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QOutline

= What can we do with optimal control?

= Where is optimal-control is the robot galaxy?

= What is dynamic programming?

= Should you shoot or collocate?

= Why make your dynamic program differential?

= |s multiple shooting about guns?

= What are our toolboxes Crocoddyl/Aligator good for, and what is beyond?
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What can we do with optimal control?

VIDEO INTRODUCTION
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Autonomous Driving
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Information Theoretic Model
Predictive Control
[Williams et al. 2018]
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Boston Dynamics

OC with Linear Inverted Pendulum Model OC with Centroidal Momentum Dynamics and Full Body Kinematics
[Herdt et al. 2010] [Ponton et al. 2018], [Carpentier et al. 2018], [Dai et al. 2014], [Herzog et
al. 2015]
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Synthesis and stabilization of complex
behaviors with online trajectory optimization

Yuval Tassa, Tom Erez and Emo Todorov

Movement Control Laboratory
University of Washington

IROS 2012

[Mordatch et al. 2012]
Nonlinear Optimization for Multi-
Contact Tasks

[Tassa et al. 2010]
DDP with Full-Body Dynamics
(realtime control)

Discovery of complex behaviors through
Contact-Invariant Optimization

Igor Mordatch, Emo Todorov and Zoran Popovic

Movement Control Laboratory and GRAIL
University of Washington

SIGGRAPH 2012
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What is dynamic programing

INTRODUCTION
TO BELMAN’s EQUATIONS
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Starting example

commissioned by Marco M. Nicotra (U. Colorado Boulder)

Original artwork by Michele Carminati,
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Starting example

Decide: future robot trajectory

Optimizing: an objective function
(e.g. minum energy)

Satisfying the constraints:
- Known initial state

- Known evolution model
- And others (e.g stay on the road

commissioned by Marco M. Nicotra (U. Colorado Boulder)

Original artwork by Michele Carminati,

ﬂ@ IMUS AGIMUS Winter School | Introduction

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD



Starting example

z [(x;,u;) dt

X
U

sothat x, =X

vt, x(t) = f(x(8), u(t))

commissioned by Marco M. Nicotra (U. Colorado Boulder)

Original artwork by Michele Carminati,
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Starting example

so that

vt, x(t) = f(x(8), u(t))

commissioned by Marco M. Nicotra (U. Colorado Boulder)
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Starting example

min [(x;,u;)dt
X(QQ)fz(t 2

sothat  Vt, x(t) = f(x(t), u(t))

commissioned by Marco M. Nicotra (U. Colorado Boulder)

Original artwork by Michele Carminati,
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Optimal control problem

min Z li(ze, us) + lr(zT)

t=0
Find control inputs stage costs terminal
to minimize cost cost
Tiy1 = fr(xe, us) deterministic dynamics
g(xs,ug) <0 state and control constraints
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Optimal control problem

Lo TrT {33}:.“190,“',33{1"

W {u} =wuo, -+ ,ur_1
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Optimal control problem

Zo TrT {33}:.“190, y LT
X Xy XX {ud =0, Ty
.,.x__“‘
L1
Ty X 7
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Optimal control problem
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Optimal control problem

disturbance

T (QL') => control policy

/
Lo
|
*
{’u,} the optimal control trajectory
* : :
T (.CL') the optimal control policy
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How can we find the optimal control?

= The Principle of Optimality breaks down the problem
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How can we find the optimal control?

= The Principle of Optimality breaks down the problem

Optimal Cost T-1

to Goor Value Vi(z:) = min Y lg(zk, ux) + lr(zr)
Function He N

Bellman’s

Principle of Vi(xe) = min Iy (ze, ug) + Vig1(zpa1)
Optimality “

Li4+1 = ft(iﬁt,’ut)
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Dynamic programming
Vi(ze) = min li(ze,ue) + Vigr (Te41)
O
O

O
O

Final States
Stage T

VT (SL’T)
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Dynamic programming

Vi(xe) = minly(ze, ug) + Vi1 (zpa1)

Ut

Final States
Stage T-1 Stage T

Vr1(zr-1) Vp(zr)
Tr—1(Zr-1)
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Dynamic programming

Vi(xe) = minly(ze, ug) + Vi1 (zpa1)

Ut

Final States
Stage T
Vr1(zr-1) Vp(zr)

TTr—1 (wT—l)

Stage T-1
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Dynamic programming

Vi(xe) = minly(ze, ug) + Vi1 (zpa1)

Ut

Stage 0 Stage T-1 gltgzl eS;ates
Vo(zo) Vr—1(zr-1) Vr(xr)
7T0(390) 7TT—1($T—1)
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Dynamic programming
Bellman Equation  Vi(x:) = min l;(x¢, us) + Vi1 (Ter1)

Ut

Problems:
= Curse of dimensionality

= minimization in Bellman equation

= Approximate solution to Bellman equation
(DDP, trajectory optimization, reinforcement learning, etc)

ﬂ@ IMUS AGIMUS Winter School | Introduction

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD




[1] Bonnali’19 ArX:1903.00155
[2] Mordach’14 DOI:2185520.2185539

Solving Bellman’s Equations e

[5] Rajamaki’17 DOI:3099564.3099579

Bellman’s Equation V; = min [(x;, u;) + Vep 1 (f (xg,up))
u

t
/ \ Resolution Method:

LQR Non LOR Stochastic - Deterministic
(exact solution) (approximate solution)

Indirect Methods ‘41‘0[1] \

Pontryagin’s Maximum Principle Direct lMe_thod; |
Rockets, Cars (small dimensions) (Most popular in robotics)

—

| “Iocal_” - “global”
Trajectory optimization Value/Policy optimization
Collocation Shooting policy Q learning
DDP search Actor Critic
CIO [2] TOWR [4] | | DDPG, TRPO, PPO
TrajOpt Multiple shooting

“Direct” trajectory optim [3] CMAES, PI?

AGIMUS
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Should we collocate or shoot?

TRANSCRIPTION
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ranscribing: “representing the reality

T
L) jo [(x(8), u(®))dt + I (x(T)) x_nglng Zl(x(tw) u(t|0)) + I (x(T16))

u:t—u(t)

s.t. Vt, x(t) = f(x(t),u(t) s.t. at some t,x(t|0) = 1(t|0y, 6,)

Nonlinear optimization problem (NLP)
with static variables
(finite dimension)

Optimal control problem (OCP)
with continuous variables
(infinite-dimension)

g, 6, represents the continuous x,U trajectories
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ranscribing: “representing the reality

u Is easy to represent (piecewise polynomials)

— what about x?
= Collocation: x is represented by another polynomials

/\/\\/‘ Polynomials(6,)

t

Pol lals(4,)
4\/\/\\//\\/\7/#t olynomials
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ranscribing: “representing the reality

u Is easy to represent (piecewise polynomials)

— what about x?
= Collocation: x Is represented by another polynomials

S/ Problems:
The solution to x(t) = f(x(t),u(t)) is not polynomial

The dynamics is only checked at some remote points
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ranscribing: “representing the reality

u Is easy to represent (piecewise polynomials)

— what about x?
= Shooting: x is represented by and integrator
and only evaluated sparsely

/\/\\/‘ Polynomials(6,)

% X ¥ 6,= (Xy, ... X7)
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ranscribing: “representing the reality

u Is easy to represent (piecewise polynomials)

— what about x?
= Shooting: x Is represented by and integrator
and only evaluated sparsely

DANGER
CROCODILES

S, Problems:
The state is sparsely and approximately known

You may need an accurate integrator (complex+costly)
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Shooting as control-only problem

mm zl(x(uo Ue—qlx0),up) + U (x(uo UT-— 1))

where x(ug..us—q1|xq) if a function of u

o Unconstrained optimization
o The function u(x) is numerically

rr

ﬂ@ IMUS AGIMUS Winter School | Introduction 32

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




Shooting, pro and cons

= Easy to implement
= Integrator, derivatives, Newton-descent

= Side effect: you can focus on efficiency

= Numerically unstable
= The initial-guess 4,, should be meaningful

= At then end, maybe we don’t care so much ...

ﬂ@ IMUS AGIMUS Winter School | Introduction 33

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




Why make your dynamic program differential?

D.D.P.

Tassa et al., IOS’ 12

AGIMUS Winter School | Introduction



Multiple views on DDP

1. DDP as iterative LQR

ﬂ@ IMUS AGIMUS Winter School | Introduction 35
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DDP as iterative LOR

\/
fxu)

= “Next-step” is a nonlinear function
Ax’ =f(x+Ax, u+Au) - f{(x, u)
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DDP as iterative LOR

X, Xit1

= “Next-step” is a nonlinear function
Ax’ =1f(x+Ax, u+Au) - f(x, u)
= Approximate by
Ax’ = f(x, u) +F . Ax + F,Au - {(x, u)
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DDP as iterative LOR

= Nonlinear optimal control problem

{g}u{g} z [(x,u,) + 1 (x7)

S.t. Vt 0.T-1 xq = f(Xx,U;)

= Linear-Quadradic problem ... solved with Ricatti recursion (textbook)
T—-1

T
i, 2, (1) () + 2(s) (i ) ()
{Ax}{Aw} e Ly Auy 2 \Auy Lux  Lyu/ \Auy
s.t. Vt=0..T-1 A x,; = F, AX+F, Au,
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DDP as iterative LOR
= Algorithm ILQR

Initialize with a given trajectory {x,}{u,}
Repeat

Linearize/Quadratize the OCP

Compute the LQOR policy

Simulate (roll-out) with LQOR regulator

Until local minimum 1S reached
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Multiple views on DDP

2. DDP as a 2-pass algorithm
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DDP as a 2-pass algorithm

Vi = Hlltltn [(xe,up) + Vep1 (f (e up))

= Backward propagation

Qr = L(xp, u) + Vg1 (f (xe, ug))
= Greedy optimization

Ve = ngtin Qe (xe, uy)
t

ﬂ@ IMUS AGIMUS Winter School | Introduction 41

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




DDP as a 2-pass algorithm

Q=1+V

V =min(Q
u
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DDP as a 2-pass algorithm

= Pass 1: back-propagate an approximation of V
= We can solve Belman for quadratic cost and linear dynamics

* Pass 2: forward propagate gains and trajectory
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DDP as a 2-pass algorithm

= Pass 1: backpropagate an approximation of V
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DDP as a 2-pass algorithm

= Pass 2: forward propagate gains and trajectory
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DDP as a 2-pass algorithm

= Globalization (because nonconvexity)

= Line search
"u=u +k+ K((xx)
" X = f(xu)

= Regularization
" Quu = Luu + FUT VXX Fu
"k=0Q,"Q,
" K=Qu" Qu
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Multiple views on DDP

3. DDP as sparse SQP

ﬂ@ IMUS AGIMUS Winter School | Introduction 47

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




DDP as sparse SQP

T—1
[min, tz(; [(x,ut) + I (xp)

st. Vt=0.T-1 xu, =T (x,u,)
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DDP as iterative LOR

= Reminder
= Non linear problem
min [(y)
s.g f(y)=0
= Resulting “linearization”

. 1
rglyn [(y) + L,Ay + EAyT L,yAy

s.t. f(y) + F, Ay =0
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DDP as sparse SQP

| 1
rglyn [(y) + LyAy + EAyT L,y Ay
st. f(y) + F, Ay =0

= Lagrangian on the NLP
£y, M) =1y) + 17 1(y)

/ Primal variable Dual variable (multipliers)
Lagrangian
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DDP as sparse SQP

_ 1
rglyn [(y) + LyAy + EAyT L,y Ay
s.t. fy) +F, Ay =0
= Lagrangian on the QP
LAy, L) =L,Ay + %AyTLyyAy
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DDP as sparse SQP

1
min [(y) + L,Ay + s Ay" L, Ay
Ay 2
s.t. f(y) + F, Ay =0
= Lagrangian on the QP
LAy, L) =L,Ay + %AyTLyyAy
= Newton step

L,, FE,"\/A —L
(szyy 5>(Ay)=(—f<§))
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he sparsity comes from the temporal structure
T—1 T T
min, 2 (1) () * 2 (ee) (2 1) )+
{Ax}{Aw} Ly Al 2 \Au,; Lyx  Lyu/ \Au;

t=0

s.t. Vt=0..T-1 Ax.,=F, AX+F, Au, +f,

L,, FE,"\/A —L
(gyy {)>(/1y):(—f(zjv))
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The sparsity comes from the temporal structure

T-1 T T
min, > () () * 3 o) (i ) () +
{Ax}{Aw} — Ly Al 2 \Au, Lyx  Lyu/ \Au;

s.t. Vt=0..T-1 Ax.,=F, AX+F, Au, +f,

[ L. Ly —1 FE 1T Azo ] [ Lo ]
L L., ~I FT Axp_y L.,
L —1I Azt L
L. L., Fr Aug Ly,
L, Loyu FT Aup_y L,
—1 Ao Jo
F, —I F, A h
F. —1 F, | A1 | fr—1]
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Stagewise Implementations of Sequential Quadratic Programming
for Model-Predictive Control

Armand Jordana®!, Sébastien Kleff*!, Avadesh Meduri™!,
Justin Carpcmic.lz. Nicolas Mansard® and Ludovic Rjy,ht:l.l.il

Abstract—The promise of ive control in
rebotics has led fo extensive development of efficient numerical
optimal control selvers in line with differential dynamic pro-
gramming because it exploits the sparsity indweed by time.
In this work, we arguc that this cffervescence has hidden
the Tact thal sparsity can be equally exploited by standard
monlinear optimization. In particular, we show how a tailored
implementation of sequential gquadratic programming achieves
state-ol-the-art model-predictive control. Then, we darily the
connections between popular algorithms from the robotics com-
mumity and well-established optimization techniques. Further,
the sequential quadratic program formulation naturally en-
compasses the constrained case, a notoriously difficult problem
in the robotics community. Specifically, we show that it only
requires a sparsity-exploiting implementation of a state-of-the-
art quadratic programming solver. We illustrate the validity of
this approach in a comparative stndy and experiments on a
o i To the hest of our knowledge,
this is the first demonstration of nonlinear model-predictive
control with arbitrary constraints on real hardware.

I. INTRODUCTION
A. Motivation

Maodel Predictive Control (MPC) has become  popular
for online robot decision-making. It has shown compelling
mesulis with all kinds of robots ranging from  indusirial
manipulators [1], quadrupeds [2]-[4] to humanoids [5], [6].
The general idea of MPC is to formulate the robot motion
peneration problemn as a numerical oplimization problem,
i.c., 4 finitc horizon Optimal Conirol Problem (OCP), and
solve it online atl every control cycle wsing the current
state measurement as the initial state, This receding horizon
stratcgy allows us to adapt the robot behavior as the state of
the system and environment change.

In robotics, Differential Dynamic Programming (DDP) [7]
is a popular choice W solve OCPs because it exploits the
problem’s structure well, This advantage has led to 2 bustling
algorithmic development over the past two decades [8]-[20].
In light of the increasing number of vanations of DDP, onc
might naively ask: why not use well-established optimization
algorithms [21]7 Is there anything special in MPC that cannot

This work was in part supported by the National Science Foundation
grands 1932187, 2026479, 2222815 and 3315396,

* Fugual contribution - first authors listed in alphabetical onder.

! Machines in  Mation Laboratory, MNew  York  Univer
sity, USA A j29RBEnyu . edu, skBO01Bnyu. edu,
am3 7898 nyu _edu, 1lrlld4@nyu.eduo

? Insia - Dépantement d'Informatique de 1"Ecole normale supdricure, PSL
Research University. justin.carpentier@inria. fr

¥ LAAS-CNRS, Université  de  Toulouwse, CNES,
nmansardflaas. fr
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be tackled by, for example, an cfficient @
Sequential Quadratic Programming (SQF) [
we show that special implementations of i
ods developed by the optimization-based o

[23126] are, in lacl, sulficient o achie ﬂ n

MPC on real robots.
B. Related work :

Mayne first iniroduced DDP [7] as an ¢ n {]

to solve nonlincar OCPs by iteratively : L
ward pass over the time horizon and a 1
rollout of the dynamics. This algorithm wﬁ.en'
lincar complexity in the time horizon an

comvergence [27]. More recently, Todorov o

in DDP by proposing the iterative Lincar Qv

(ILQRE) [B]. a variant discarding the seco

the dynamics. It has since gained a lot ¢

the robotics community [3H51, 1141, 1181, T g

to Gauss-Mewton optimization has been
[28]. However, this approach laces two
1) as a single shooting method, it requir
feasible initial guess, which makes the a
o warm-starl, an essential requirement
tation times [12] and 2) enforcing cquali
constraints is not straightforward. The co
Lo enforce constraints softly using penalty
function. But this approach is heuristic (i.c
weight tuning) and tends to cause numeric

Multiple shooting for optimal control, i
addresses the first limitation: it accepts ar
guess. Several multiple shooting variants ol
proposed in [12], [14] with significantly i
gence abilities, which have enabled nonlinear MPC at high
frequency on real robots [17, [3], [6], [14].

The sccond issuc of cnforcing constraints inside a DDP
like algorithm has been addressed in several works. [10] uses
a DDP-based projected Newton method to bound control
inputs. This approach has further been improved and de
ployed on a real quadruped robot in [17]. More recenty,
augmented Lagrangian methods have been used to enforce
constraints in iLQR/DDP algorithms [11], [13], [16], [19].
However, their convergence behavior is less understood than
DDF, whose seminal paper [7] was followed by sophisticated
proofs [27]. To the best of our knowledge, it has not yet
heen shown that those recent DDP-based algorithms exhibat
global convergence (i.c., convergence from any imitial point
to a stationary point) and quadratie local convergence.
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What is Crocoddyl good for, and what is beyond?
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Multiple shooting

gap
<>

@
<>

Single shooting Multiple shooting
“Your control is bad! “ “Your control is bad!
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Multiple shooting

9% gap
_gap _gap
A i

“Your control is bad! “ “Still bad, but better”
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Interpretation of dynamics violation

L~
k % Polynomials(6))

| \ Pol lals(4,)
H \\_//\V/\v/i olynomials( &,

= Collocation:
We have state and control trajectories
... and they do not match

ua4
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Interpretation of dynamics violation

‘ //\ % Polynomials(6,)

t
X WRONG

3
M\ \ /—\ Polynomials(8,)
= N ”

| t

= Shooting:
We have a set of state points
... and the integrator does not reach them
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Example of jumping

Thanks Rohan for the illustration

Single Multiple
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Constraints: penalty and projection

T—-1
{91}}1}1{3} Z(; [(x,u,) + 17 (xp)

s.t. Vt=0..T-1 x.,=f(x,u,)

vVt=0..T g(x,u,) <0

— O\

By projection By penalty
SQP, active set Interior point, augmented
lagrangian
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Model predictive control

= Closing the loop on the real robot

Control

Trajectory
State Gains
—_—

Torgue reference
State reference
Currents

State estimate
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Importance of the warm start

3.5

Afte‘r 2 OQP iteration 35

After 10 OCP iteration 35

3.0

Cost

AGIMUS
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3.0

3.0

50

100 150

50 100 150

After 50 OCP iteration

*

+

*  Ground truth

+ Policy approx
Trajectory approx

e Cold start
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Mansard, N., et al. Using a
memory of motion to efficiently
warm-start a nonlinear predictive
controller. In IEEE ICRA




T
min [(x., u;)dt
X=(Q,Q)JO (¥t )
U=t

s.t. x(0) = x,
x(t) = f(x@),u(®)), vt=0..T

|
[y
v 'ﬁ\ ‘
\ 1"

Trajectory optimization Policy optimization
U: t — u(t) I1: x — u = I1(X)
Motion planning Reinforcement learning
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https://github.com/MeMory-of-MOtion/docker-loco3d

memmo

Memory of motion
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Time to warm up your fingers!

THE END
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ake-home messages

Numerical problems (few/none discrete constraints)

- nonconvex ... warm start needed

- very constrained... mostly feasibility problems

The formulation/transcription is our central problem

- expert+math knowledge

- keep generalization

Optimal control = reinforcement learning

-train offline

- generalize online
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Questions and Answers AGIMUS
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Contact Detalls

Nicolas Mansard
CNRS
nmansard@laas.fr
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hank you very much for your attention!
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