Z unlilateral contact model

Mixed contact | # the relaxed contact model

contact/interaction forces
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The Soft Contact Problem









Soft contact: the spring-damper model
This Is the simplest contact model, very intuitive and straightforward to implement

This contact model is defined by the spring k and the damper d quantities, reading:

Q /Ié’l — max(—k D — d p,()) the max function means:

the ground can ONLY push

0 value of k
soft
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Soft contact: the spring-damper model

This Is the simplest contact model, very intuitive and straightforward to implement

BUIT

not relevant to model rigid interface (k - «), requires stable integrator (stiff equation)
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The Rigid Contact Problem

bilateral contacts



The Least-Constraint Principle

232 18. Gawfs, nenes aligemeines Grindeesetz der Mechanit.

18.

Uber ¢in neues allgemeines Grundgesetz: der Mechanik.
(Vom Herm Hofrath und Prof. Dr. Gowfs zu Gittingen.)

Die Bewegung.eines Systems materieller, auf was im- , ,

mer fiir eine Art unter sich verkniipfter Punkte, deron Be- Carl Friedrich Gauss
wegungen zugleich an was immer fiir dulsere Beschrinkun-

gen gebunden sind, geschieht in jedem Augenblick in még-

lich gréfster Ubereinstimmung mit der freien Bewegung,

oder unter moglich kleinstem Zwange, indem man als Maafls

des Zwanges, den das ganze System in jedem Zeittheilchen

erleidet, die Summe der Produkte aus dem Quadrate der Ab-

lenkung jedes Punkts von seiner freien Bewegung in seine

Malse betrachtet.

"T'he motion of a system of material points. . . takes place in every moment n
maximum accordance with the free movement or under least constraint; | .../
the measure of constraint, [...J, is considered as the sum of products of mass
and the square of the deviation to the free motion”
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The Least Constraint Principle as a classic QP

Problem: knowing g and ¢, we aim at retrieving ¢ and 4.

least distance w.r.t to the

unconstrained acceleration a metric induced by the

. 1| ~ — Kinetic energy
min g -4,
q

— gap between
C(Q) T () floor and foot

contact/interaction forces

where gy et M~ (q) (T — (C(q,q) — G(q)) is the so-called free acceleration (without constraint)
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m.q.ln ) & QfHM(q) ; N g quM(CI)
clq) =0 Fooe c(q) =0

index reduction

= time derivation k» ]C(q) q — O
index reduction &' Jc(q) q + jC(Q, q)q — O

. 7{4-q)

the constraint differentiated twice w.r.t. time

contact/interaction forces

where gy et M~ (q) (T — (C(q,q) — G(q)) is the so-called free acceleration (without constraint)

(reeia — Simulation #3: contact dynamics - from bilateral to unilateral contact modelling 13 1 | PSLok




The Least Action Principle as a classic QP

Problem: we have now formed an equality-constrained QF.

1
L4 o0 o0 2
min —j||qg —¢g
i 9) H fHM(C])

J(@)g+vr.(q,q) =0
How to solve it? Where do the contact forces lie”?

contact/interaction forces
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The Least Action Principle as a classic QP

Problem: we have now formed an equality-constrained QF.

1
L4 o0 o0 2
min —||qg —¢qgq
i 2 H fHM(C])

J(@)g+vr.(q,q) =0
How to solve it? Where do the contact forces lie”?

The solution can be retrieved by deriving
the KKT conditions of the QP problem via the so-called Lagrangian:

dual variable = contact forces

N T
G.2) = G = Gl = 4 (@) +7.0q: q))
| | |

contact/interaction forces

cost function equality constraint
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Solving the Lagrangian contact problem

dual variable = contact forces

1

min  —[|§ — gl ) L T .
i 2 M) ——  LG.A) == - G5, — A (V@i + 7.9, D)
) | P
JD§+7.9.9)=0 I EE— T ——
COStT Tunction eguality constrain
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Solving the Lagrangian contact problem

dual variable = contact forces

min  —||§ — A3 . | - . .
i 2 /M@ — LG, 4) == = Ay — A (VDG + 19, )))

J(@)gG+y(q,q) =0 | | | |

cost function equality constraint

The KKT conditions of the QP problem are given by:
VqL — M(q)(q — qf) — Jc(q)TﬂC p— O Joint space force propagation
V/ch — Jc(q)q -+ }/C(q, q) — 0 Contact acceleration constraint
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q

Solving the Lagrangian contact problem

A S
min EHQ_QfHM(q)

JC(Q)q T }/c(qa Q) =0

— LG, 4) = EHq — 4l — 4 (V@i +7.q.9)
|

dual variable = contact forces

[ ]

cost function equality constraint

The KKT conditions of the QP problem are given by:

VqL — M(q)(q — qf) — JC(Q)TAC p— O Joint space force propagation
V/%L — Jc(q)q -+ }/C(q, q) — O Contact acceleration constraint

leading to the so-called KKT dynamics:
M(q) J!(g) [ q] | M@y
JC(Q) 0 _/IC _}/c(q9 q)

K(q)
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Solving the Lagrangian contact problem

dual variable = contact forces

min  —||§ — A3 . | - . .
i 2 /M(@) —_—  L(§,A) =5Hq—qf\|%4<q>— A (LG + 7L, D)
|

JC(Q)q T VC(Qa Q) =0 | |

cost function equality constraint

The KKT conditions of the QP problem are given by:
VqL — M(q)(q — qf) — JC(Q)TAC p— O Joint space force propagation
VﬂCL — Jc(q)q + }/C(q, q) — 0 Contact acceleration constraint

leading to the so-called KKT dynamics:
M(q) J!(g) [ q] | M@y
JC(Q) 0 _/IC _yc(q9 q)
k K(g) |

BUT, there might be one solution, redundant solutions or no solution at all depending on the rank of J.(q).
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Classic resolution

We can analytically inverse the system
to obtain the solution in 3 main steps:

[M(q)ii —J@) A =M (‘I)qu

| J@)d+7.9.9) = 0]
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Classic resolution

1 - Express g as function of j,and 4,

[ G =G4+ M (9Jq)" 2 ]

We can analytically inverse the system
to obtain the solution in 3 main steps:

[M(q)ii —J@) A =M (‘I)qu

| J@)G+7.9.9) = 0]
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Classic resolution

1 - Express g as function of j,and 4,

[ G =G4+ M (9Jq)" 2 ]

We can analytically inverse the system
to obtain the solution in 3 main steps:

[M(q)ii —J(q)' A, = M(q)éifJ s

[ J(@)q+v.q,q) = OJ > A7\ (g) 4, {4:0¢)

2 - Replace g and get an expression depending only on 4.
T(DM @I (@) 2, + T (@i +7.(0.9) = O
Cq qu C qu]f }/CQ9q—
Inverse Ope?a?ilgr?:l?gpgiteri)l(nertia Matrix Free contact acceleration
- Y
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Classic resolution

1 - Express g as function of j,and 4,

[ G =G4+ M (9Jq)" 2 ]

We can analytically inverse the system
to obtain the solution in 3 main steps:

3 - . 2 - Replace g and get an expression depending only on 4.
[M(q)q —J(q) A, = M(q)qu s » n 3 )
JAPM~ (@) (q) 4.+ I DG+ v(q,9) =0

[ J(@)q+v.q,q) = OJ - | A7\ (g) - o fqdqd)
\ Inverse Ope?a?ilgr?:l?gpgiteri)l(nertia Matrix Free contact acceleration J

v

3 - Inverse A ! and find the optimal A,

%o = = N@) a, (4, )

\
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The Proximal Rigid Contact Problem

bilateral contacts



The proximal Lagrangian

The proximal operator of a convex function f(x) is given by:

def : o
prox, (y) = argmin f(x)+—|x - y||;
’ XEX 2

where a can be assimilated to the inverse of a step size.

Ll | PSL %

lreeia— Simulation #3: contact dynamics - from bilateral to unilateral contact modelling 18



The proximal Lagrangian

Jean-Jdacques Moreau

prox. (v) Cef arg min f(x)—l——Hx

b= A

)’Hz

where a can be assimilated to the inverse of a step size.

In general, this results in a cascade of simpler problems to solve, at the pri
terations before convergi

possibly requiring a

Xiy1 = ProX, (x)

arge number of

the original proble

M with a desired precisio

ng to the solutl

.

The proximal operator of a convex function f(x) is given by:

Proximal algorithms typically iterate over the proximal operators, following the recursion:

ce of
on of
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Smoothing the Lagrangian

The solution is to add an extra smoothing term to the Lagrangian,
similarly to proximal algorithms:

L T . M -
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Smoothing the Lagrangian

The solution is to add an extra smoothing term to the Lagrangian,
similarly to proximal algorithms:

L T . M -

Jean-Jdacques Moreau

which has the strong effect of making KKT dynamics well posed:

10° ~
M(Q) Jc(Q)T IQI . M(Q)Qf %10—3
J(@) —ul | 4 —1q, Q)= 1A o
K, (@) ot b b ® 5 » B
converging to the least constraint solution if the problem is not feasible.
7 Simulation #3: contact dynamics - from bilateral to unilateral contact modelling 19 E;S PSL*




Explicit proximal contact solution

We can analytically inverse the system
to obtain the solution in 3 main steps:

(M@ — 1), = M@,

| J@G+70q.9) = —p(h— )
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Explicit proximal contact solution

1 - Express ¢ as function of 4, and 1,

[ G=G4p+M NI "2, ]

We can analytically inverse the system
to obtain the solution in 3 main steps:

(M@ — 1) % = M@)i; )

| J@G+70q.9) = —p(h— )
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Explicit proximal contact solution

We can analytically inverse the system
to obtain the solution in 3 main steps:

1 - Express ¢ as function of 4, and 1,

[ G=G4p+M NI "2, ]

.. T, . 2 - Replace ¢ and get an expression depending only on A,
[M(q)q —J(q) 1. = M(q)q]i] - ~
(J@i+14q.9) = —p(h— 4] (JLDM™ DILD +11) A + T @iy + 10, &) = 17
C c\4> - c “c > | - . > & . 4
AZ(q) a. (q-4Gy)
\ damped Delassus’ matrix J
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Explicit proximal contact solution

1 - Express ¢ as function of 4, and 1,

[ G=G4p+M NI "2, ]

We can analytically inverse the system
to obtain the solution in 3 main steps:

. . 2 - Replace ¢ and get an expression depending only on A,
[M(q)q —J(@' A = M(q)q]i] - ~
- . . JAPM™ DI "+ul) 4. + I DGy + 1q, @) = pA;
[ J@q +71.q,q) = —pld, — 4 )J : L< _ >J B ,
AC_',;(Q) | ac,f(qquqf)
\ damped Delassus’ matrix J

v

3 - Inverse A, (¢) and find the optimal 4,

/Ic — = Ac,/,t(q) <ac,f(qa q, q]‘)_//tllc_>

\. ,
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Sparse resolution
of the Rigid Contact Problem

bilateral contacts



_ Mass Matrix: sparse Cholesky factorization

Goal: compute A=\ (q) &' 1 (¢)M~'(q)JT(q) without computing M~(¢)

Solution: exploiting the sparsity in the Cholesky factorization of M(g)

Rigid Body 7 * M(q) U(q) - U'g)
Dynamics
Algorithms
Roy Featherstone
— - X
A never
accessed Cholesky factorization 0 3
3 1 Ugg = /Mt The total complexity is O(N*) instead of O(N~)
2. Uy =M,;lU; - "
l‘e 2 1 MU, when using a dense Cholesky decomposition
finished
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Sparse Contact Matrix Decomposition

The goal is to exploit and reserve the sparsity in the factorization of the KKT matrix Kﬂ(q)

Instead of working with: we gonna work with:
M(q) J(q)' —ul J(q)
—> _l_
J(q) —pl J(q) M(q)
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Sparse Contact Matrix Decomposition

The goal is to exploit and reserve the sparsity in the factorization of the KKT matrix Kﬂ(q)

Instead of workl Ng with: we gonna wo rk with: Preudo-code of the Cholesky factorization of A:
for f::pjsz’;o 1 do
e ili(j‘l?fm ktm/Aktm, k+m
T — ( ) ;ajsiover; e joints |
M(g) JC(Q) //tI JC q while;j4>gd]o | |
——— gy e~ dmses
T ?)235‘ over the constraints
JC(Q) _//tI JC(Q) M(g) forilfjgcq;[oldo
foril: Zj?nlsz AL )
: nednd
The total complexity remains low in O((N + N.)?%) RS
instead of O((N + N 6)3) when using dense ?dlftd rlate o the OSIM
Cholesky decomposition ° ;ﬁ;kdt -
?o:jA:i’]Z/é ikdo
Aji=A;;— A
e
end
end
end
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Looking at the KKT Inverse

From the inverse of the KKT matrix, we can directly retrieve a lot of by-product and useful quantities:

_/’tI Jc(Q)
J(q)" M(q)

— UM YT 4un! AJ M

K, (q) = [

Cholesky\decomposition

o _ | Uan JULDY | [=Dar O Up-1 O
. 0 Uy, 0 Dy| |Dy'u;'JT U
Uy Dy Uk

H H
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Proximal and sparse resolution

Robotics: Science and Systems 2021
Held Virtually, July 12-16, 2021

Proximal and Sparse Resolution
of Constrained Dynamic Equations

Justin Carpentier Rohan Budhiraja Nicolas Mansard
Inria, Ecole normale supérieure Inria Paris LAAS-CNRS, ANITI
CNRS, PSL Research University 75012 Paris, France University of Toulouse

75005 Paris, France Email: rohan.budhiraja@inria.fr 31400 Toulouse, France

Email: justin.carpentier @inria.fr

Abstract—Control of robots with Kkinematic constraints like
loop-closure constraints or interactions with the environment
requires solving the underlying constrained dynamics equations
of motion. Several approaches have been proposed so far in the
literature to solve these constrained optimization problems, for
instance by either taking advantage in part of the sparsity of the
kinematic tree or by considering an explicit formulation of the
constraints in the problem resolution. Yet, not all the constraints
allow an explicit formulation and in general, approaches of the
state of the art suffer from singularity issues, especially in the
context of redundant or singular constraints. In this paper, we
propose a unified approach to solve forward dynamics equations
involving constraints in an efficient, generic and robust manner.
To this aim, we first (i) propose a proximal formulation of the
constrained dynamics which converges to an optimal solution
in the least-square sense even in the presence of singularities.
Based on this proximal formulation, we introduce (ii) a sparse
Cholesky factorization of the underlying Karush-Kuhn-Tucker
matrix related to the constrained dynamics, which exploits at
best the sparsity of the kinematic structure of the robot. We also
show (iii) that it is possible to extract from this factorization the
Cholesky decomposition associated to the so-called Operational
Space Inertia Matrix, inherent to task-based control frameworks
or physic simulations. These new formulation and factorization,
implemented within the Pinocchio library, are benchmark on
various robotic platforms, ranging from classic robotic arms or
quadrupeds to humanoid robots with closed kinematic chains,
and show how they significantly outperform alternative solutions
of the state of the art by a factor 2 or more.

I. INTRODUCTION

As soon as a robot makes contacts with the world or is
endowed with loop closures in its design, its dynamics is
governed by the constrained equations of motion. From a
phenomenological point of view, these equations of motion
follow the so-called least-action principle, also known under
the name of the Maupertuis principle which dates back to
the 17" century. This principle states that the motion of
the system follows the closest possible acceleration to the
free-falling acceleration (in the sense of the kinetic metric)
which fulfils the constraints. In other words, solving the
constrained equations of motion boils down to solving a
constrained optimization problem where forces acts as the
Lagrange multipliers of the motion constraints.

This principle has been exploited by our community since
the seminal work of Barraf [1], which is here our main
source of inspiration. He initially proposed to formulate the

Email: nicolas.mansard @laas.fr

Fig. 1. Robotic systems may be subject to different types of constraints: point
contact constraints (quadrupeds), flat foot constraints (humanoids), closed
kinematic chains (parallel robots, here the 4-bar linkages of Cassie) or even
contact with the end effectors (any robot). Each colored “anchor” here shows
a possible kinematic constraint applied on the dynamics of the robot. In this
paper, we introduce a generic approach to handle all these types of constraints,
contacts and kinematic closures, in a unified and efficient manner, even in the
context of ill-posed or singular cases.

dynamics with maximal coordinates (i.e. each rigid body
is represented by its 6 coordinates of motion) as a sparse
constrained optimization problem, and proposed an algorithm
to solve it in linear time. While maximal coordinates are inter-
esting for their versatility and largely used in simulation [2],
working directly in the configuration space with generalized
coordinates presents several advantages [16] that we propose
to exploit in this paper.

Some constraints can be put under an explicit form, i.e.
there exists a reduced parametrization of the configuration
that is free of constraints. This is often the case for classical
kinematic closures [37, 16]. Yet explicit formulation is not
always possible, and in particular is not possible for the
common case of contact constraints [42]. We address here
the more generic case where the constraints are written under
an implicit form i.e. the configuration should nullify a set
of equations, which makes it possible to handle any kind of
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Il Eigen Sparse Cholesky

Computation Time [in us]

0 3 6 9 12
Constraint Dimension

We benchmark the proposed Cholesky against classical approaches:
UK# foﬂ Uifrﬂ

o _ | Uan JULDy' | |=Dan O Up-1 O
g 0 Uy, 0 Dy| |Dy'u;'uT Uyl

Anymal B

—_ Il Proposed —_ Il Proposed —_ Il Proposed
g 30 igen Dense Cholesky g m Eigen Dense Cholesky ":l I Eigen Dense Cholesky
c Bl Eigen Sparse Cholesky c 80 Il Eigen Sparse Cholesky c 80 Eigen Sparse Cholesky
— 25 — —
) () ()
£ 5 £ 60 £
~ ~ ~
S S S

15
S s 40 o
© 11714 © 352 ©
+J +J +J
5 10 -] ]
Q 7 Q 20 2115 Q
£ £ 2 £
o 5 3 (@) 1 (@)

0 0

0 3 6 9 12 0 6 12 18 24 0 6 12 18 24
Constraint Dimension Constraint Dimension Constraint Dimension
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Constrained dynamics timings

We benchmark the constrained dynamics resolution against classical approaches:

1
min —[1§ = Gy, def
i 2 1 | where 'q?f = M(q)_l(f - C(q,q9) — G(CI))
d. = JC(Q’)Q Jc(qa q)q
Anymal B

Computation Time [in us]
Computation Time [in us]
Computation Time [in us]

= N w N Ul (o)}

Computation Time [in us]

3 6 9 0 3 6 9 6 12 6 12
Constraint Dimension Constraint Dimension Constraint Dimension Constraint Dimension

Ll | PSL*

7 Simulation #3: contact dynamics - from bilateral to unilateral contact modelling 27












