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Models in robotics




Model-based vs. model-free

Sim Robot .



http://www.youtube.com/watch?v=TAUiaYAVkfI&t=11
http://www.youtube.com/watch?v=-e1_QhJ1EhQ&t=15

Models in the era of “model-free” RL

Parameter | Type | Distribution | Initial Range | ADR-Discovered Range
Hand

Mass Scaling uniform [0.4, 1.5] [0.4, 1.5]
Scale Scaling uniform [0.95, 1.05] [0.95, 1.05]
Friction Scaling uniform [0.8, 1.2] [0.54, 1.58]
Armature Scaling uniform [0.8, 1.02] [0.31, 1.24]
Effort Scaling uniform [0.9, 1.1] [0.9, 2.49]
Joint Stiffness Scaling loguniform [0.3, 3.0] 0.3, 3.52]
Joint Damping Scaling loguniform [0.75, 1.5] [0.43, 1.6]
Restitution Additive uniform [0.0, 0.4] [0.0, 0.4]
Object

Mass Scaling uniform [0.4, 1.6] [0.4, 1.6]
Friction Scaling uniform [0.3, 0.9] [0.01, 1.60]
Scale Scaling uniform [0.95, 1.05] [0.95, 1.05]
External Forces Additive | Referto [1] - -
Restitution Additive uniform [0.0, 0.4] [0.0, 0.4]
Observation

Obj. Pose Delay Prob. | Set Value uniform [0.0, 0.05] [0.0, 0.47]
Obj. Pose Freq. Set Value uniform [1.0, 1.0] [1.0, 6.0]
Obs Corr. Noise Additive gaussian [0.0, 0.04] [0.0, 0.12]
Obs Uncorr. Noise Additive gaussian [0.0, 0.04] [0.0, 0.14]
Random Pose Injection | Set Value uniform [0.3,0.3] [0.3,0.3]
Action

Action Delay Prob. Set Value uniform [0.0, 0.05] [0.0, 0.31]
Action Latency Set Value uniform [0.0, 0.0] [0.0, 1.5]
Action Corr. Noise Additive gaussian [0.0, 0.04] [0.0, 0.32]
Action Uncorr. Noise Additive gaussian [0.0, 0.04] [0.0, 0.48]
RNA o Set Value uniform [0.0, 0.0] [0.0, 0.16]
Environment

Gravity (each coord.) | Additive | normal | [0,0.5] | [0, 0.5]

Table 3: Domain randomisation parameter ranges for policy learning

2 NVIDIA

Sim Robot .

1 training: 60 hours with 16384 environments

Approx. 100€9 calls to the simulator ~ 55 years
of simulation

10008, 55 kg CO2e ~ 300km by car


http://www.youtube.com/watch?v=TAUiaYAVkfI&t=36

What is a simulator ?

qull_smn detec_tlon -«
Finding contact points

v

Collision resolution
Finding contact forces using
physic principles

\

Time integration —
Update quantities




Main simulators in robotics

Bullet (Google): computer graphics

MuJoCo (Deepmind): invertible, RL

Drake (TRI): invertible, robotics manipulation
RaiSim (ETHZ): quadrupedal locomotion
Isaac Gym (NVIDIA): GPU acceleration

These simulators have been designed for different purposes: they are not
interchangeable in general !

Difference may come from both physical modeling and numerical implementations
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Contact models in robotics: a comparative analysis

Contact Models in Robotics:
a Comparative Analysis

Quentin Le Lidec™!, Wilson Jallet'2, Louis Montaut'3, Tvan Laptev', Cordelia Schmid', and Justin Carpentier'

Abstract—Physics  simulation i ubiquitous in  robotics.
Whether in model-based approaches e, tr o
r model-free algorithms (e.g., reinforcement learning)
h\sm simulators are a central component of modern control
pipelines in robotics. Over the past decades, several robotie simu-
Iators have been developed, each with dedicated contact modeling
smeaptivns e Mot soksious: . g e, e soryes
the main contact models and the ed numerical methods
commonly used in robotics for qmulanna advanced robot motions
nvolving contact Interactons.In partcuia we recall th phy
lams underiving contacts and hietion i, Sighorin condition,
Coulomb’s law, and the maximum dissipation_principle), and
Bow they are transeribed i current imlators, hysics
engine, we expose thei inhereat physical with
cd

ot ed. B
on our study, we propose memumuv grounded quantitative
criteria_on which we build benchmarks assessing both the
physical and computatonal aspects ofsimulation. We support oue
work with an open-sour C#+ implementation of
the existing algorithmic \arhlmm Ou reslts demonsrate that
some approximations or algorithms commonly used in robotics
can severely widen the reality gap and impact target applications.
We hope this work will help motivate the development of new
contact models, contact solvers, and robo ulators in general,
at the root of recent progress in motion generation in robotics.

Index Terms—Physical simulation, Numerical optimi

L. INTRODUCTION

IMULATION is a fundamental ool in robotics. Control
algorithms, like trajectory optimization (TO) or model pre-
dictive control (MPC) algorithms, rely on physics simulators to
evaluate the dynamics of the controlled system. Reinforcement
Learning (RL) algorithms operate by trial and error and require
a simulator to avoid time-consuming and costly failures on real
hardware. Robot co-design aims at finding optimal hardware
design and morphology and thus extensively rely on simulation
1o prevent tedious physical validation. Tn practice, roboticists
also usually perform simulated safety checks before running a
new controller on their robots. These applications are evidence
for a wide range of research areas in robotics where simulation
is critical
To be effective and valuable in practice, robot simulators
must meet some fidelity or efficiency levels. depending on the
use case. For instance, trajectory optimization algorithms, e.g
HLQR(1] or DDP [2], [3]. use physics simulation to evaluate the

s - Dparement d formaiqe de et omle s
Research University. Emai name . Lastname@ins
SLAAS-CNRS. 7 d Colonl Roche, 31400 Toouse
te of Iformatics. Robotics and Cybernetics, Caech Techical
public

ure, PSL

o

“Corresponding author

1. Hlustration of the dynamies of frictional contacts between rigid
i hich re govencd by e Srgnorini condtn. he Comonb i oo
the miximam disipation prinile. The combision of s e pinipes
Teads 10 the Non-Jinear Complementarity Problem (14

system dynamics and leverage finite dm’uu\u\ or the recent
advent of differentiable simulators [4], (5], [6], 7], [8] to
‘compute derivatives. If the solution lac pm ion, the real and
planned trajectories may quickly diverge, impacting de facto
the capacity of such control solutions to be deployed on real
hardware. To absorb such errors, the Model Predictive Control
(MPC) [9], [10] control paradigm exploits state feedbac

by repeatedly running Optimal Control (OC) algorithms at
high-frequency rates (e.g., 1kHz) [11], [12]. The frequency
rate is one factor determining the robustness of this closed-
loop algorithm to modeling errors and perturbations:; thus.
the efficiency of the simulation becomes critical. Although
RL [13] is considered as a model-free approach, physical
models are stll at work to generate the samples that arc
indispensable for learning control policies. In fact, the vast
er of required samples is the main bottleneck during
training, as days or years of simulation, which corresponds to
billions of calls to a simulator, are necessary [14]1, [151, [16].
Therefore, the efficiency of the simulator directly determines

| Signorini
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Staggered projections [34]
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Modeling the physics of contacts




Free motion with generalized coordinates

Lagrangian equations of motion:

M(q)0 +bg,v) =7
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Free motion with generalized coordinates

Lagrangian equations of motion:

M(q)v+b(q,v) =T

!

Discrete version (time-stepping methods):

Mo = Mot + (1 — b) At
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Free motion with generalized coordinates

Lagrangian equations of motion:

M(q)v+b(q,v) =T

1 terms are evaluated
Discrete version (time-stepping methods): expl|C|tly at q ()

@t+1 @t t
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Contact modelling hypothesis

Contacts in modern simulators are modelled via 4 elementary principles:

Rigid bodies

Unilateral contacts

Coulomb’s law of friction
Maximum Dissipation Principle



Contact modelling hypothesis

Contacts in modern simulators are modelled via 4 elementary principles:

R|g.|d bodies Signorini condition
Unilateral contacts

Coulomb’s law of friction
Maximum Dissipation Principle



Modelling unilateral contacts
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Modelling unilateral contacts

S v

No interpenetration: (I)(q)N Z O |~ CN — C?V Z O

where: ¢ = Jouttland J = 8@/3(1
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Modelling unilateral contacts

Signorini condition: O S )\N J_ CNF — C*N Z O

Normal contact
force (N)

[ Signorini condition }

e
Distance (m)
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Modelling compliant unilateral contacts

Relaxed Signorini condition:

Og)\NJ_CN—C}kV—I—RN/\NZO

Signorini condition
relaxed Signorini
condition

Distance (m)

Normal contact
force (N)
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Modelling compliant unilateral contacts

Relaxed Signorini condition:

OS/\NJ—CN—C7V‘|‘RN)\NZO

Normal contact
force (N)

)‘N — —Rxfl (CN — C}k\[)

Signorini condition
== = relaxed Signorini
condition

Distance (m)

19



Modelling frictions

Ne
Coulomb’s law of friction: )\ € Ku — H Ku( )

=1

K,» = {MAy >

0, ||>\T||2 < pAn}

Maximum dissipation principle: V4, )\gf) = — )\5\7’,) : ,if ||c )H > 0
ler|”
Friction force (N) T
— o o Coulomb law
\ [— = relaxed Coulomb}
\ law
A | >
\ Tangent
\ velocity (m/s)

. T
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The frictional contact problem

Eventually, simulating contacts and frictions requires to solve:

A(i) = K,u(i) ; if C(i) =)
{ )\(i):()if cg\?>0
\ 2D c oK LG y, da > 0, )\( - —acgp) otherwise.

Where:C:G)\—I—g, G=JM1J" and g = Jut



The frictional contact problem

Eventually, simulating contacts and frictions requires to solve:

)\(Z) = K,u(i) : if C(Z) — () =mp Sticking
{ )\(i):()if cg\?>0
\ 2D c oK LG y, da > 0, )x( - —ac;) otherwise.

where:C:G)\—i—g, G=JM1J" and g = Jut



The frictional contact problem

Eventually, simulating contacts and frictions requires to solve:

)\(Z) = K,u(i) : if C(z) — () =mp Sticking
/\(Z) = 0, if CE\?}) >~ () mmp Breaking
2D c oK LG y, da > 0, )x( - —acgp) otherwise.

where:C:G)\—i—g, G=JM1J" and g = Jvf



The frictional contact problem

Eventually, simulating contacts and frictions requires to solve:

)\(z) = Klu(i) : if C(z) — () =mp Sticking
)\(Z) = 0, if CE\Z/) >~ () mmp Breaking
A e oK 5 5, 30 > 0 )\( - —acgp) otherwise. = Slipping

where:C:G)\—i—g, G=JM1J" and g = Jvf



The frictional contact problem
Simulating contacts and frictions requires to solve:
Vi, K@) D A# | @ 4T (c(i), ,u(i)) e K7,
c=GAN+g

where the de Saxcé correctionis: T": (¢, ) € R3 x R — 0,0, |ler||2]

o,
D 4+ (D, 1Ly




Algorithmic variations of the contact
problem: the simulators




How simulators differ

Two main sources of difference:

e Physical assumptions: NCP can be relaxed to make it more tractable
e Choice of numerical algorithm: PGS, Newton etc.

How does it impact robotics simulation ?
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BULLET

PHYSICS LIBRARY

Developed by Erwin Coumans (previously Google, now NVIDIA) it was primarily
designed for graphics (video games) but still popular in robotics

Motivations: Fast and open source physics engine



http://www.youtube.com/watch?v=p9k837ThXvk&t=405

.]_.__,
BULLET

PHYSICS LIBRARY

The second order cone is approximated by its linearization:

K,» = {AAn 20, |Arlloo < p@AN}
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BULLET

PHYSICS LIBRARY

The problem can be solved numerically by a Projected Gauss Seidel algorithm:

Algorithm 1: Pseudo-code of the projected Gauss-
Seidel (PGS) algorithm for solving LCPs.

Input: Delassus matrix: G, free velocity: g, friction
cones: K,
Output: Contact forces: A
1 for £k =1 to n;se,r do

2 for i =1 to n. do
3 )\5\1,) & )\Ef,) — G;l}i) (G +g)§$);
4 )\S\i,) + max(0, /\f});
(2) (@) | (1),
6 )\gf) — clamp(/\gf),,ui)w);
7 end




e H—
‘B BULLET

PHYSICS LIBRARY

0.14 LCP/PGS /,/
o1 NCP/PGS Vs
e - - - Analytical v
~0.10+ 4
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-1.0 -0.8 —=0.6 —0.4 —0.2 0.0 02 0.4 0.6
x coordinate (m)

Pyramidal approximation leads to non-physical behaviour



y -
|
| .]
|
t

Y BULLET

PHYSICS LIBRARY
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heavy cube (1e3 kg)

light cube (1e-3 kg)
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PHYSICS LIBRARY
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PGS is not robust to numerical ill-conditioning

Signorini complementarity
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BULLET

PHYSICS LIBRARY

(+) Advantages:
e For coarse simulation, PGS is fast
(-) Drawbacks:

e Linearization of the cone tends to bias forces towards the corners which induces
violation of the “original” MDP
e PGSis afirst-order per-contact approach making it fail on ill-conditioned cases
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BULLET

PHYSICS LIBRARY

(+) Advantages:
e For coarse simulation, PGS is fast
(-) Drawbacks:

e Linearization of the cone tends to bias forces towards the corners which induces

violation of the “original” MDP
e PGSis afirst-order per-contact approach making it fail on ill-conditioned cases

This approach is used by many simulators:

Phys ¢ DART

by NVI D IA Dynamic Animation and Robotics Toolkit OPEN DYNAMICS ENGINEm




Originally developed by Emo Todorov and now by Deepmind, general purpose physics
simulator. It became a standard benchmark in RL community.

Motivations: strictly convex problem for stable numerics and invertible dynamics



http://www.youtube.com/watch?v=KHMwq9pv7mg&t=203

Reminder: Non-linear complementarity problem

\MKMQEMQLJ”+F@WM@)EKQ>

c=GA+g



Reminder: Non-linear complementarity problem

Vi, K, o 2 A L+ FM) < K

c=GA+g



The complementarity is relaxed:

Ka3 A LcEK,
c=GA+g

Conic complementarity writes:

A

o
|
-



The complementarity is relaxed and we get a Conic Complementarity Problem (CCP):

Ka3 A LcEK,
c=GA+g

Conic complementarity writes:

)\]—\r[CN — —)\TCT 7§ 0



The complementarity is relaxed and we get a Conic Complementarity Problem (CCP):

Ka3 A LcEK,
c=GA+g

Conic complementarity writes: Signorini condition is violated for

sliding contacts !

)\]—\F[CN — —)\TCT 7§ 0




CCP is equivalent to a QCQP (it exactly corresponds to KKT optimality conditions):
o1
min —A'GA+g¢g' )
Ack;, 2
Any optimization algorithm can be used !

In particular, Newton-like algorithms leads to improved convergence rates



MuJoCo additionally introduces an artificial compliance

G By G=G+R

~N

Friction force (N) T Normal contact
_— e w— Coulomb law force (N)
== = relaxed Coulomb |\ Signorini condition
\ law
A | - \ == = relaxed Signorini
= \ condition
\ Tangent
\ velocity (m/s) \
\ — — — _— \
| # ————— L —

\ I Distance (m) /
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(+) Advantages:

e Solving a convex optimization problem makes it robust
(-) Drawbacks:

e Signorini condition is relaxed which leads to “magic” forces
e Fornumerical reasons, materials are made artificially compliant



%DR/\KC

Developed by Toyota Research Institute (TRI), it is a complete model-based toolbox for
robots control (simulation + control)

Motivations: more realistic contacts for robotics



http://www.youtube.com/watch?v=5aVDWjWd0EU

4DR/\K€

(+) Advantages:

e Newton algorithm can deal with ill-conditioning
e Sparse algebra backend improves efficiency
e Complianceis set to get more realistic behaviours than MuJoCo

(-) Drawbacks:

e Strictly rigid contacts cannot be handled
e Signorini condition is relaxed which leads to “magic” forces for sliding contacts
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RaiSim

Developed by Jemin Hwangbo (previously at ETHZ and now at KAIST)

Motivations: simulator dedicated to robotics and, in particular, to quadrupedal
locomotion

Learning
Quadrupedal. -
Locomohon '

over g

Q,hallengihg
Terrain .



http://www.youtube.com/watch?v=9j2a1oAHDL8&t=228

» '4
RaiSim
Reminder: CCP is equivalent to a QCQP:

1
min —A' GA+¢g '\
Aeisy 2

Its solution violates the Signorini condition for sliding contacts:

)\]—l\_[CN — —)\TCT 74 0
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RaiSim

RaiSim is a Gauss-Seidel-like approach which aims at correcting drawbacks from the
CCP of MuJoCo by enforcing the Signorini condition :

1 . :
min  —ATGWA4GHTA
AEKM(i) ﬂV]SL)

where: V{9 = {)\|G%))\—I—g](\? =0}

J

(i)
N




—— CCP/ADMM
— CCP/PGS
—— RaiSim

-

ext

|
—

Internal forces (N)
o

0.0 0.1 0.2 0.3 0.4 0.5
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RaiSim

(+) Advantages:

e efficient for low accuracy requirements
(-) Drawbacks:

e the per-contact approach induces issues for ill-conditioned problems
e the proposed correction retrieves the Signorini condition but loses the MDP



How simulation impacts robotics
applications




Impact on locomotion with MPC
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Simulating rigid bodies with
contacts and frictions requires to
solve a NCP

The NCP is relaxed to make it

ConClUSion easier to solve, thus inducing

physical artifacts

Numerical implementations may
also induce additional artifacts
These artifacts can affect
downstream applications (e.g.
reality gap issues)




