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Contact simulation in robotics

1. Models in robotics
2. Modeling the physics of contacts
3. Algorithmic variations
4. Experiments



Models in robotics



Model-based vs. model-free
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http://www.youtube.com/watch?v=TAUiaYAVkfI&t=11
http://www.youtube.com/watch?v=-e1_QhJ1EhQ&t=15


Models in the era of “model-free” RL
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1 training: 60 hours with 16384 environments

Approx. 100e9 calls to the simulator ~ 55 years 
of simulation

1000$, 55 kg CO2e ~ 300km by car

http://www.youtube.com/watch?v=TAUiaYAVkfI&t=36


What is a simulator ? 
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Main simulators in robotics

● Bullet (Google): computer graphics
● MuJoCo (Deepmind): invertible, RL 
● Drake (TRI): invertible, robotics manipulation
● RaiSim (ETHZ): quadrupedal locomotion 
● Isaac Gym (NVIDIA): GPU acceleration

These simulators have been designed for different purposes: they are not 
interchangeable in general !

Difference may come from both physical modeling and numerical implementations



Contact models in robotics: a comparative analysis



Modeling the physics of contacts



Free motion with generalized coordinates

Lagrangian equations of motion:
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Free motion with generalized coordinates

Lagrangian equations of motion:
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Discrete version (time-stepping methods):



Free motion with generalized coordinates

Lagrangian equations of motion:
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Discrete version (time-stepping methods):

terms are evaluated 
explicitly at



Contact modelling hypothesis

Contacts in modern simulators are modelled via 4 elementary principles:

● Rigid bodies
● Unilateral contacts 
● Coulombʼs law of friction
● Maximum Dissipation Principle
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Signorini condition



Modelling unilateral contacts

No interpenetration:
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Modelling unilateral contacts

No interpenetration:
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where:                                   and



Modelling unilateral contacts

Signorini condition:
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Modelling compliant unilateral contacts

Relaxed Signorini condition:
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Modelling compliant unilateral contacts
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Relaxed Signorini condition:



Maximum dissipation principle:

Modelling frictions

Coulombʼs law of friction:
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where:                                        ,                                                  and 

The frictional contact problem

Eventually, simulating contacts and frictions requires to solve:
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The frictional contact problem

Eventually, simulating contacts and frictions requires to solve:
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where:                                        ,                                                  and 

The frictional contact problem

Eventually, simulating contacts and frictions requires to solve:

Sticking

Breaking

Slipping



The frictional contact problem

Simulating contacts and frictions requires to solve:

where the de Saxcé correction is:



Algorithmic variations of the contact 
problem: the simulators



How simulators differ

Two main sources of difference:

● Physical assumptions: NCP can be relaxed to make it more tractable
● Choice of numerical algorithm: PGS, Newton etc.

How does it impact robotics simulation ? 



Developed by Erwin Coumans (previously Google, now NVIDIA) it was primarily 
designed for graphics (video games) but still popular in robotics

Motivations: Fast and open source physics engine

http://www.youtube.com/watch?v=p9k837ThXvk&t=405


The second order cone is approximated by its linearization:



The problem can be solved numerically by a Projected Gauss Seidel algorithm:



Pyramidal approximation leads to non-physical behaviour



heavy cube (1e3 kg)

light cube (1e-3 kg)



PGS is not robust to numerical ill-conditioning



(+) Advantages:

● For coarse simulation, PGS is fast

(-) Drawbacks:

● Linearization of the cone tends to bias forces towards the corners which induces 
violation of the  “original” MDP

● PGS is a first-order per-contact approach making it fail on ill-conditioned cases



(+) Advantages:

● For coarse simulation, PGS is fast

(-) Drawbacks:

● Linearization of the cone tends to bias forces towards the corners which induces 
violation of the  “original” MDP

● PGS is a first-order per-contact approach making it fail on ill-conditioned cases

This approach is used by many simulators:



Originally developed by Emo Todorov and now by Deepmind, general purpose physics 
simulator. It became a standard benchmark in RL community.

Motivations: strictly convex problem for stable numerics and invertible dynamics

http://www.youtube.com/watch?v=KHMwq9pv7mg&t=203


Reminder: Non-linear complementarity problem



Reminder: Non-linear complementarity problem



The complementarity is relaxed:

Conic complementarity writes:



The complementarity is relaxed and we get a Conic Complementarity Problem (CCP):

Conic complementarity writes:



The complementarity is relaxed and we get a Conic Complementarity Problem (CCP):

Conic complementarity writes: Signorini condition is violated for 
sliding contacts !



CCP is equivalent to a QCQP (it exactly corresponds to KKT optimality conditions):

Any optimization algorithm can be used !

In particular, Newton-like algorithms leads to improved convergence rates



MuJoCo additionally introduces an artificial compliance 





(+) Advantages:

● Solving a convex optimization problem makes it robust

(-) Drawbacks:

● Signorini condition is relaxed which leads to “magic” forces
● For numerical reasons, materials are made artificially compliant



Developed by Toyota Research Institute (TRI), it is a complete model-based toolbox for 
robots control (simulation + control)

Motivations: more realistic contacts for robotics

http://www.youtube.com/watch?v=5aVDWjWd0EU


(+) Advantages:

● Newton algorithm can deal with ill-conditioning
● Sparse algebra backend improves efficiency
● Compliance is set to get more realistic behaviours than MuJoCo

(-) Drawbacks:

● Strictly rigid contacts cannot be handled
● Signorini condition is relaxed which leads to “magic” forces for sliding contacts



Developed by Jemin Hwangbo (previously at ETHZ and now at KAIST)

Motivations: simulator dedicated to robotics and, in particular, to quadrupedal 
locomotion

http://www.youtube.com/watch?v=9j2a1oAHDL8&t=228


Reminder: CCP is equivalent to a QCQP:

Its solution violates the Signorini condition for sliding contacts:



where:

RaiSim is a Gauss-Seidel-like approach which aims at correcting drawbacks from the 
CCP of MuJoCo by enforcing the Signorini condition :

cN
(i)





(+) Advantages:

● efficient for low accuracy requirements

(-) Drawbacks:

● the per-contact approach induces issues for ill-conditioned problems
● the proposed correction retrieves the Signorini condition but loses the MDP 



How simulation impacts robotics 
applications



Impact on locomotion with MPC



Conclusion

● Simulating rigid bodies with 
contacts and frictions requires to 
solve a NCP

● The NCP is relaxed to make it 
easier to solve, thus inducing 
physical artifacts

● Numerical implementations may 
also induce additional artifacts

● These artifacts can affect 
downstream applications (e.g. 
reality gap issues)
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