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Outline
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▪ What can we do with optimal control?

▪ Where is optimal-control is the robot galaxy?

▪ What is dynamic programming?

▪ Should you shoot or collocate?

▪ Why make your dynamic program differential?

▪ Is multiple shooting about guns?

▪ What are our toolboxes Crocoddyl/Aligator good for, and what is beyond?
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VIDEO INTRODUCTION
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What can we do with optimal control?

AGIMUS Winter School | Introduction
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Autonomous Driving

Information Theoretic Model 

Predictive Control 

[Williams et al. 2018]
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Legged Locomotion

OC with Linear Inverted Pendulum Model

[Herdt et al. 2010]

OC with Centroidal Momentum Dynamics and Full Body Kinematics

[Ponton et al. 2018], [Carpentier et al. 2018], [Dai et al. 2014], [Herzog et 

al. 2015]
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Full-body Optimal Control[Tassa et al. 2010]

DDP with Full-Body Dynamics 

(realtime control)

Boston Dynamics Atlas: OC with Centroidal 

Momentum Dynamics and Full Body 

Kinematics

[Ponton et al. 2018], [Carpentier et al. 2018], 

[Dai et al. 2014], [Herzog et al. 2015]
[Mordatch et al. 2012]

Nonlinear Optimization for Multi-

Contact Tasks
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INTRODUCTION
TO BELMAN’s EQUATIONS
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What is dynamic programing

AGIMUS Winter School | Introduction
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Starting example

Decide:    future robot trajectory

Optimizing:  an objective function

(e.g. minum energy)

Satisfying the constraints:

- Known initial state

- Known evolution model

- And others (e.g stay on the road
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min
𝑋=(𝑄, ሶ𝑄),
𝑈=𝜏

න
0

𝑇

෍

𝑙

𝑙 𝑥𝑡 , 𝑢𝑡 𝑑𝑡

so that   𝑥0 = ො𝑥
t,  ሶ𝑥 𝑡 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )
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Starting example

≈ +∞

min
𝑋=(𝑄, ሶ𝑄),
𝑈=𝜏

න
0

𝑇

෍

𝑙

𝑙 𝑥𝑡 , 𝑢𝑡 𝑑𝑡

so that       t,  ሶ𝑥 𝑡 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

𝑢0 = 𝜋(𝑥0)

{x},{u}
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Starting example

≈ +∞

min
𝑋=(𝑄, ሶ𝑄),
𝑈=𝜏

න
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෍

𝑙

𝑙 𝑥𝑡 , 𝑢𝑡 𝑑𝑡

so that       t,  ሶ𝑥 𝑡 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

𝑢0 = 𝜋(𝑥0)
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Optimal control problem

Find control inputs 

to minimize cost

stage costs terminal 

cost

deterministic dynamics

state and control constraints

Optimal control problem



AGIMUS Winter School | Introduction

Optimal control problemOptimal control problem
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Optimal control problem

?

Optimal control problem
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Optimal control problemOptimal control problem
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Optimal control problem

=> control policy

disturbance

the optimal control trajectory

the optimal control policy

Optimal control problem
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Principle of OptimalityHow can we find the optimal control?

▪ The Principle of Optimality breaks down the problem

▪ Subpath of optimal paths are also optimal for then own 
subproblem
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Optimal Cost 

to Go or Value 

Function

Bellman’s 

Principle of 

Optimality

How can we find the optimal control?

▪ The Principle of Optimality breaks down the problem
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Dynamic Programming

Final States

Stage T

Dynamic programming
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Dynamic Programming

Stage T-1
Final States

Stage T

Dynamic programming
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Dynamic Programming

Stage T-1

…

…

…

Final States

Stage T

Dynamic programming
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Dynamic Programming

Stage T-1

…

…

…

Stage 0
Final States

Stage T

Dynamic programming
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Dynamic Programming

Bellman Equation

Problems:

- Curse of dimensionality

- minimization in Bellman equation

 Approximate solution to Bellman equation 

(DDP, trajectory optimization, reinforcement learning, etc)

Dynamic programming
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Solving Bellman’s Equations

25

Bellman’s Equation 𝑉𝑡 = min
𝑢𝑡

𝑙 𝑥𝑡 , 𝑢𝑡 + 𝑉𝑡+1(𝑓(𝑥𝑡 , 𝑢𝑡))

LQR 

(exact solution)
Non LQR

(approximate solution)

Indirect Methods

Pontryagin’s Maximum Principle

Rockets, Cars (small dimensions)

Direct Methods 

(Most popular in robotics)

“local”

Trajectory optimization 
“global”

Value/Policy optimization  

Resolution Method:

Stochastic - Deterministic 

Collocation Shooting

DDP

Multiple shooting

CMAES, PI2

Explicit MPC

Q learning

Actor Critic

DDPG, TRPO, PPO

Guided 

policy 

searchCIO [2] TOWR [4]

TrajOpt

“Direct” trajectory optim [3]

GuSTO [1]

[1] Bonnali’19 ArX:1903.00155

[2] Mordach’14 DOI:2185520.2185539

[3] Posa’14 DOI:0278364913506757

[4] Winkler’18 IEEE:2798285

[5] Rajamaki’17 DOI:3099564.3099579
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TRANSCRIPTION

26

Should we collocate or shoot?

AGIMUS Winter School | Introduction
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Transcribing:  “representing“ the reality

min
𝑥:𝑡→𝑥(𝑡)

𝑢:𝑡→𝑢(𝑡)

න
0

𝑇

𝑙 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑙𝑇 𝑥 𝑇

s.t. ∀𝑡, ሶ𝑥(t) = f(x(t),u(t))

Optimal control problem (OCP)

with continuous variables

(infinite-dimension)

min
𝑥=𝜃𝑥1…𝜃𝑥𝑛

𝑢=𝜃𝑢1…𝜃𝑢𝑛

෍

𝑡

𝑙 𝑥 𝑡|𝜃 , 𝑢 𝑡|𝜃 + 𝑙𝑇 𝑥 𝑇|𝜃

s.t. a𝑡 𝑠𝑜𝑚𝑒 𝑡, ሶ𝑥(𝑡|𝜃) = f(𝑡|𝜃𝑥 , 𝜃𝑢)

Nonlinear optimization problem (NLP)

with static variables

(finite dimension)

x u represents the continuous x,u trajectories
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u is easy to represent (piecewise polynomials)

– what about x?

▪ Collocation: x is represented by another polynomials

t

u

x

t

Polynomials(u)

Polynomials(x)

Transcribing:  “representing“ the reality
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u is easy to represent (piecewise polynomials)

– what about x?

▪ Collocation: x is represented by another polynomials

Problems:

The solution to ሶ𝑥(t) = f(x(t),u(t)) is not polynomial

The dynamics is only checked at some remote points

Transcribing:  “representing“ the reality
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u is easy to represent (piecewise polynomials)

– what about x?

▪ Shooting: x is represented by and integrator 

and only evaluated sparsely

Transcribing:  “representing“ the reality

t

u

x

t

Polynomials(u)

x = (x1, … xT )
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u is easy to represent (piecewise polynomials)

– what about x?

▪ Shooting: x is represented by and integrator 

and only evaluated sparsely

Problems:

The state is sparsely and approximately known

You may need an accurate integrator (complex+costly)

Transcribing:  “representing“ the reality
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Shooting as control-only problem

32

min
𝑢=(𝑢0..𝑢𝑇−1)

෍

𝑡

𝑙(𝑥 𝑢0. . 𝑢𝑡−1 𝑥0 , 𝑢𝑡) + 𝑙𝑇 𝑥 𝑢0. . 𝑢𝑇−1

where 𝑥 𝑢0. . 𝑢𝑡−1 𝑥0 if a function of 𝑢

❑ Unconstrained optimization

❑ The function 𝑢(𝑥) is numerically unstable

NaN NaN
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Shooting, pro and cons

33

▪Easy to implement

▪ Integrator, derivatives, Newton-descent

▪Side effect: you can focus on efficiency

▪Numerically unstable

▪ The initial-guess xu should be meaningful

▪At then end, maybe we don’t care so much …
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D.D.P.
34

Why make your dynamic program differential?

AGIMUS Winter School | Introduction

Tassa et al., IROS’ 12
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Multiple views on DDP

35

1. DDP as iterative LQR
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DDP as iterative LQR

36

▪ “Next-step”  is a nonlinear function

x’ =f(x+x, u+u) - f(x, u) 

xt
xt+1

f(x,u)
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DDP as iterative LQR

37

xt
xt+1

Fx , Fu

▪ “Next-step”  is a nonlinear function

x’ =f(x+x, u+u) - f(x, u) 

▪Approximate by

x’ = f(x, u) +Fx x + Fu u - f(x, u) 
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DDP as iterative LQR

38

▪Nonlinear optimal control problem

▪ Linear-Quadradic problem … solved with Ricatti recursion (textbook)

min
𝑥 ,{𝑢}

෍

𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑙𝑇 𝑥𝑇

s.t. t=0..T-1   𝑥t+1 = f(xt,ut )

min
𝑥 ,{𝑢}

෍

𝑡=0

𝑇−1
𝐿𝑥

𝐿𝑢

𝑇 𝑥𝑡

𝑢𝑡
+

1

2

𝑥𝑡

𝑢𝑡

𝑇
𝐿𝑥𝑥 𝐿𝑥𝑢

𝐿𝑢𝑥 𝐿𝑢𝑢

𝑥𝑡

𝑢𝑡
+ ⋯

s.t. t=0..T-1  𝑥t+1 = Fx xt+Fu 𝑢t 
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DDP as iterative LQR

39

▪Algorithm iLQR

Initialize with a given trajectory {x0},{u0}

Repeat

Linearize/Quadratize the OCP

Compute the LQR policy

Simulate (roll-out) with LQR regulator

Until local minimum is reached
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Multiple views on DDP

40

2. DDP as a 2-pass algorithm
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DDP as a 2-pass algorithm

41

𝑉𝑡 = min
𝑢𝑡

𝑙 𝑥𝑡 , 𝑢𝑡 + 𝑉𝑡+1(𝑓(𝑥𝑡 , 𝑢𝑡))

▪Backward propagation

𝑄𝑡 = 𝑙 𝑥𝑡 , 𝑢𝑡 + 𝑉𝑡+1(𝑓(𝑥𝑡, 𝑢𝑡))

▪Greedy optimization
𝑉𝑡 = min

𝑢𝑡

𝑄𝑡 𝑥𝑡 , 𝑢𝑡
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DDP as a 2-pass algorithm

42

𝑄 = 𝑙 + 𝑉′

𝑉 = min
𝑢

𝑄
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DDP as a 2-pass algorithm

43

▪Pass 1: back-propagate an approximation of V
▪ We can solve Belman for quadratic cost and linear dynamics

▪Pass 2: forward propagate gains and trajectory
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DDP as a 2-pass algorithm

44

▪Pass 1: backpropagate an approximation of V
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DDP as a 2-pass algorithm

45

▪Pass 2: forward propagate gains and trajectory
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DDP as a 2-pass algorithm

46

▪Globalization (because nonconvexity)

▪ Line search
▪ u = u* + k + K (x-x*)

▪ x’ = f(x,u)

▪Regularization
▪ Quu = Luu + Fu

T Vxx Fu

▪ k = Quu
-1 Qu

▪ K = Quu
-1 Qux
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Multiple views on DDP

47

3. DDP as sparse SQP
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DDP as sparse SQP

48

min
𝑥 ,{𝑢}

෍

𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑙𝑇 𝑥𝑇

s.t.  t = 0..T-1   𝑥t+1 = f (xt , ut)
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DDP as iterative LQR

49

▪Reminder

▪Non linear problem

▪Resulting “linearization”

min
𝑦

𝑙(𝑦)

s.t. f(y)=0

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0
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DDP as sparse SQP

50

▪ Lagrangian on the NLP

L( y, ) = 𝑙 𝑦 + 𝜆 T f(y) 

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0

Lagrangian
Primal variable Dual variable (multipliers)
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DDP as sparse SQP

51

▪ Lagrangian on the QP

L( y, )  = 𝐿𝑦𝑦 +
1

2
𝑦𝑇𝐿𝑦𝑦𝑦

+𝜆𝑇 (Fy 𝑦 − 𝑓(𝑦))

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0
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DDP as sparse SQP

52

▪ Lagrangian on the QP

L( y, )  = 𝐿𝑦𝑦 +
1

2
𝑦𝑇𝐿𝑦𝑦𝑦

+𝜆𝑇 (Fy 𝑦 − 𝑓(𝑦))

▪Newton step

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0

𝐿𝑦𝑦 𝐹𝑦
𝑇

𝐹𝑦 0
𝑦
𝜆

=
−𝐿𝑦

−𝑓(𝑦)
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The sparsity comes from the temporal structure

53

min
𝑥 ,{𝑢}

෍

𝑡=0

𝑇−1
𝐿𝑥

𝐿𝑢

𝑇 𝑥𝑡

𝑢𝑡
+

1

2

𝑥𝑡

𝑢𝑡

𝑇
𝐿𝑥𝑥 𝐿𝑥𝑢

𝐿𝑢𝑥 𝐿𝑢𝑢

𝑥𝑡

𝑢𝑡
+ ⋯

s.t. t=0..T-1    𝑥t+1 = Fx xt+Fu 𝑢t +ft

𝐿𝑦𝑦 𝐹𝑦
𝑇

𝐹𝑦 0
𝑦
𝜆

=
−𝐿𝑦

−𝑓(𝑦)
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The sparsity comes from the temporal structure

54

min
𝑥 ,{𝑢}

෍

𝑡=0

𝑇−1
𝐿𝑥

𝐿𝑢

𝑇 𝑥𝑡

𝑢𝑡
+

1

2

𝑥𝑡

𝑢𝑡

𝑇
𝐿𝑥𝑥 𝐿𝑥𝑢

𝐿𝑢𝑥 𝐿𝑢𝑢

𝑥𝑡

𝑢𝑡
+ ⋯

s.t. t=0..T-1    𝑥t+1 = Fx xt+Fu 𝑢t +ft
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BEYOND DDP

56

What is Crocoddyl good for, and what is beyond?

AGIMUS Winter School | Introduction
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Multiple shooting

57

NaN

gap

gap

Single shooting

“Your control is bad! “

Multiple shooting

“Your control is bad! “
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Multiple shooting

58

gap

gap

“Your control is bad! “ “Still bad, but better“

gap

gap
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Interpretation of dynamics violation

▪ Collocation:

We have state and control trajectories

… and they do not match

t

u

x

t

Polynomials(u)

Polynomials(x)

WRONG
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Interpretation of dynamics violation

▪ Shooting:

We have a set of state points 

… and the integrator does not reach them 

t

u

x

t

Polynomials(u)

Polynomials(x)

WRONG
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Example of jumping

Thanks Rohan for the illustration

Single Multiple
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Constraints: penalty and projection

62

min
𝑥 ,{𝑢}

෍

𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑙𝑇 𝑥𝑇

s.t. t=0..T-1   𝑥t+1 = f(xt,ut )

t=0..T g(xt,ut )  0

By projection
SQP, active set

By penalty
Interior point, augmented 

lagrangian
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Model predictive control

63

▪ Closing the loop on the real robot

OCP
State

Control

Trajectory

Gains

Robot Torque reference

State reference

Currents

State estimate
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Importance of the warm start

Mansard, N., et al. Using a 

memory of motion to efficiently 

warm-start a nonlinear predictive 

controller. In IEEE ICRA
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min
𝑋=(𝑄, ሶ𝑄),
𝑈=𝜏

න
0

𝑇

𝑙 𝑥𝑡 , 𝑢𝑡 𝑑𝑡

s.t. 𝑥 0 = ො𝑥,       

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , t=0..T

Trajectory optimization

U: t → u(t)

Motion planning

Policy optimization

: x → u = (x)

Reinforcement learning
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Memory of motion

https://github.com/MeMory-of-MOtion/docker-loco3d
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THE END

67

Time to warm up your fingers!

AGIMUS Winter School | Introduction
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Take-home messages

Numerical problems (few/none discrete constraints)

- nonconvex … warm start needed

- very constrained… mostly feasibility problems

The formulation/transcription is our central problem

- expert+math knowledge

- keep generalization

Optimal control = reinforcement learning

- train offline

- generalize online
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Thank you very much for your attention!


