AGIMUS

INNOVATIVE ROBOTICS FOR AGILE PRODUCTION

Simulation #1

Rigid body dynamic models and algorithms

Justin Carpentier

Researcher, INRIA and ENS, Paris
Justin.carpentier@inria.fr

e [_letherlands o

\ ™~
® | : |
Brussels Cologne ,Gefmany <
® < \ : s
Belgium _Frankfurt Prague
| = ® . — -
Luxembourg 9 * :
| Czechia
dcole | / (= v J) vt
ormale ———— . . vaki
supérieure ‘ \ Vienna Slovakia
paris—saclay ~— ®
oo (Budapest
JAUStI'Ia“ @p
g&*"l”""f
L IR B __» Hungar
7 el - 1
“Slovenia «
; ®/Zagreb *
S Belc
y / beo

. (
' _Bosnia and '
$ I*!erzeQOV|na\ g

) , @ - },
| s Sarajevo ‘
e Tt : ' Montenegro
55 Podgonca

I'Iop,ropwu,a

10

London
®

ecole

normale
superieure

paris—-saclay

o

Ba rgo N3

O

Brussels

&
|

Cologne
O

Prague
O,
,-1-- ﬂonoo x: \
‘!J'lllll il I = UNIVE ITAT
"‘u\ulll'(,wu"“ .
”l i) / \lh' ”I
Milan
O
®@Rome

Vienna

Budapest
@

®/Zagreb

Belc
beo

©
Sarajevo

Podgonca
Hoﬂropmua‘

lirana®

10

London
®

ecole

"",—ﬂ———————-—-—-—.___--~Ji£f%r”(fLJ

normale

supérieure
paris—saclay

Brussels Cologne
5 o

n
7 [
g Pl SRS
g + A -
AN dr‘n"’ el AA
1)
o\ 1} Oh a AN
| o 'y | (L
AN

éﬁ ") [

i

Nt i S TITIT 2>

NZullgms 2~

=

LN | PRI =
k(NI =1

Pra

UNIVERSITAT
ERG
SEIT 1386

®Rome

gue

Vienna

Budapest
®

®/Zagreb

Belg
beo

@.
Sarajevo

Podgorica g
[loaropuua

lirana®

London

®
Prague
®
ecole -' e
A -
QSBZ’r?'eire . "i‘o';"",'::'\"" ””"’E%r"'“ Vienna
paris—saclay "':;"/l"w\lh,u Hlé; % ®
Budapest
®
®/Zagreb
Belg
beo
(
©
Sarajevo
Podgorica g
[loaropuua s
®Rome

lirana®

Robotics @ WILLOW

Perception, Learning, and Control

e R Ny

RSN LS

. » - - —y -3 ¥ = - » ——— ’ \ . - . AR>S P 2
——l . - — \.____\“4‘.“.::...; e . . B e | r ; - - ! J g z_
| &= — ——
4 T o e —
Db N, "., - —
e — T S T S nf
__ \“ - 3

M : . . - - - - -
\ Z L~ ‘__‘- - = Vv » . .] g
" Y R R - : . . ‘ « —

- L B
Eedibetbed I TF 22 5

8.5
|
\‘,r..«- -

-
1)

Team leader:

* Justin Carpentier (Inria, 100%)

Faculties:

* Jean Ponce (ENS, 50%)
* Cordelia Schmid (Inria, 50%)

* Stéphane Caron (Inria, 100%)

* Shizhe Chen (Inria, 100%)

External collaborators:
* Josef Sivic (CTU)

Post-docs:

* Etienne Moullier
* Ajay Sathya

* Ewen Dantec

* Etienne Ménager

Engineers:

* Etienne Arlaud (IR Inria)

* Pierre-Guillaume Raverdy (IR
Inria)

* Joris Vaillant

* Mégane Millan

* QOlivier Roussel (RAIMBOW-
DEFROST)

Visitors:

* Kateryna Zorina (CTU Prague)

* Bruce Wingo (Georgia Tech)

Assistant:
* @ Julien Guieu @/

PhD students:

* Antoine Bambade

* Yann De Mont Marin

* Qumayma Bounou

* Quentin Le Lidec

* Guillaume Le Moing

* Lucas Ventura (ENPC)

* Thomas Chabal

* Adrien Bardes (Meta)

* Wilson Jallet (LAAS-CNRS)
* Nicolas Chahine (DXO)

* Elliot Vincent (ENPC)

* Théo Bodrito

* Matthieu Futeral-Peter

* Zerui Chen

* Gabriel Fiastre

* Zeeshan Khan

* Francois Garderes (LV)

* Umit Bora Gokbakan (LAAS-

CNRS)
* Ludovic de Maestris (LAAS-

CNRS)
* Fabian Schramm (ISIR)
* Ricardo Garcia Pinel
* Louis Montaut (CTU)
* Roland Andrews
* Armand Jordana (NYU)

_

(e

~
Axe 1
Visual recognition
for images and videos
J
-~
Axe 4

\

Modeling, analysis and extraction
of 3D objects and scenes

~

J

~
Axe 2
Learning embedded
representations
J

\

Axe 3

Image restoration and

enhancement

ca—

|

Simulation #1: the basic principles behind modem robotics simulators

S | PSL*

a4 N
Axe 1 Axe2
Visual recognition Learning embedded
for images and videos representations
N /\ /\ Y
a N 4
Axe 4 Axe 3

(e

Axe5

Robotics as

a Data Science

\

Modeling, analysis and extraction

of 3D objects and scenes

enhancement

J N

Image restoration and

ca—

|

Simulation ;

1: the basic principles benind modem robotics simulators

NS | PSL*

4) 4)
Optimization Machine Learning
_ J _ J
4) 4)
Perception Control
\ J o J
| SOFTWARE
HARDWARE
[Electrical / \ [Mechanical
Engineering Engineering
2l — Simulation #1: the basic principles behind modem robotics simulators 6

(e

Robotics: a multidiscipinary perspective

(e

Robotics: a multidiscipinary perspective

Optimization

~

Perception

-

&

~

Machine Learning
J

Control

J

SOFTWARE

cla—

Simulation ;

-

1: the basic principles benind modem robotics simulators

Pushing the limits of AGILITY and DEXTERITY

PAL@
ROBOTICS

manipulation loco-manipulation locomotion

Simulation #1: the basic principles behind modern robotics simulators 7l pSL*

Open-source and efficient Robotics sotfware
The Swiss army knife for robotics

Open-source and generic-purposed robotics software

/JENTREDE EC’FTERCHE |
~— e PARISE- <

fcrocoddyl

' Contact Robot Optimal Control
by Differential Dynamic Library

ProxSuite

PROXIMAL ALGORITHMS FOR ROBOTICS AND BEYOND

Toulouse

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

3

o LN B .
Eedbena 2 % T =2 =
-
. 3
2 o

g -

Physical simulation in robotics
The whys and wherefores

(e

Robotics: the modern way of controlling a robot

Physical space

gravity / contact interactions

Perception Action
N\ 8] Sensorial space Motor space
O @ cameras / accelerometers / encoders motors / muscles
Decision

ca—

|

Simulation #1: the basic principles behind modem robotics simulators

Ll | PSL*

(e

Robotics: the modern way of controlling a robot

Physical space

gravity / contact interactions

Perception Action

CONTROL PoLicy

--

. N 8] Sensorial space Motor space :
: @ ©)\ cameras / accelerometers / encoders motors / muscles » :
: Decision '

--

cla—

|

Simulation #1: the basic principles behind modem robotics simulators

Robotics: the modern way of controlling a robot

Physical space

gravity / contact interactions

Perception Action

CONTROL PoLicy

E L> 8] Sensorial space Motor space |
. O © cameras / accelerometers / encoders motors / muscles :
E Decision :
. Sensorial space = 11(y,) Motor space
' cameras / accelerometers / encoders t t motors / muscles :
E Inputs Control policy Outputs :
: sensors data motor commands ,
lrezia— Simulation #1: the basic principles behind modem robotics simulators PSL

(e

Robotics: the modern way of controlling a robot

cla—

Simulation ;

-

1: the basic principles benind modem robotics simulators

Robotics: the modern way of controlling a robot

OPTIMAL CONTROL

T
min J L, (x(2), u()) dt
xOul))

X(1) = f(x(0), u(?))
x(0) = x,

optimal estimation optimal control

@ models @ models @
Inputs internal state Outputs

Sensors motor
data commands

lrezia— Simulation #1: the basic principles behind modem robotics simulators

Robotics: the modern way of controlling a robot

OPTIMAL CONTROL

T
min J L, (x(2), u(?)) dt
x()u()

0
X(t) = f(x(2), u(?))
x(0) = x
optimal estimation optimal control

@ models @ models @
Inputs internal state Outputs

Sensors motor
data commands

POLICY LEARNING

T
min E, [b, (x(2), 7,(x(1). £(0))) dt

0

0
X(t) = f(x(1), (5. C)
x(0) ~ &
- @ > @ _> E
Inputs Outputs ! y
Sensors motor
data commands @ eeeeeeeeeee @ = @

lrezia— Simulation #1: the basic principles behind modem robotics simulators

Robotics: the modern way of controlling a robot

OPTIMAL CONTROL

POLICY LEARNING

T T
min J L, (x(2), u(?)) dt min E, J L (x(2), 7, (x(1). £(1))) dt
X)) ’ |0
i(1) = fx(0), u(®)) 5(1) = £(0), 7,0 £)
x(0) = x, x(0) ~ &
optimal estimation optimal control
\

@ models @ models @ L, @
Inputs internal state Outputs Inputs

Sensors motor Sensors
data commands data

X e e
b e G

. N -
-«'ﬂ - S,
N - L -

Source: Callinon et al.

.@ﬁ

Outputs
motor
commands

|

(rezia— Simulation #1: the basic principles behind modem robotics simulators

S | PSL*

Robotics: the modern way of controlling a robot

OPTIMAL CONTROL POLICY LEARNING
T T]
min J L (x(t), u(t)) dt min E, J L (x(2), 7y (x(1). £(1))) dit
xOul) o ’ Jo i
x(1) = fi(x(2), u(r)) X(0) = f(x(0), 7,(x,. £))
x(0) = X x(0) ~ &,

optimal estimation optimal control

\

/n,OUtS /'nterna/ State OUtDUTS lnpUtS / OUtpu{-S : intégration &nérati :
Sensors motor Sensors motor L (@) e @) e @)
data commands data commands l mmmmmmmmmmm —

e G U
o 1 SN~~~
///,\\‘\\\
-/ /=
/

Source: Callinon et al.

|

&z’z/a/- Simulation #1: the basic principles behind modem robotics simulators 13

(e

optical flow surface normals

Physical simulation

Collision detection
Finding contact points

Collision resolution

Finding contact forces using
physic principles

Time integration
Update quantities

oject coordinates

cla—

|

Simulation ;

1: the basic principles benind modem robotics simulators

(e

optical flow surface normals

Physical simulation

Collision detection
Finding contact points

Collision resolution

Finding contact forces using
physic principles

Time integration
Update quantities

oject coordinates

cla—

|

Simulation ;

1: the basic principles benind modem robotics simulators

Collision detection

Collision detection

Finding contact points

Louis Montaut

FIind the closest points between the two collision geometries:

+A2

X9

IEEE TRANSACTIONS ON ROBOTICS, VOL. [?], NO. [?], MONTH 2023

GJK++: Leveraging Acceleration Methods for
Faster Collision Detection

Louis Montaut, Quentin Le Lidec, Vladimir Petrik, Josef Sivic and Justin Carpentier

Abstract—Collision detection is a fundamental computational
problem in various domains, such as robotics, computational
physics, and computer graphics. In general, collision detection
is tackled as a computational geometry problem, with the so-
called Gilbert, Johnson, and Keerthi (GJK) algorithm being the
most adopted solution nowadays. While introduced in 1988, GJK
remains the most effective solution to compute the distance or
the collision between two 3D convex geometries. Over the years,
it was shown to be efficient, scalable, and generic, operating on
a broad class of convex shapes, ranging from simple primitives
(sphere, ellipsoid, box, cone, capsule, etc.) to complex meshes
involving thousands of vertices. In this article, we introduce
several contributions to accelerate collision detection and distance
computation between convex geometries by leveraging the fact
that these two problems are fundamentally optimization prob-
lems. Notably, we establish that the GJK algorithm is a specific
sub-case of the well-established Frank-Wolfe (FW) algorithm in
convex optimization. By adapting recent works linking Polyak
and Nesterov accelerations to Frank-Wolfe methods, we also
propose two accelerated extensions of the classic GJK algorithm.
Through an extensive benchmark over millions of collision pairs
involving objects of daily life, we show that these two accelerated
GJK extensions significantly reduce the overall computational
burden of collision detection, leading to up to two times faster
computation timings. Finally, we hope this work will significantly
reduce the computational cost of modern robotic simulators,
allowing the speed-up of modern robotic applications that heavily
rely on simulation, such as reinforcement learning or trajectory
optimization.

Index Terms—Convex Optimization, Collision Detection, Com-
putational Geometry, Computer Graphics, Simulation, Trajec-
tory Optimization, Motion Planning

I. INTRODUCTION

HYSICS engines designed to simulate rigid bodies are an

essential tool used in a wide variety of applications, no-
tably in robotics, video games, and computer graphics [1]-[3].
Collision detection, a crucial feature of any physics engine or
robot motion planer [4]-[6], consists of finding which objects
are colliding or not, i.e. are sharing at least one common point
or if there exists a separating hyper-plane between both. As
simulation often needs to deal with multiple objects and run in
real-time (i.e., in video games) or at very high frequencies (i.e.,

Louis Montaut is with Inria, Département d’Informatique de 1'Ecole Nor-
male Supérieure, PSL Research University in Paris, France and also with the
Czech Institute of Informatics, Robotics and Cybernetics in Prague, Czech
Republic.

Vladimir Petrik and Josef Sivic are with the Czech Institute of Informatics,
Robotics and Cybernetics, Czech Technical University in Prague.

Quentin Le Lidec and Justin Carpentier are with Inria and Département
d’Informatique de 1’Ecole Normale Supérieure, PSL Research University in
Paris, France.

(b)

Fig. 1. Two distinct collision problems using shapes from the YCB dataset:
in (a) the shapes A1 and A3 are not in collision (dist(A1,.A2) > 0) whereas
in (b) the shapes are in collision (dist(.A1,.A2) = 0). In the left column, the
oriented bounding boxes (OBB) of the objects are represented in light colors.
In the right column, the light colors represent the convex hull of each object.
In both collision problems, (a) and (b), the broad phase finds a collision
between the object’s OBBs; the narrow phase must thus be called to confirm
or infirm the collision. The right column corresponds to the narrow phase
in which the GJK algorithm is called on the objects’ convex hulls. In this
paper, we propose the Polyak-accelerated GJK and Nesterov-accelerated GJK
algorithms in order to accelerate collision detection.

in robotics), collision detection must be carried out as fast as
possible. To reduce computational times, collision detection is
usually decomposed into two phases thoroughly covered in [7].
The first phase is the so-called broad phase which consists
in identifying which pair of simulated objects are potentially
colliding. The broad phase relies on the simulated objects’
bounding volumes, as shown in Fig. 1, allowing to quickly
assess if the objects are not in collision. The second phase is
the so-called narrow phase in which each pair identified in
the broad phase is tested to check whether a collision is truly
occurring. Collision detection during the narrow phase is the
focus of this paper.

Problem formulation. We consider two convex shapes .4;
and A in R™ (with n = 2 or 3 in common applications).
If the shapes are not convex, we use their respective convex
hulls or decompose them into a collection of convex sub-
shapes [8]. The separation distance between A; and As,
denoted by dist(A;, A2) € R;, can be formulated as a

0000-0000/00$00.00 © 2023 IEEE

el —

Simulation :

-

1: the basic principles benind modem robotics simulators

Quentin Le Lidec

Compute the resulting contact forces between geometries

Collision resolution

Collision resolution

Finding contact forces using
physic principles

Contact Models in Robotics:

Abstract—Physics simulation is ubiquitous in robotics. Whether
in model-based approaches (e.g., trajectory optimization), or
model-free algorithms (e.g., reinforcement learning), physics
simulators are a central component of modern control pipelines
in robotics. Over the past decades, several robotic simulators

| Signorini

Coulomb

MDP

have been developed, each with dedicated contact modeling
assumptions and algorithmic solutions. In this article, we survey
the main contact models and the associated numerical methods

No shift No internal forces Robust Convergence guarantees

LCP
PGS [30], [29], [60], [31]
Staggered projections [34]

v
v

commonly used in robotics for simulating advanced robot motions
involving contact interactions. In particular, we recall the physical
laws underlying contacts and friction (i.e., Signorini condition,
Coulomb’s law, and the maximum dissipation principle), and
how they are transcribed in current simulators. For each physics

/ engine, we expose their inherent physical relaxations along with

their limitations due to the numerical techniques employed. Based

/ / on our study, we propose theoretically grounded quantitative
criteria on which we build benchmarks assessing both the physical

and computational aspects of simulation. We support our work

NS

CCP
PGS [61]
MuJoCo [32]
ADMM (Alg. 3)

NSNS

with an open-source and efficient C++ implementation of the
existing algorithmic variations. Our results demonstrate that
some approximations or algorithms commonly used in robotics
can severely widen the reality gap and impact target applications.
We hope this work will help motivate the development of new
contact models, contact solvers, and robotic simulators in general,
at the root of recent progress in motion generation in robotics.

Index Terms—Physical simulation, Numerical optimization.

NSNS

I. INTRODUCTION

RaiSim [33]

S TSSNSS

/ IMULATION is a fundamental tool in robotics. Control
algorithms, like trajectory optimization (TO) or model pre-

NCP
PGS
Staggered projections [6]

SS
AN
AN

dictive control (MPC) algorithms, rely on physics simulators to
evaluate the dynamics of the controlled system. Reinforcement
Learning (RL) algorithms operate by trial and error and require

a simulator to avoid time-consuming and costly failures on real
/ hardware. Robot co-design aims at finding optimal hardware
design and morphology and thus extensively rely on simulation
to prevent tedious physical validation. In practice, roboticists
also usually perform simulated safety checks before running a

NS

LIBRAR

LET

= |

MuloCo

new controller on their robots. These applications are evidence
for a wide range of research areas in robotics where simulation
is critical.

To be effective and valuable in practice, robot simulators
must meet some fidelity or efficiency levels, depending on the
use case. For instance, trajectory optimization algorithms, e.g.
iLQR[1] or DDP [2], [3], use physics simulation to evaluate the

p >

!Inria - Département d’Informatique de 1’Ecole normale supérieure, PSL
Research University. Email: firstname.lastname@inria.fr

2LLAAS-CNRS, 7 av. du Colonel Roche, 31400 Toulouse

3Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical
University, Prague, Czech Republic

fCorresponding author

4:>R/\|<<:

RaiSim

a Comparative Analysis

Quentin Le Lidec!", Wilson Jallet"?, Louis Montaut!-*, Ivan Laptev!, Cordelia Schmid', and Justin Carpentier'

-

; \

d

(1)
e 4 (D, 40y

Fig. 1. Illustration of the dynamics of frictional contacts between rigid
bodies which are governed by the Signorini condition, the Coulomb’s law, and
the maximum dissipation principle. The combination of these three principles
leads to the Non-linear Complementarity Problem (14).

system dynamics and leverage finite differences or the recent
advent of differentiable simulators [4], [5], [6], [7], [8] to
compute derivatives. If the solution lacks precision, the real and
planned trajectories may quickly diverge, impacting de facto
the capacity of such control solutions to be deployed on real
hardware. To absorb such errors, the Model Predictive Control
(MPC) [9], [10] control paradigm exploits state feedback
by repeatedly running Optimal Control (OC) algorithms at
high-frequency rates (e.g., 1kHz) [11], [12]. The frequency
rate is one factor determining the robustness of this closed-
loop algorithm to modeling errors and perturbations; thus,
the efficiency of the simulation becomes critical. Although
RL [13] is considered as a model-free approach, physical
models are still at work to generate the samples that are
indispensable for learning control policies. In fact, the vast
number of required samples is the main bottleneck during
training, as days or years of simulation, which corresponds to
billions of calls to a simulator, are necessary [14], [15], [16].
Therefore, the efficiency of the simulator directly determines

Simulation :

-

1: the basic principles benind modem robotics simulators

16 4k | PSLk

Rigid body dynamics

The basic principles

(e

What is Pinocchio?

Plnocchlo

4 Efficient and versatile rigid body dynamics algorithms

Pinocchio is an open-source and efficient framework
implementing most common rigid body dynamics algorithms
written in C++ and coming with Python bindings

(’ ithub.com/stack-of-tasks/pinocchio

2L — Simulation #1: the basic principles behind modern robotics simulators 18 S

PSL*

LN r—. Vet ! 2
ometric and Numerical

ndations of Movement

< .f e

h Al
.:1

: &

| '
-
. -

\

SPlnocchio pinSethio

B Efficient and versatile rigid body dynamics algorithms

In brief:
Pinocchio is an open-source and highly efficient framework for simulation, > Gt / Pythor
-2 lIcense
planning and control used in robotics, biomechanics, civil engineering, etc. » Skt commits

» 100k+ lines of code
» 4k downloads per day

» online documentation

Resulting from a joint and fruitful collaboration between Willow and Gepetto » code generation CPU/GPU
. . t tic diff tiati
(LAAS-CNRS), with an active roadmap: . Geployed on major OS.

» examples + tutorials
Worldwide community:

» 100+ academic labs

» 20+ universities for
teaching robotics

» many robotic companies,
among them:

AIRBUS a @ WANDERCRAFT

ROBOTICS

4

BOSCH lovecs

Invented for life W

. ' Massachusetts SOftBank
Institute of Robotics
Technology

s 2o —r))
| _ _ _ | efficient analytical derivatives differentiable simulator AFFIVAL
classic dynamics algorithms T +
contact dynamics real to simulation learning

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

(e

A true influencer

el —

Simulation :

-

1: the basic principles benind modem robotics simulators

(e

The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree

The Articulated Body Algorithm

j = ForwardDynamics (g, ¢,7, /)

Simulation
Control

7 = InverseDynamics (g, ¢. 4, /)

The Recursive Newton-Euler Algorithm

Mg + Clq.q) + Glg) = v + J (@),

Mass Coriolis Motor External

Gravity

Matrix centrifugal torque forces

f. S

w L] T S)
Rigid Body 7 '~
v '/’ .

o N
S NS v

Dynamics
Algorithms

Roy Featherstone

el —

Simulation #1: the basic principles behind modem robotics simulators

The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree

f. i

w [] B 4)
Rigid Body 7 '~
."v ./’ -

o N

S NS v

Dynamics

The Articulated Body Algorithm Algorithms

j = ForwardDynamics (g, ¢,7, /)

SI Mmu |at | on Roy Featherstone
Control

7 = InverseDynamics (g, ¢. 4, /)

The Recursive Newton-Euler Algorithm /
j .. . B T
— M(q)g + C(q,.9) + G(q@) = v + J. (91
| Mass Coriolis Gravit Motor External
"""""" Matrix centrifugal vity torque forces

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

(e

The main features of Pinocchio

el —

Simulation #1: the basic principles behind modem robotics simulators

(e

The main features of Pinocchio

? supports a large number of joints (revolute, prismatic, free-flyer, etc.) [flexible]

el —

Simulation :

-

1: the basic principles benind modem robotics simulators

(e

The main features of Pinocchio

? supports a large number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
? handles the complete sparsity via the Featherstone algorithms [fast]

el —

Simulation #1: the basic principles behind modem robotics simulators

23

(e

The main features of Pinocchio

> supports a large number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
» handles the complete sparsity via the Featherstone algorithms [fast]
> Implements classic + advanced rigid body dynamics algorithms [versatile]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

(e

The main features of Pinocchio

? supports a Iarge number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
» handles the complete sparsity via the Featherstone algorithms [fast]

7 Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

(e

The main features of Pinocchio

> supports a large number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
» handles the complete sparsity via the Featherstone algorithms [fast]

> Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

> analytical derivatives [online predictive control, reinforcement learning]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

(e

The main features of Pinocchio

Supports a Iarge number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
? handles the complete sparsity via the Featherstone algorithms [fast]

z Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

> analytical derivatives [online predictive control, reinforcement learning]

>z automatic differentiation [flexible]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

(e

The main features of Pinocchio

2 supports a large number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
» handles the complete sparsity via the Featherstone algorithms [fast]

z Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

> analytical derivatives [online predictive control, reinforcement learning]

>z automatic differentiation [flexible}

» source code generation [dedicated to each architecture]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

The main features of Pinocchio

Supports a Iarge number of joints (revolute, prismatic, free-flyer, etc.) [flexible]

? handles the complete sparsity via the Featherstone algorithms [fast]

z Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

> analytical derivatives [online predictive control, reinforcement learning]

> automatic differentiation [flexible]

> source code generation [dedicated to each architecture]

? Python bindings [fast prototyping]

(e

el —

Simulation #1: the basic principles behind modem robotics simulators 23

(e

The main features of Pinocchio

2 supports a large number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
» handles the complete sparsity via the Featherstone algorithms [fast]

z Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

> analytical derivatives [online predictive control, reinforcement learning]

>z automatic differentiation [flexible]

» source code generation [dedicated to each architecture]

7z Python bindings [fast prototyping]
z multi-thread friendly [fast]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

(e

The main features of Pinocchio

Supports a Iarge number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
? handles the complete sparsity via the Featherstone algorithms [fast]

z Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

> analytical derivatives [online predictive control, reinforcement learning]

>z automatic differentiation [flexible]

» source code generation [dedicated to each architecture]

7z Python bindings [fast prototyping]
z multi-thread friendly [fast]
2 collision detection with HPP-FCL [simulation]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

(e

The main features of Pinocchio

? supports a Iarge number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
» handles the complete sparsity via the Featherstone algorithms [fast]

7 Implements classic + advanced rigid body dynamics algorithms [versatile]
> deals with Lie group geometry [accurate]

7 analytical derivatives [online predictive control, reinforcement learning]

> automatic differentiation [flexible]

> source code generation [dedicated to each architecture]

7 Python bindings [fast prototyping]

» multi-thread friendly [fast]

2 collision detection with HPP-FCL [simulation]

? reads robot model from URDF, SDF, etc. [compatibility]

el —

Simulation #1: the basic principles behind modem robotics simulators 23

el —

Closed-loop kinematics and bilateral

Proximal and Sparse Resolution
of Constrained Dynamic Equations

Justin Carpentier Rohan Budhiraja Nicolas Mansard
Inria, Ecole normale supérieure Inria Paris LAAS-CNRS, ANITI
CNRS, PSL Research University 75012 Paris, France University of Toulouse

75005 Paris, France Email: rohan.budhiraja@inria.fr 31400 Toulouse, France

Email: justin.carpentier @inria.fr

Abstract—Control of robots with kinematic constraints like
loop-closure constraints or interactions with the environment
requires solving the underlying constrained dynamics equations
of motion. Several approaches have been proposed so far in the
literature to solve these constrained optimization problems, for
instance by either taking advantage in part of the sparsity of the
kinematic tree or by considering an explicit formulation of the
constraints in the problem resolution. Yet, not all the constraints
allow an explicit formulation and in general, approaches of the
state of the art suffer from singularity issues, especially in the
context of redundant or singular constraints. In this paper, we
propose a unified approach to solve forward dynamics equations
involving constraints in an efficient, generic and robust manner.
To this aim, we first (i) propose a proximal formulation of the
constrained dynamics which converges to an optimal solution
in the least-square sense even in the presence of singularities.
Based on this proximal formulation, we introduce (ii) a sparse
Cholesky factorization of the underlying Karush—-Kuhn-Tucker
matrix related to the constrained dynamics, which exploits at
best the sparsity of the kinematic structure of the robot. We also
show (iii) that it is possible to extract from this factorization the
Cholesky decomposition associated to the so-called Operational
Space Inertia Matrix, inherent to task-based control frameworks
or physic simulations. These new formulation and factorization,
implemented within the Pinocchio library, are benchmark on
various robotic platforms, ranging from classic robotic arms or
quadrupeds to humanoid robots with closed kinematic chains,
and show how they significantly outperform alternative solutions
of the state of the art by a factor 2 or more.

I. INTRODUCTION

As soon as a robot makes contacts with the world or is
endowed with loop closures in its design, its dynamics is
governed by the constrained equations of motion. From a
phenomenological point of view, these equations of motion
follow the so-called least-action principle, also known under
the name of the Maupertuis principle which dates back to
the 17t" century. This principle states that the motion of
the system follows the closest possible acceleration to the
free-falling acceleration (in the sense of the kinetic metric)
which fulfils the constraints. In other words, solving the
constrained equations of motion boils down to solving a
constrained optimization problem where forces acts as the
Lagrange multipliers of the motion constraints.

This principle has been exploited by our community since
the seminal work of Barraf [1], which is here our main
source of inspiration. He initially proposed to formulate the

Email: nicolas.mansard @laas.fr

Fig. 1. Robotic systems may be subject to different types of constraints: point
contact constraints (quadrupeds), flat foot constraints (humanoids), closed
kinematic chains (parallel robots, here the 4-bar linkages of Cassie) or even
contact with the end effectors (any robot). Each colored “anchor” here shows
a possible kinematic constraint applied on the dynamics of the robot. In this
paper, we introduce a generic approach to handle all these types of constraints,
contacts and kinematic closures, in a unified and efficient manner, even in the
context of ill-posed or singular cases.

dynamics with maximal coordinates (i.e. each rigid body
is represented by its 6 coordinates of motion) as a sparse
constrained optimization problem, and proposed an algorithm
to solve it in linear time. While maximal coordinates are inter-
esting for their versatility and largely used in simulation [2],
working directly in the configuration space with generalized
coordinates presents several advantages [16] that we propose
to exploit in this paper.

Some constraints can be put under an explicit form, i.e.
there exists a reduced parametrization of the configuration
that is free of constraints. This is often the case for classical
kinematic closures [37, 16]. Yet explicit formulation is not
always possible, and in particular is not possible for the
common case of contact constraints [42]. We address here
the more generic case where the constraints are written under
an implicit form i.e. the configuration should nullify a set
of equations, which makes it possible to handle any kind of

onstraints

Simulation #1: the basic principles behind modem robotics simulators

el —

Closed-loop kinematics and bilateral

Proximal and Sparse Resolution
of Constrained Dynamic Equations

Justin Carpentier Rohan Budhiraja Nicolas Mansard
Inria, Ecole normale supérieure Inria Paris LAAS-CNRS, ANITI
CNRS, PSL Research University 75012 Paris, France University of Toulouse

75005 Paris, France Email: rohan.budhiraja@inria.fr 31400 Toulouse, France

Email: justin.carpentier @inria.fr

Abstract—Control of robots with kinematic constraints like
loop-closure constraints or interactions with the environment
requires solving the underlying constrained dynamics equations
of motion. Several approaches have been proposed so far in the
literature to solve these constrained optimization problems, for
instance by either taking advantage in part of the sparsity of the
kinematic tree or by considering an explicit formulation of the
constraints in the problem resolution. Yet, not all the constraints
allow an explicit formulation and in general, approaches of the
state of the art suffer from singularity issues, especially in the
context of redundant or singular constraints. In this paper, we
propose a unified approach to solve forward dynamics equations
involving constraints in an efficient, generic and robust manner.
To this aim, we first (i) propose a proximal formulation of the
constrained dynamics which converges to an optimal solution
in the least-square sense even in the presence of singularities.
Based on this proximal formulation, we introduce (ii) a sparse
Cholesky factorization of the underlying Karush—-Kuhn-Tucker
matrix related to the constrained dynamics, which exploits at
best the sparsity of the kinematic structure of the robot. We also
show (iii) that it is possible to extract from this factorization the
Cholesky decomposition associated to the so-called Operational
Space Inertia Matrix, inherent to task-based control frameworks
or physic simulations. These new formulation and factorization,
implemented within the Pinocchio library, are benchmark on
various robotic platforms, ranging from classic robotic arms or
quadrupeds to humanoid robots with closed kinematic chains,
and show how they significantly outperform alternative solutions
of the state of the art by a factor 2 or more.

I. INTRODUCTION

As soon as a robot makes contacts with the world or is
endowed with loop closures in its design, its dynamics is
governed by the constrained equations of motion. From a
phenomenological point of view, these equations of motion
follow the so-called least-action principle, also known under
the name of the Maupertuis principle which dates back to
the 17t" century. This principle states that the motion of
the system follows the closest possible acceleration to the
free-falling acceleration (in the sense of the kinetic metric)
which fulfils the constraints. In other words, solving the
constrained equations of motion boils down to solving a
constrained optimization problem where forces acts as the
Lagrange multipliers of the motion constraints.

This principle has been exploited by our community since
the seminal work of Barraf [1], which is here our main
source of inspiration. He initially proposed to formulate the

Email: nicolas.mansard @laas.fr

Fig. 1. Robotic systems may be subject to different types of constraints: point
contact constraints (quadrupeds), flat foot constraints (humanoids), closed
kinematic chains (parallel robots, here the 4-bar linkages of Cassie) or even
contact with the end effectors (any robot). Each colored “anchor” here shows
a possible kinematic constraint applied on the dynamics of the robot. In this
paper, we introduce a generic approach to handle all these types of constraints,
contacts and kinematic closures, in a unified and efficient manner, even in the
context of ill-posed or singular cases.

dynamics with maximal coordinates (i.e. each rigid body
is represented by its 6 coordinates of motion) as a sparse
constrained optimization problem, and proposed an algorithm
to solve it in linear time. While maximal coordinates are inter-
esting for their versatility and largely used in simulation [2],
working directly in the configuration space with generalized
coordinates presents several advantages [16] that we propose
to exploit in this paper.

Some constraints can be put under an explicit form, i.e.
there exists a reduced parametrization of the configuration
that is free of constraints. This is often the case for classical
kinematic closures [37, 16]. Yet explicit formulation is not
always possible, and in particular is not possible for the
common case of contact constraints [42]. We address here
the more generic case where the constraints are written under
an implicit form i.e. the configuration should nullify a set
of equations, which makes it possible to handle any kind of

onstraints

Simulation #1: the basic principles behind modem robotics simulators

(e

The central paradigm

The key aspect is the explicit splitting between model and data:

algorithm<Scalar> (model, data, argl, arg2, ..)
full constant cached
templatization quantity variables
zlaa— Simulation #1: the basic principles behind modern robotics simulators 25 ES PSL*

(e

The key a

The central paradigm

spect is the explicit splitting between model and data:

algori-

chm<Scalar> (model, data, argl, arg2, ..)

full constant cached
templatization quantity variables

Main advantages

> the compiler guesses what is constant, what varies
Zz no online memory allocation

» good prediction/anticipation of the CPU

> algorithms are easier to write

» and much more ...

el —

Simulation #1: the basic principles behind modern robotics simulators 25 S | PSL%

(e

README.md

Pinocchio

Efficient and versatile rigid body dynamics algorithms

Pinocchio instantiates the state-of-the-art Rigid Body Algorithms for poly-articulated systems based on revisited
Roy Featherstone's algorithms. Besides, Pinocchio provides the analytical derivatives of the main Rigid-Body

Algorithms like the Recursive Newton-Euler Algorithm or the Articulated-Body Algorithm. '
Pinocchio is first tailored for robotics applications, but it can be used in extra contexts biomecls N\ PO uler
graphics, vision, etc.). It is built upon Eigen for linear algebra and FCL for collision dete ioaa 10 comes
with a Python interface for fast code prototyping, directly accessible throuach P

Pinocchio is now at the heart of various robotics software as Croce a WO ~Ce and efficient Differential
Dynamic Programming solver for robotics, the Stack-of-Tasks, an opga M d versatile hierarchical

controller framework or the Humanoid Path Planner, an openw P e tor Motion and Manipulation

Planning. 6

If you want to learn more on Pinocchio internal b ' #7'dl main features, we invite you to read the related
paper and the online documentation.

If you want to directly dive into@io #7y one single line is sufficient (assuming you have Conda):

. &“ conda install pinocchio -c conda-forge

or via pip (cu\e t ’- 7 vallable on Linux):
‘ o

Q>
“ ¥=0.e of contents

Pinocchio main features

pip install pin

Documentation

Examples

Tutorials

) HEOIP
0-9@

+ 39 contributors

Environments

44 github—p‘age ive)

\
S

>

T\
\0 @® C++ 92.2% ® Python 6.4%

® CMake 1.4%

cla—

e Performances

Simulation #1: the basic principles behind modermn robotics simulators

ENS

| |

https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/
https://github.com/stack-of-tasks/pinocchio/

(e

Installing Pinocchio

O github.com/stack-of-tasks/pinocchio

el —

Simulation #1: the basic principles behind modem robotics simulators

27

Y
S PSL%

(e

Installing Pinocchio

O github.com/stack-of-tasks/pinocchio

conda install pinocchio -c conda-forge

el —

Simulation #1: the basic principles behind modem robotics simulators

27

(e

Installing Pinocchio

O github.com/stack-of-tasks/pinocchio

conda install pinocchio -c agm-ws-2023

el —

Simulation #1: the basic principles behind modem robotics simulators

27

Get started

easy install conda install -c conda-forge pinocchio
import import pinocchio as pin

from pinocchio.utils import *
documentation pin.Model?

Spatial quantities

SE3

Transforms
aMb = pin.SE3(aRb,apb)

unit transformation
random transformation
rotation matrix
translation vector

M = pin.SE3(1) or pin.SE3.Identity()
pin.SE3.Random()

M.rotation

M.translation

SE3 inverse

SE3 action

action matrix
homegeneous matrix

log operation SE3 — 6D
exp operation

Motion

bMa = aMb.inverse()
aMc aMb * bMc

aXb aMb.action

aHb = aMb.homogeneous
pin.log(M)

pin.exp(M)

Spatial Velocity

m = pin.Motion(v,w)

linear acceleration
angular acceleration

m.linear
m.angular

SE3 action

used in algorithms
get classical acceleration

v_,a = aMb * v_b
Spatial Acceleration

a = (d),f]o)

a’ = a+ (0,wxvo)
pin.classicAcceleration(v,a, [aMb])

Spatial Force

Force f = pin.Force(1l,n)
linear force f.linear
torque f.angular
SE3 action fa =aMb x fb
Spatial Inertia
Inertia Y = pin.Inertia(mass,com,I)
mass Y.mass

center of mass pos.
rotational inertia

Quaternion
Angle Axis

SE3 — (x,y,2,quat)
(x,y,z,quat) — SE3

Y.lever
Y.inertia

Geometry
quat = pin.Quaternion(R)
aa = pin.AngleAxis(angle,axis)
Useful converters
pin.se3ToXYZQUAT (M)

pin.XYZQUATToSE3(vec)

Data related to the model

data = pin.Data(model)
data = model.createDatal()

joint data

joint /[frame| placements
joint velocities

joint accelerations

joint forces

mass matrix

non linear effects
centroidal momentum
centroidal matrix
centroidal inertia

data.joints
data.oMi /[data.oMf]
data.v

data.a

data.f

data.M

data.nle

data.hg

data.Ag

data.Ig

Pinocchio Cheat Sheet
, ~

Model of the kinematic tree | model = pin.Model()
model name model .name
joint names model .names
joint models model. joints
joint placements model.placements
link inertias model.inertias
frames model . frames
position variables model.nq
velocity variables model.nv
Methods use ? to get doc and input arguments
add joint model .addJoint
append body model . appendBodyToJoint
add frame model .addFrame
append child into par- | model.appendModel
ent model
build reduced body model .buildReducedModel

p Parsers N\

load an URDF file | pin.buildModelFromUrdf (filename, [root_joint])
load a SDF file pin.buildModelFromSdf (filename, [root_joint],
root_link name,parent_guidance)

, Reference Frames \

WORLD

Coordinate system (CS)

WORLD world CS
LOCAL local CS of the joint
- LOCAL_WORLD_ALIGNED| local CS aligned with
F WORLD axis
e Frames N\

placement of all opera- | pin.updateFramePlacements(model, data)
tional frames
current frame placements | data.oMf

wrt origin

frame veloctiy pin.getFrameVelocity(model, data,
frame_id, ref_frame)

frame acceleration pin.getFrameAcceleration(model, data,
frame_id, ref_frame)

frame acceleration pin.getFrameClassicalAcceleration(
model, data, frame_id, ref_frame)

frames placement pin.framesForwardKinematics(model, data,
q)

frame jacobian pin.computeFrameJacobian(model, data, q,

frame_id, ref_frame)
frame jacobian time varia- | pin.frameJacobianTimeVariation(model,

tion data, q, v, frame id, ref frame)
partial derivatives of the | pin.getFrameVelocityDerivatives (model,
spatial velocity data, frame_id, ref_frame)

partial derivatives of the | pin.getFrameVelocityDerivatives (model,
spatial velocity data, joint_id, placement ref frame)
partial derivatives of the | pin.getFrameVelocityDerivatives(model,
spatial acceleration data, frame_id, ref_frame)

partial derivatives of the | pin.getFrameAccelerationDerivatives
spatial acceleration (model, data, joint_id, placement

ref_frame)

random configuration

neutral configuration

Configuration

pin.randomConfiguration(model,
[lower_bound, upper_bound])
pin.neutral (model)

normalized configuration | pin.normalize(model, q)

difference configurations pin.difference(model, ql, q2)
distance configurations pin.distance(model, ql1, q2)
squared distance configu- | pin.squareDistance(model, ql, gq2)

rations

interpolate configuration pin.interpolate(model, ql, g2, alpha)
integrate configuration pin.integrate(model, q, V)

partial derivatives of
ference

dif- | pin.dDifference(model, q1, g2,
[arg_pos])

partial derivatives of inte- | pin.dIntegrate(model, q, v, [arg_pos])

gration

placement collision
obj

collisions detection
for all pairs
collisions detection
for a pair

distance from colli-
sion

distance from colli-
sion each pair
geometry volume
radius

pin.updateGeometryPlacements(model, data,
geometry model, geometry data, [ql)
pin.computeCollisions(model, data,
geometry model, geometry_data, q)
pin.computeCollisions(geometry model,
geometry_data, pair_index)
pin.computeDistance (geometry model,
geometry_data, [pair_index])
pin.computeDistances([model, datal,
geometry model, geometry data, [q])
pin.computeBodyRadius(model, geometry model,
geometry_data

BroadPhase

+ forward kin-
metatics to update
geometry place-
ments

pin.computeCollisions(broadphase manager,
callback)
pin.computeCollisions(broadphase manager,
stop_at_first_collision)
pin.computeCollisions(model, data,

broadphase_manager, q, stop-at_first_collision)

Center of Mass

total mass of model
mass of each subtree
center of mass (COM)

Jacobian COM

pin.computeTotalMass(model, [data])
pin.computeSubtreeMasses(model, data)
pin.center0fMass(model, data, q, [v,
al , [compute_subtree_com])
pin.jacobianCenterOfMass(model, data,
[q] , [compute_subtree_com])

FK and kinetic En-
ergy

FK and potential
Energy

FK and mechanical
Energy

pin.computeKineticEnergy(model, data, [q, v])

pin.computePotentialEnergy(model, data, [q,
v])

pin.computeMechanicalEnergy(model, data, [q,

v])

el —

Simulation #1: the basic principles behind modem robotics simulators

28

forward kinematics
(FK)

Kinematics

pin.forwardKinematics(model, data, q, [v,[al])

FK derivatives

ov Ov

WORLD
5 5]

Jdv 9da Jda

LOCAL
LRt

pin.computeForwardKinematicsDerivatives(
model, data, q, v, a)

pin.getJointVelocityDerivatives(model, data,
joint_id,pin.ReferenceFrame.WORLD)

pin.getJointAccelerationDerivatives (model,
data, joint_id,pin.ReferenceFrame.LOCAL)

static regressor
body regressor
body attached to
joint regressor
body attached to
frame regressor
joint torque regres-
sor

Regressor \

pin.computeStaticRegressor(model, data, q)
pin.bodyRegressor(velocity, acceleration)
pin. jointBodyRegressor(model, data, joint_id)

pin.frameBodyRegressor (model, data, frame_id)

pin.computeJointTorqueRegressor(model, data,
q, v, a)

full model Jacobian
— data.J
joint Jacobian

Jacobian

pin.computeJointJacobians (model, data, [q])

pin.getJointJacobian(model, data, joint_id,
ref frame)

full model dJ/dt

joint dJ/dt

pin.computeJointJacobiansTimeVariation(model,
data, q, v)
pin.getJointJacobianTimeVariation(model, data,
joint_id, ref _frame)

kinematic Jacobian
of constraint model
kinematic Jacobian
of set of constraint
models

Contact Jacobian \

pin.getConstraintJacobian(model, data,
contact_model, contact_data)
pin.getConstraintJacobian(model, data,
contact_models, contact_datas)

Articulated-Body
Algorithm ¢

Joint Space Inertia
Matrix Inv

Forward Dynamics

pin.aba(model, data, q, v, tau, [f_ext])

pin.computeMinverse(model, data, [ql)

Composite Rigid-
Body Algorithm

pin.crba(model, data, q)

constrained dy-
namics with con-
tacts

impact dynamics
with contacts

inverse of the con-
straint matrix

Contact Dynamics \

pin.forwardDynamics(model, data, [q, v,]
tau, constraint_jacobian, constraint._drift,
damping)

pin.impulseDynamics(model, data,

[q,] v_before, constraint_jacobian,
restitution_coefficient, damping)
pin.computeKKTContactDynamicMatrixInverse(
model, data, q, constraint_jac, damping)

Constraint Dynamics \

Recursive Newton-
Euler Algorithm
generalized gravity

Inverse Dynamics

pin.rnea(model, data, q, v, a, [f_ext])

pin.computeGeneralizedGravity(model, data, q)

dtau_dq, dtau_dv,
dtau_da

pin.computeRNEADerivatives(model, data, q, v,
a, [f_ext])

allocate memory

forward dynam-
ics with contact
constraints

pin.initConstraintDynamics(model, data,
contact_models)
pin.constraintDynamics(model, data, q,
v, tau, contact_models, contact_datas,
[prox_settings])

Centroidal

Centroidal momen-
tum

pin.computeCentroidalMomentum(model, data, [q,

v])

derivatives of the
forward dynamics

pin.computeConstraintDynamicsDerivatives(
model, data, contact_models, contact_datas,

Centroidal momen-
tum + time deriva-
tives

pin.computeCentroidalMomentumTimeVariation(
model, data, [q, v, al)

doc)

all terms (Check‘

pin.computeAllTerms (model, data, q, V)

with kinematic | prox_settings)
constraints

Impulse Dynamics \
impulse dynam- | pin.impulseDynamics(model, data, q, v,
ics with contact | contact_models, contact_datas, r_coeff, mu)
constraints
impulse dynamics | pin.computeImpulseDynamicsDerivatives(model,
derivatives data, contact_models, contact_datas, r_coeff,

prox_settings)

~

kinematic regressor

kinematic regressor

Kinematic Regressor

pin.computeJointKinematicRegressor(model,
data, joint_id, ref frame, [placement])
pin.computeFrameKinematicRegressor(model,
data, frame_id, ref_frame)

Cholesky decompo-
sition of the joint
space inertia ma-
trix

xof Mx =y
inverse of the joint
space inertia ma-
trix

pin.cholesky.decompose(model, data)

pin.cholesky.solve(model, data, v)
pin.cholesky.computeMinv(model, data)

create viewer
load model

Get started
mv = pin.visualize.MeshcatVisualizer

viz = mv(model, collision_model, visual_model)

initialize viz.initViewer (loadModel=True)
display viz.display(q)
Add basic shapes
sphere viz.viewer [name] .set_object (meshcat.geometry.
Sphere(size), material)
box viz.viewer [name] .set_object (meshcat.geometry.

Box([sizex, sizey, sizez]), material)

change placement
of geometry [name]

Display
viz.viewer [name] .set_transform(
meshcat_transform(xyzquat_placement))

el —

Simulation #1: the basic principles behind modem robotics simulators

29

(e

Citing Pinocchio

@inproceedings{carpentier2019pinocchio,

title={The Pinocchio C++ library —— A fast and flexible implementation of rigid body dynamics alc
author={Carpentier, Justin and Saurel, Guilhem and Buondonno, Gabriele and Mirabel, Joseph and L:

booktitle={IEEE International Symposium on System Integrations (SII)},
year={2019}

and the following one for the link to the GitHub codebase:

@misc{pinocchioweb,

author = {Justin Carpentier and Florian Valenza and Nicolas Mansard and others},

title = {Pinocchio: fast forward and inverse dynamics for poly-articulated systems},
howpublished = {https://stack-of-tasks.github.io/pinocchio},
year = {2015--2021}

The algorithms for the analytical derivatives of rigid-body dynamics algorithms are detailed here:

@inproceedings{carpentier2018analytical,
title = {Analytical Derivatives of Rigid Body Dynamics Algorithms},
author = {Carpentier, Justin and Mansard, Nicolas},

booktitle = {Robotics: Science and Systems},
year = {2018}

el —

Simulation #1: the basic principles behind modem robotics simulators

Spatial quantities
The basic principles

(e

The “Bible”

] ¢ P
o v e |
(' /
Y i
@ FET e
~{ /1

| Dynamics
Algorithms

Roy Featherstone

cla—

Simulation #

1: the basic principles benind modem robotics simulators

32

Y
S ' PSL%

A short intro to the “Bible”

UTORIAL
\\\

Y/

© EYEWIRE

A Beginner's Guide
to 6-D Vectors (Part 1)

What They Are, How They Work, and How to Use Them

BY ROY FEATHERSTONE

rigid body has six degrees of motion freedom, so

why not use six-dimensional (6-D) vectors to de-

scribe its motions and the forces acting upon it? In

fact, some roboticists already do this, and the

practice 1s becoming more common. The pur-

pose of this tutorial is to present a beginner’s guide to 6-D vec-

tors in sufficient detail that a reader can begin to use them as a

practical problem-solving tool right away. This tutorial covers

the basics, and Part 2 will cover the application of 6-D vectors
to a variety of robot kinematics and dynamics calculations.

6-D vectors come in various forms. The particular kind pre-
sented here 1s called spatial vectors. They are the tool that the
author has been using for nearly 30 years to invent dynamics
algorithms and write dynamics calculation software. Other kinds
of 6-D vector include screws, motors, and Lie algebras. More
will be said about them at the end of this tutorial. The differ-
ences between the various kinds of 6-D vector are relatively
small. The more you understand any one of them, the easier it
gets to understand the others.

The obvious advantage of 6-D vectors is that they cut the
volume of algebra. Instead of having to define two three-
dimensional (3-D) vectors to describe a force, another two to
describe an acceleration, and writing two equations of motion
for each body, a 6-D vector notation lets you pair up corre-
sponding 3-D vectors and equations. The immediate result is a
tidier, more compact notation involving fewer quantities and
fewer equations. However, anyone who thinks that 6-D vectors

Digital Object Identifier 10.1109/MRA.2010.937853

SEPTEMBER 2010 1070-9932/10/$26.00©2010 IEEE

are only a convenient notation for organizing 3-D vectors is
missing half the point. 6-D vectors are tools for thought. They
have their own physical meanings and mathematical properties.
They let you solve a problem more directly, and at a higher
level of abstraction, by letting you think in 6-D, which is easier
than it sounds.

Using spatial vectors (and other kinds of 6-D vector) lets
you formulate a problem more succinctly, solve it more quickly
and in fewer steps, present the solution more clearly to others,
implement it in fewer lines of code, and debug the software
more easily. Furthermore, there is no loss of efficiency: spatial-
vector software can be just as efficient as 3-D-vector software,
despite the higher level of abstraction.

The rest of this tutorial is chiefly concerned with explaining
what spatial vectors are and how to use them. It highlights the
differences between solving a rigid-body problem using 3-D vec-
tors and solving the same problem using spatial vectors, so that
the reader can get an idea of what it means to think in 6-D.

A Note on Notation

When using spatial vectors, it is convenient to employ symbols
like f, v, and a (or v) to denote quantities like force, velocity,
and acceleration. However, these same symbols are equally
useful for 3-D vectors. Thus, whenever spatial and 3-D vectors
are discussed together, there is a possibility of name clashes. To
resolve these clashes, we shall use the following rule: in any
context where a spatial symbol needs to be distinguished from
a 3-D symbol, the spatial symbol is given a hat (e.g., f' and v).
These hats are dropped when they are no longer needed. An

IEEE Robotics & Automation Magazine 83

UTORIAL

\‘\

Y/

© EYEWIRE

A Beginner's Guide
to 6-D Vectors (Part 2)

From Equations to Software

BY ROY FEATHERSTONE

patial vectors are six-dimensional (6-D) vectors that

describe the motions of rigid bodies and the forces

acting upon them. In Part 1, we saw how spatial vec-

tors can simplify the process of expressing and ana-

lyzing the dynamics of a simple rigid-body system.
In this tutorial, we shall examine the application of spatial vec-
tors to various problems in robot kinematics and dynamics. To
demonstrate that spatial vectors are both a tool for analysis and
a tool for computation, we shall consider both the mathemati-
cal solution of a problem and the computer code to calculate
the answer.

To illustrate the power of spatial vectors, we shall con-
sider the class of robots having branched connectivity.
This class includes legged robots, humanoids and multifin-
gered grippers, as well as traditional serial robot arms;
however, it does not include robots with kinematic loops,
such as parallel robots. To cope with this degree of generality,
we shall take a model-based approach: the robot mecha-
nism is described by means of a standard set of quantities
stored in a model data structure, and the equations, algo-
rithms, and computer code are designed to use those quan-
tities in their calculations.

Following the same pattern as Part 1, this tutorial starts
with a specific example and proceeds to analyze it in detail;
the example in this instance being the computer code to
implement a model-based inverse dynamics calculation using
the recursive Newton—Euler algorithm. Subsequent sections

Digital Object Identifier 10.1109/MRA.2010.939560

¥ IEEE Rohotice &

then examine a variety of topics in kinematics and present
the two main recursive algorithms for forward dynamics:
the composite-rigid-body algorithm and the articulated-
body algorithm.

It is assumed that the readers have already read Part 1 [6], or
equivalent material, and therefore, they are familiar with the
notation and basic concepts of spatial vector algebra.

A Computational Example

Inverse dynamics is the problem of calculating the forces
required to produce a given acceleration. It is a relatively
easy problem, and therefore, a good place to start. A model-
based inverse dynamics calculation can be expressed mathe-
matically as

T = ID(model, ¢, 4, §), 1

where ¢, ¢, 4, and T denote vectors of joint position, velocity,
acceleration, and force variables, respectively, and model
denotes a data structure containing a description of the robot.
The objective is to calculate the numeric value of ID given the
numeric values of its arguments.

Figure 1 shows the MATLAB source code for an imple-
mentation of (1) using the recursive Newton—Euler algorithm.
This is a complete implementation: you could type it in right
now (minus the line numbers) and get it to work, provided
you also typed in the (very short) definitions of the functions
jcalc, crm, and crf, which are discussed later in this tuto-
rial. The code in Figure 1 can calculate the inverse dynamics of

enseduselimifet ol EEE Xplore. DownlGdda%5HH8EARRN G 8BEPEER 15:59:29 UTC from IEEE Xplore. RestrictionsREEFMBER 2010

ca—

Simulation #1: the basic principles behind modern robotics simulators

33

ENS

| PSL*

(e

Vhat is a spatial vector?

Euclidian vector (3-D)

Euclidean vector provides a
complete description of the state of
motion of a particle

Motion equation of a particle

f=ch
Sodt X

force liInear

momentum

Spatial vector (6-D)

Spatial vector provides a complete
description of the state of motion of
a rigid pody

Motion equation of a rigid body

A d A
f=—h
spatial spatial
force momentum

Spatial vectors compbine the linear and angular aspects of rigid-body motion or force
nto a single vectorial quantity

el —

Simulation #1: the basic principles behind modern robotics simulators 34 S | PSL%

/Vhy are spatial vectors so useful?

Spatial vectors are concise notations for describing, analyzing, and evaluating the kinematics
and dynamics quantities of rigid bodies and poly-articulated systems:

» compact representation, easy to learn

» fewer equations, thus fewer (programming) mistakes

? less (programming) effort

> really suited for modern CPU architectures (e.g., SIMD instructions)

lrezia— Simulation #1: the basic principles behind modern robotics simulators 35 S | PSL*

(e

Spatial velocity: the anguar part

The velocity vector field VQ associated with

W
the angular velocity @ and the point O is &

given oy:
Vo(P) = w X QP Q\ QP
2l — Simulation #1: the basic principles behind moderm robotics simulators

Spatial velocity: the anguar part

The velocity vector field VQ associated with

W
the angular velocity @ and the point O is C\)

given oy:

Vo(P) = @ X @’) Q\x Q};

Note that the cross product plays the role of
time derivative operator:

W Ti’=a)><r

@ T

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

(e

Spatial velocity

VWe can also get the linear velocity

associated with a frame centered in O
—>

leading to the spatial vector;

<
S
1
 —
=
S
e——
1
< < <
S FES o

el —

Simulation :

-

1: the basic principles benind modem robotics simulators

Main algorithms
From kinematics to dynamics algorithms

(e

The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree

The Articulated Body Algorithm

j = ForwardDynamics (g, ¢,7, /)

Simulation
Control

7 = InverseDynamics (g, ¢. 4, /)

The Recursive Newton-Euler Algorithm

Mg + Clq.q) + Glg) = v + J (@),

Mass Coriolis Motor External

Gravity

Matrix centrifugal torque forces

f. S

w L] T S)
Rigid Body 7 '~
v '/’ .

o N
S NS v

Dynamics
Algorithms

Roy Featherstone

el —

Simulation #1: the basic principles behind modem robotics simulators

The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree

f. i

w [] B 4)
Rigid Body 7 '~
."v ./’ -

o N

S NS v

Dynamics

The Articulated Body Algorithm Algorithms

j = ForwardDynamics (g, ¢,7, /)

SI Mmu |at | on Roy Featherstone
Control

7 = InverseDynamics (g, ¢. 4, /)

The Recursive Newton-Euler Algorithm /
j .. . B T
— M(q)g + C(q,.9) + G(q@) = v + J. (91
| Mass Coriolis Gravit Motor External
"""""" Matrix centrifugal vity torque forces

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

The Recursive Newton-Euler Algorithm (1980)

Control

¢ = InverseDynamics (¢, ¢, §, /)

The Recursive Newton-Euler Algorithm

t=M@)§ + Clq.q) + G(q) — J (@),

Basic Equations:

vg=0

ap = —ay

v, = Vx4 +9iq;

a; =ay; +S:q; + Sid;
fP=ILa; +v; x Iv;

Equations in Body Coordinates:

Vo = 0

ag = —Q0y
vy, = S; g,
Cy; = Sz q;

v; = Xy\(;) Va@) + Vi

a; = Xy are) +8iq; + ¢y +v; X vy

Algorithm:

Vo = 0
apgp = —Qyq
for =1 to Np do
(X3, 8;,v3,¢5] =
‘ jcalc(jtype(i), q;, qz)
Xy = X Xr(4)
if A\(¢) # 0 then
iX, — iX)x(z') A(z’)XO
end
v; = X)) VaG) T U3
a; = Xy axm) + Si q;
+cy+v; Xvj
fi ZIZ'CLfL'—I—’lJZ' X IZ"UfL' —ZX(;kf;x
end
for . = Ng to 1 do

Ti = S;'sz'

Motor Mass Coriolis Gravity External PO if)\}z‘) % _o ;h§n+ o s
torque Matrix centrifugal forces f = 1P X £+ T K _ ho=ha i fi
T = S;Ffz end
lrrzia — Simulation #1: the basic principles behind modem robotics simulators 40 dos [PSL%

The Articulated-Body Algorithm (1983)

Equations (in body coordinates): Algorithm:
The Articulated Body Algorithm Pass 1 2= o N do
Yo = [X3, 83, v3, ¢5] = jeale(jtype(i), g;, q;)
oo F d D - . l vy; =8, q; Zf;((w); ?t flfT(’i)
§ = ForwardDynamics (¢, ¢, 7, 1) Do

Simulation

;
v = X)) V@) T Vi
C; = Cj; +v; X Vy;

. *) * T
D, =v; X Iivi_Xof;’

end |
v; = X)\(5) UVag) + Vs
Ci =Cj+v; XUj

I =1,

1

A _ iy * pT
pz’ = ; X*Iivi_Xo.fq;

Pass 2 end
IA=1+ Z iX; I iX, for ¢ = NBAto 1 do
— U, =185,
JER(%) v
| | D, = S'U;
p;i =p; + Z X, pj u; =1; — S p
JEu(i) if \(7) # 0 then
a A —1 47T
- g1 : T o—1ts P o
G=M"(¢)(r — Clq.9) — Glg) + J. (@A) 5%
D, =S, U, A 7A AG) v * Tai
¢ I = Iy + VX 10X)

_ T A) Xk a
U; = T; — Si D; pf(z') = pf(i) + A(Z)Xi p

I'=I'-U,D'U" end

end

apg = —Qq

for 1 = 1' to N do

External
forces

Coriolis
centrifugal

Motor
torque

Mass

Matrix Inverse Gravity

p¢ = p +Ifc; + U; D; 'y,

Pass 3 a’ = X)) axi) + ¢

ao) = —a,g qz — Dz_l(uz - UzTa’/>
i i =a +8;q,

a; = Xx@) axp) + ¢ en(;L v

q; = D'_l(ui - Uz'Tar/L')

1

a; = a; + S; q,

Simulation #1: the basic principles behind modem robotics simulators

Benchmarks of basic algorithms

10" | | ! :
g i
o i
- B LWR
= 1 [HyQ
g I TIAGo
= 4 | Nao
5 "1 Poppy
g- human
o 0 Atlas
cCJ 10 i TALOS
= i
QD -
- i

Inverse Dynamics Mass Matrix Forward Dynamics
- =

. - [- .

l‘.l

077}
%,

2‘?.)?.'.‘;‘.;‘
U~"g

Kuka LWR TIAGo

Poppy Human ATLAS TALOS

|

Simulation #1: the basic principles behind modem robotics simulators

Code generation

Pinocchio also supports source code generation:
you can compile on the fly (JIT paradigm) your code
for the best performances on your hardware

0.8 us Inverse Dynamics Inverse Dynamics 3.7 us
0.2 us ID CodeGen ID CodeGen 1.7 us
2.8 us Forward Dynamic Forward Dynamic 7.8 us

FD Codegen FD Codegen
Mass Matrix Mass Matrix
MM CodeGen MM CodeGen

0.2 us
1.4 us
0.2 us

(e

2l — Simulation #1: the basic principles behind modem robotics simulators

10" 107" 10° 10"

Analytical derivatives
Beyond automatic differentiation for fast and reliable computations

(e

Analytical Derivatives of Robot Dynamics

Numerical Optimal Control or Reinforcement Learning approaches require
access to Forward or Inverse Dynamics functions and their partial derivatives

Inverse Dynamics

= 1D (q, qd,q, /IC)

\, JID JID JID 4ID

Forward Dynamics

4 =FD(q.q,7,1,.)

\, OFD OoFD oFD oFD

b

dqg 0q

b b % b

0 04, dog 0§ Ot 04,

el —

Simulation :

-

1: the basic principles benind modem robotics simulators 45 S | PSL%

Classic ways to evaluate Numerical Derivatives

Finite Differences

> Consider the input function as a black-box
y = f(x)
> Add a small increment on the input variable
dy f(x+ dx)—f(x)
dx ~ dx

Pros
> Works for any input function

> Easy implementatio/
Cons

> Not efficient
> Sensitive to numerical rounding errors

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

Classic ways to evaluate Numerical Derivatives

Finite Differences

> Consider the input function as a black-box
y = f(x)
> Add a small increment on the input variable
dy f(x+ dx)—f(x)
dx ~ dx

Pros
> Works for any input function

> Easy implementatio/
Cons

> Not efficient

> Sensitive to numerical rounding errors

Automatic Differentiation

> This time, we know the elementary operations in f
y = f(x) = a.cos(x)

> Apply the chain rule formula
and use derivatives of basic functions

dy da d cos(x) .
— =—.cos(x)+a. = —a.sin(x)
dx dx dx
=0
Pros

> Efficient frameworks

> Very aCCurate/
Cons

> Requires specific implementation
> Not able to exploit spatial algebra derivatives

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

46 Al | PSL¥

(e

Analytical Derivatives of Dynamics Algorithms

Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators
involved In rigid motions

orientation matrix
dR
=R |Q]
dt X

AN

9

velocity vector

2l — Simulation #1: the basic principles behind modem robotics simulators

Analytical Derivatives of Dynamics Algorithms

The R Ive Newton-Eul lgorith . . .
"t compute 7 = ID(@,8,8) Why analytical derivatives?
fgj‘zﬂhm: We must exploit the intrinsic geometry of the differential operators

involved In rigid motions

apgp — —Qaq
for i =1 to Ng do

(X5, S;,v5,¢5] = orientation matrix Q
jeale(jtype(i), q;, q;) /
X = X5 Xr(4) d R
if \(i) £ 0 then =R [Q]
iX, — iXA(i))X, dt X
end

T R velocity vector

a; = Xy axq) + Siqg;
Y e o x Summary of the methodology
. = Iz a; V; x* Iz V; — ZX; ia; '
endfz i ! Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm
for = ﬁ%}" 1 do AND exploiting the sparsity of spatial operations

if A\(¢) # 0 then
oy = hey + MOXFf,
end
end

&z'z/a/- Simulation #1: the basic principles behind moderm robotics simulators 47 E;S | PSL*

Analytical Derivatives of Dynamics Algorithms

The R Ive Newton-Eul lgorith . . .
"o compute 7~ ID(@. 6. 8) Why analytical derivatives?
Algorithm: We must exploit the intrinsic geometry of the differential operators
Vo — 0

involved In rigid motions

apgp — —Qaq
for i =1 to Ng do

(X5, S;,v5,¢5] = orientation matrix Q
jeale(jtype(i), q;, q;) /
Xy = X5 X7(7) d R
if \(i) £ 0 then =R [Q]
iX, — iXA(i))X, dt X
end \

T R velocity vector

e “A?c;f%?xim* m Summary of the methodology
O Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm
for:_i; JEBT;O 30 AND exploiting the sparsity of spatial operations

if A\(¢) # 0 then

Do =ho+ XS Outcome
end A simple but efficient algorithm, relying on spatial algebra

AND keeping a minimal complexity of O(Nd) WHILE the state of the art is O(N2)

lrezia— Simulation #1: the basic principles behind moderm robotics simulators 47 ES | PSL*

(e

Analytical Derivatives of Robot Dynamics

Forward Dynamics and Inverse Dynamics are reciprocal functions:

FD-ID=ID-FD = /d

which leads to the following relation:
oFD olID

—ID+FD—=0
0X 0X
thus:
0FD — FD ﬁ FD
oX 0X

LA — Simulation #1: the basic principles behind moderm robotics simulators 48 S | PSL%

Analytical Derivatives of Robot Dynamics

Analytical Derivatives
of Rigid Body Dynamics Algorithms

Justin Carpentier and Nicolas Mansard
Laboratoire d’Analyse et d’ Architecture des Systemes and Université de Toulouse
Email: justin.carpentier @laas.fr

Abstract—Rigid body dynamics is a well-established frame-
-work in robotics. It can be used to expose the analytic
form of kinematic and dynamic functions of the robot
model. So far, two major algorithms, namely the recursive
Newton-Euler algorithm (RNEA) and the articulated body
algorithm (ABA), have been proposed to compute the inverse
dynamics and the forward dynamics in a few microseconds.
Evaluating their derivatives is an important challenge for various
robotic applications (optimal control, estimation, co-design or
reinforcement learning). However it remains time consuming,
whether using finite differences or automatic differentiation. In
this paper, we propose new algorithms to efficiently compute
them thanks to closed-form formulations. Using the chain rule
and adequate algebraic differentiation of spatial algebra, we
firstly differentiate explicitly RNEA. Then, using properties about
the derivative of function composition, we show that the same
algorithm can also be used to compute the derivatives of ABA
with a marginal additional cost. For this purpose, we introduce
a new algorithm to compute the inverse of the joint-space
inertia matrix, without explicitly computing the matrix itself.
All the algorithms are implemented in our open-source C++
framework called Pinocchio. Benchmarks show computational
costs varying between 3 microseconds (for a 7-dof arm) up to
17 microseconds (for a 36-dof humanoid), outperforming the
alternative approaches of the state of the art.

I. INTRODUCTION

Rigid-body-dynamics algorithms [7] are a well-established
framework at the heart of many recent robotic applications,
and have become even popular in related domains such as
biomechanics and computer animation. This is mostly due to
their ability to compute in a generic and efficient way the
kinematic and dynamic quantities that describe the motion of
poly-articulated systems. Rigid body dynamics algorithms are
for example crucial for the control and the stabilization of
quadruped and humanoid robots [10, 15, 17]. Additionally,
optimal control and trajectory optimization are becoming
standard approaches to control complex robotic systems [26,
16], generate human-like or avatar motions [28, 22], or for
instance in the context of simultaneous design and control of
robots [27, 8, 14]. They mostly rely on an accurate integration
of the forward dynamics together with the differentiation
of the resulting quantities with respect to the state, model
parameters and control variables of the system. A large part of
the total computational cost of such optimization algorithms
(up to 90 %) is spent in computing these derivatives.

This work is supported by the RoboCom++ FLAG-ERA JTC 2016 proposal
and the European project MEMMO (GA-780684).

Evaluating the partial derivatives of the dynamics can
be performed in several manners. The simplest way is to
approximate them by finite differences, i.e. evaluating several
times the input dynamics while adding a small increment on
the input variables. The main advantage is to systematize the
derivation process by considering the function to differentiate
as a black box. It comes at the price of calling n + 1 times
the input function (with n the number of input variables).
It is also sensitive to numerical rounding errors. Yet, if
this approach has shown to be fast enough to be applied
on real systems [29, 16], it requires fine parallelization.
Another methodology is to analytically derive the Lagrangian
equation of motion [11]. Lagrangian derivation gives a better
insight into the structure of the derivatives but leads to
dense computations. It fails to exploit efficiently the sparsity
induced by the kinematic model, in a similar way than rigid
body dynamics algorithms do. A last method is to rely on
automatic differentiation of rigid body dynamics algorithms
as implemented in the control toolbox Drake [30] and more
recently exploited by Giftthaler et al. [12]. The idea is to
overload the scalar type of the input variables, by applying
the chain rule formula in an automatic way knowing the
derivatives of basic functions (cos, sin or exp), to obtain the
partial derivatives. Automatic differentiation typically requires
intermediate computations which are hard to avoid or to
simplify. Using code generation [12] can mitigate this issue
but is a costly technological process to set up.

In this paper, we rather propose to analytically derive
the rigid-body-dynamics algorithms in order to speed up the
computation of the derivatives. Our formulation provides a
better insight into the mathematical structure of the derivatives.
We are then able to exploit the inherent structure of spatial
algebra (e.g. the cross product operator) at the root of
rigid-body-dynamics algorithms, while the aforementioned
approaches are in fact not able to do so. Our method extends
previous works on serial chains with loop closures Lee et al.
[18] to any kinematic tree while exploiting the more expressive
spatial algebra. We also provide a complete, efficient and open
source implementation on which our benchmarks are based.

This paper is made of two concomitant contributions.
In a first contribution we establish in a concise way
the analytical derivatives of the inverse dynamics through
the differentiation of the so-called recursive Newton-Euler
algorithm (RNEA) [19, 7]. The second contribution concerns
the analytical derivatives of the forward dynamics. Rather than

el —

Simulation :

-

1: the basic principles benind modem robotics simulators

49

(e

senchmearks of analytical derivatives

Inverse Dynamics

1 us {i Inverse Dynamics
3 us Analytical Derivatives

21 us! \ Finite Differences

102 10°

Forward Dynamics

Forward Dynamics 1us

Analytical Derivatives 5 us

Finite Differences ‘ l22 Us

10Y 10’ 102

el —

Simulation :

-

1: the basic principles benind modem robotics simulators

(e

senchmearks of analytical derivatives

Inverse Dynamics

1 us {i Inverse Dynamics
3 us Analytical Derivatives

21 us! \ Finite Differences

102 10°

Forward Dynamics

Forward Dynamics 1us

Analytical Derivatives 5 us

Finite Differences ‘ l22 Us

10Y 10’ 102

2 LS Inverse Dynamics

7 Us Analytical Derivatives

88 us ‘ \ Finite Differences

102 10Y

Forward Dynamics 4 us

Analytical Derivatives 14 us

Finite Differences ‘ l94 Us

10Y 10’ 102

2l — Simulation #1: the basic principles behind modem robotics simulators

lrezia— Simulation #1: the basic principles behind moderm robotics simulators

senchmearks of analytical derivatives

Inverse Dynamics Forward Dynamics

1 us i} Inverse Dynamics Forward Dynamics 1 s

3 us Analytical Derivatives

21 us! \ Finite Differences

102 10°

Analytical Derivatives 5 us

Finite Differences ‘ l22 Us

10Y 10’ 102

Forward Dynamics 4 us

2 LS Inverse Dynamics

Analytical Derivatives 14 us

Finite Differences ‘ l94 Us

10Y 10’ 102

7 Us Analytical Derivatives

88 us ‘ \ Finite Differences

102 10Y

Inverse Dynamics Forward Dynamics 9 us
16 us Analytical Derivatives Analytical Derivatives 45 ps
452 s Finite Differences Finite Differences ‘ l470 Us
102 10° 10° 10" 102

Simulation classes of the week

MON

11
- SIM #1

0900

1000

-

1200

1300

1400

1500

1600

1700

-

1800

1900

2000

pp——
Do

N

>~ M0
Fyanl

20
=100

Lo

Welcome coffee, 09:30, Salle d

Plenary: simulation #1
10:00, Salle de conference (Bui

Practicals: Simulation #1
11:15, Building A

Keynote #1: Timothy Bretl
14:00, Amphitheater (building B

Plenary: optimal control #1
15:00, Amphitheater (building B

Coffee break, 16:00

Practicals: optimal control #1
16:30, building A

Poster session + welcome
reception

18:15 - 20:45

Restaurant of the hotel

TUE

12

Plenary: task-and-motion plan

08:30, amphitheater (building B

coffee break, 09:45

Practicals: task-and-motion
planning #1

10:15 - 12:00

building A

Plenary: ROS2
13:30, amphitheater (building B

Practicals: ROS2
14:30, building A

Agimus meetin| Practicals: ROS
15:30 = 19:00 | 15:30, building

coffee break, 16:30, building §

keynote #2 (Ludovic Righetti
17:00, amphitheater (building

Poster session
18:15 - 19:45
building B

Gala at the Biodiversarium
20:00 - 23:00

WED

13

Agimus meetin| Free time
08:30 - 12:30 |08:30 - 11:00

morning coffee, 11:00, buildi

Keynote #3: Adrien Taylor
11:30, amphitheater (building

Plenary: Software developmen
14:00, amphitheater (building B

Plenary: Simulation #2
15:00, amphitheater (building B

Plenary: Simulation #2 (cont.)
16:30, amphitheater (building B

Practicals: simulation #2
17:30 - 19:30
building A

THU

14

Plenary: optimal control #2

08:30, amphitheater (building B

Practicals: optimal control #2
09:45, building A

coffee break, 10:45

Plenary: optimal control #2 (co
11:15, amphitheater (building B

Social event £2: a walk in
Banyuls
13:15 - 15:30

coffee break, 15:30, building B

Practicals: task-and-motion
planning #2

16:00 - 19:30

building A

FRI

15

Plenary: visual recognition and
08:30 - 10:00
amphitheater (building B)

coffee break, 10:00

Practicals: visual recognition
and planning

10:30 - 12:30

building A

Keynote #4: Adrien Escande
13:30, amphitheater (building B

Plenary: simulation #3
14:30 - 16:00
amphitheater (building B)

coffee break, 16:00

Practicals: simulation £3
16:30 - 18:00
building A

SIM #3

Simulation #1: the basic principles behind modern robotics simulators

51

=
!

Time to play

Ready?!

https://github.com/agimus-project/winter-school-2023

[0 README 32 BSD-3-Clause license V4

AGIMUS 2023 Winter School

Main website

Chat room

Tutorials

In this winter school, we will cover three main different topics:

e Simulation
o Simulation #1: Rigid body dynamics

e Optimal control

e [Motion planning]

Installing dependencies

Dependencies for the coursework include specific versions of Pinocchio, hpp-fcl, crocoddyl, alligator, and other
software that have yet to be fully released. We provide two ways to install the required packages for Mac OS and
Linux: conda/mamba or docker.

Conda installation [Mac OS Intel, Mac OS ARM, Linux x64]

All the required packages are available on the following channel. Conda can be easily installed on your machine by
following these instructions.

You can install a package by typing in your terminal:

conda create -n aws python=3.10 =
conda activate aws
conda install -c agm-ws-2023 my_package_name

The two first lines create a new environment named aws and then activate it. The third line installs
my_package_name using the channel of the AGIMUS winter school where the packages have been compiled.

You can also consider installing additional tools via pip, like:

pip install tqdm meshcat ipython >

We also invite you to leverage visual studio code to play with the Jupyter notebooks. Don't forget to install the
Jupyter module for visual studio code.

winter-school-2023 / simulation / sim1_rigid_body /

rh jcarpent sim: move all the materials to a dedicated dir

Name

[1_geometry_and_dynamics.ipynb

B
0

0000 00 00000

2_derivatives.ipynb

README.md

confused.png

contact_planner.py

costs.py

dexp.py

logo-pinocchio.png

magic_donotload.py

proto.py

question.png

recap.png

solutions.py

vizutils.py

Last commit message

sim:

sim:

sim:

sim:

sim:

sim:

sim:

sim:

sim:

sim:

sim:

sim:

sim:

sim:

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

move all the materials to a dedicated dir

Add file ~ .

b6f6660 - 6 minutes ago @ History

Last commit date

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

6 minutes ago

