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Key messages

⋄ fixed-point perspective on optimization algorithms

many references on the topic.

1,2,3,4

⋄ a few (standard) ideas for designing methods,

⋄ a constructive approach to algorithm analysis and design

... if time allows.

1Moreau (1962). “Fonctions convexes duales et points proximaux dans un espace hilbertien.”
2Rockafellar (1976). “Augmented Lagrangians and applications of the proximal point algorithm in

convex programming.”
3Combettes, Pesquet (2011). “Proximal splitting methods in signal processing.”
4Ryu, Boyd. (2016). “Primer on monotone operator methods.”
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Convex optimization: minimize function f : D ⊆ Rn → R

f (x⋆) ≜ min
x∈D

f (x),

with f , D convex.

Use iterative algorithm generating a sequence x0, x1, . . . , xN .

Example: gradient descent iterates xk+1 = xk − γk∇f (xk).

3



Convex optimization: minimize function f : D ⊆ Rn → R

f (x⋆) ≜ min
x∈D

f (x),

with f , D convex.

Use iterative algorithm generating a sequence x0, x1, . . . , xN .

Example: gradient descent iterates xk+1 = xk − γk∇f (xk).

3



Convex optimization: minimize function f : D ⊆ Rn → R

f (x⋆) ≜ min
x∈D

f (x),

with f , D convex.

Use iterative algorithm generating a sequence x0, x1, . . . , xN .

Example: gradient descent iterates xk+1 = xk − γk∇f (xk).

3



Convex optimization: minimize function f : D ⊆ Rn → R

f (x⋆) ≜ min
x∈D

f (x),

with f , D convex.

Use iterative algorithm generating a sequence x0, x1, . . . , xN .

Example: gradient descent iterates xk+1 = xk − γk∇f (xk).

3



Trust in numerical algorithms is a desirable luxury.

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x⋆), ∥∇f (xN)∥, ∥xN − x⋆∥?

“Time”

“E
rr

or
”

Fast, then stall?

Slow, then fast?

Smoothly improving?

Diverging?
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Convergence of an algorithm? (if it works)

Classical approaches:

⋄ “convergence” analysis (no speed),
⋄ “asymptotical” (local) analyses,
⋄ worst-case (global) analyses,
⋄ average-case analyses,
⋄ high-probability analyses,
⋄ smoothed analyses.
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A few elements of
convex analysis

6



Extended-valued functions

We consider extended-valued functions f : Rn → R ∪ {+∞}.

Example: indicator function of interval [a, b]

i[a,b](x) =

{
0 if x ∈ [a, b]
+∞ otherwise.

a b

Effective domain of f : R → R ∪ {+∞}:

dom f = {x : f (x) < +∞}.

Note: so f might encode implicit constraints.
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Convex functions
Graph is below line connecting any pairs (x , f (x)) and (y , f (y)):

f (θx + (1 − θ)y) ⩽ θf (x) + (1 − θ)f (y),

∀θ ∈ [0, 1].

Examples:

•
•

•
•

convex function non-convex function.
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Subgradients and subdifferentials

•

•

Notation:

⋄ subdifferential: ∂f : Rn → 2R
n

(power set),

⋄ subdifferential at x :
∂f (x) = {g : f (y) ⩾ f (x) + gT (y − x) ∀y ∈ Rn},

⋄ any g ∈ ∂f (x) is a subgradient of f at x .

Essentially: (closed) convex functions have subgradients in relint(dom f ).
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Subgradients and subdifferentials

a b
• •
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Optimality conditions
Convex optimization problem:

min
x∈Rn

f (x)

Optimality condition (Fermat’s rule): x⋆ optimal iff 0 ∈ ∂f (x⋆).

⋄ Proof: x minimizes f if and only if

f (y) ⩾ f (x) = f (x) + 0T (y − x) for all y ∈ Rn.

⋄ Example: several subgradients at solution, including 0:

•

10
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Optimality conditions (II)

Convex optimization problem (take II):

min
x∈Rn

f (x) + h(x)

with both f and h convex (closed, non-empty effective domains).

⋄ Under some conditions (e.g., “constraint qualifications”):

∂(f + h)(x) = ∂f (x) + ∂h(x).

⋄ We will search (Fermat’s rule) for x⋆:

0 ∈ ∂(f + h)(x⋆) = ∂f (x⋆) + ∂h(x⋆),

where equality follows from constraint qualifications (e.g., Slater’s).

This is strongly related to the usual KKT optimality conditions

⋄ in fact: it is exactly the same (alternate terminology)

⋄ allows for simple manipulations.
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A few approaches to constrained
(convex) optimization

12



Splitting methods

No free lunch: no “general” method works well for all problems.

In numerical optimization, key is usually:

⋄ clear identification of my specifications (timings, accuracy, etc.)?

⋄ divide problem into “cheap”/“simple” pieces...

Current library of numerical optimization algorithms:

⋄ clearly a jungle,

⋄ still, a few key “algorithmic templates” emerged.
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Splitting methods: a few examples

A few examples for the problem:

min
x∈Rn

{f (x) : x ∈ D}

with f a (closed, proper) convex function and D a convex set.

Typical splitting strategies:

⋄ can I project on D?

⋄ can I perform linear optimization on D?

⋄ can I compute gradients of f ? Hessian?

⋄ stochastic approximations to f ?

⋄ coordinate-wise optimization is easy?

(choices also depends on the targets, e.g., accuracy).

14
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Example: Projected gradient descent (I)

Differentiable (closed, proper) convex function f and convex set D:

min
x∈Rn

{f (x) : x ∈ D} .

Assumptions:

⋄ I can access gradients of f ,

⋄ I can project on D.

Iterate: xk+1 = argmin
x∈D

{
f (xk) +∇f (xk)

T (x − xk) +
2
γ ∥x − xk∥2

2

}
.

Equivalently:

xk+1 = argmin
x∈D

{
∥x − (xk − γ∇f (xk)) ∥2

2
}
.

so xk+1 = ProjD (xk − γ∇f (xk)) .
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Example: Projected gradient descent (II)
xk+1 = ProjD (xk − γ∇f (xk))

D
•

•

•
−γ∇f (·)

ProjD(·)

Guarantees when f convex with L-Lipschitz gradient and γ ∈ (0, 2/L).
For instance, when γ = 1/L:

f (xN)− f⋆ ⩽
L∥x0 − x⋆∥2

2

2N
.

16
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Example: Projected gradient descent (III)
Smooth convex function f and (closed) convex set D:

min
x∈Rn

f (x) + iD(x),

with (convex) indicator function of set D: iD(x) =

{
0 if x ∈ D
+∞ otherwise. .

Fixed-point viewpoint:

⋄ we want to solve 0 ∈ ∇f (x) + ∂iD(x),

⋄ base transformations:

0 ∈ ∇f (x) + ∂iD(x)

⇔ 0 ∈ −∇f (x)− ∂iD(x)

⇔ x ∈ x − γ∇f (x)− γ∂iD(x)

⇔ x + γ∂iD(x) ∋ x − γ∇f (x)

⇔ x = (I + γ∂iD)
−1(x − γ∇f (x))

⇔ x = ProjD(x − γ∇f (x))

17
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Example: Frank-Wolfe / conditional gradient (I)

Differentiable (closed, proper) convex f and compact convex D:

min
x∈Rn

{f (x) : x ∈ D}

Assumptions:

⋄ I can access gradients of f ,

⋄ I can perform linear optimization on D.

Iterate:

sk = argmin
s∈D

{
f (xk) +∇f (xk)

T (s − xk)
}

xk = (1 − λk)xk−1 + λksk .

Typical choice for λk = 2
k+1 .

18
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Example: Frank-Wolfe / conditional gradient (II)

Picture from M. Jaggi (2013):
“Revisiting Frank-Wolfe:
Projection-Free Sparse Convex
Optimization.”

Guarantees when f convex with L-Lipschitz gradient and Diam(D) < ∞:

f (xN)− f⋆ ⩽
LDiam(D)2

N + 2
.

Similarly, can be seen as a fixed-point algorithm:

0 ∈ ∇f (x) + ∂iD(x) ⇔ x ∈ ∂i−1
D (−∇f (x))

⇔ x ∈ (1 − λ)∂i−1
D (−∇f (x)) + λx .

19
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Governing umbrella: fixed-point iterations

Splitting methods:

⋄ reformulate optimality conditions as fixed points,

− using the operations that are “easy”
− ex: can I invert a gradient? can I project? etc.

⋄ check/hope that the fixed-point iteration converges,

⋄ a few other standard schemes and many variations around them

− Douglas-Rachford Splitting, ADMM, Chambolle-Pock
algorithm, three-operator (Davis-Yin) splitting...

⋄ most of those strategies apply to more general situations

− that include primal-dual optimality conditions.

20



Governing umbrella: fixed-point iterations

Splitting methods:

⋄ reformulate optimality conditions as fixed points,

− using the operations that are “easy”
− ex: can I invert a gradient? can I project? etc.

⋄ check/hope that the fixed-point iteration converges,

⋄ a few other standard schemes and many variations around them

− Douglas-Rachford Splitting, ADMM, Chambolle-Pock
algorithm, three-operator (Davis-Yin) splitting...

⋄ most of those strategies apply to more general situations

− that include primal-dual optimality conditions.

20



Governing umbrella: fixed-point iterations

Splitting methods:

⋄ reformulate optimality conditions as fixed points,

− using the operations that are “easy”
− ex: can I invert a gradient? can I project? etc.

⋄ check/hope that the fixed-point iteration converges,

⋄ a few other standard schemes and many variations around them

− Douglas-Rachford Splitting, ADMM, Chambolle-Pock
algorithm, three-operator (Davis-Yin) splitting...

⋄ most of those strategies apply to more general situations

− that include primal-dual optimality conditions.

20



Governing umbrella: fixed-point iterations

Splitting methods:

⋄ reformulate optimality conditions as fixed points,

− using the operations that are “easy”
− ex: can I invert a gradient? can I project? etc.

⋄ check/hope that the fixed-point iteration converges,

⋄ a few other standard schemes and many variations around them

− Douglas-Rachford Splitting, ADMM, Chambolle-Pock
algorithm, three-operator (Davis-Yin) splitting...

⋄ most of those strategies apply to more general situations

− that include primal-dual optimality conditions.

20



Governing umbrella: fixed-point iterations

Splitting methods:

⋄ reformulate optimality conditions as fixed points,

− using the operations that are “easy”
− ex: can I invert a gradient? can I project? etc.

⋄ check/hope that the fixed-point iteration converges,

⋄ a few other standard schemes and many variations around them

− Douglas-Rachford Splitting, ADMM, Chambolle-Pock
algorithm, three-operator (Davis-Yin) splitting...

⋄ most of those strategies apply to more general situations

− that include primal-dual optimality conditions.

20



The proximal-point method

21



Continuous-time perspective
Minimization of a convex function f :

min
x∈Rn

f (x)

Continuous-time interpretation of the minimization procedure:

⋄ “gradient flow”: d
dt x(t) = −∇f (x(t)).

⋄ Explicit Euler approx.: xt+∆t = xt −∆t∇f (xt) (gradient descent),

⋄ Implicit Euler approx.: xt+∆t = xt −∆t∇f (xt+∆t) (proximal point).
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Proximal-point algorithm
Minimize a (closed, proper) convex functions:

min
x∈Rn

f (x)

⋄ Optimality condition: search x such that 0 ∈ ∂f (x).

⋄ A fixed-point reformulation:

x ∈ x − γ∂f (x)

for some γ > 0.

⋄ Proximal point: xk+1 ∈ xk − γ∂f (xk+1).

Equivalently:

xk+1 = argmin
x∈Rn
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Proximal-point splittings

Proximal-point operation:

⋄ has a very long history

5,6,7

⋄ are at the center of many “first-order” algorithms,

8,9,10

⋄ Many examples of proximal operators with closed forms:

http://proximity-operator.net/,

⋄ many results on “approximated” proximal-point too.

5Moreau (1962). “Fonctions convexes duales et points proximaux dans un espace hilbertien.”
6Minty (1962). “Monotone (nonlinear) operators in Hilbert space.”
7Rockafellar (1976). “Augmented Lagrangians and applications of the proximal point algorithm in

convex programming.”
8Combettes, Pesquet (2011). “Proximal splitting methods in signal processing.”
9Ryu, Boyd. (2016). “Primer on monotone operator methods.”

10Condat (2022). “Proximal Splitting Algorithms for Convex Optimization: A Tour of Recent
Advances, with New Twists.”
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Proximal-point for convex QPs (I)

Minimize a quadratic function (with Q ≽ 0) under linear constraints:

min
x

{ 1
2x

TQx : Ax ⩽ b
}
.

with the proximal-point algorithm:

xk+1 = argmin
x∈Rn

{
f (x) + 1

2γk
∥x − xk∥2

}
.

Bad news:

xk+1 = argmin
x∈Rn

{
1
2x

TQx + 1
2γk

∥x − xk∥2 : Ax ⩽ b
}

is just as hard as the original problem.
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Proximal-point for QPs (II)
Minimize a quadratic function (with Q ≽ 0) under linear constraints:

min
x

{ 1
2x

TQx : Ax ⩽ b
}
.

Introduce L(x , λ) = 1
2x

TQx + qT x + λT (Ax − b)

and define dual (λ ⩾ 0)

d(λ) = min
x

L(x , λ).

d(λ) is concave so we can apply the proximal-point on the dual:

λk+1 = argmax
λ⩾0

{
d(λ)− 1

2γk
∥λ− λk∥2

}
.

Explicitly max. over λ (not over x) yields the method of mulipliers:

xk+1 ∈ argmin
x

L
(
x , [λk − γk(Ax − b)]+

)
λk+1 = [λk − γk(Axk+1 − b)]+

(problem in x is piecewise quadratic, but convex and unconstrained).
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Proximal-point for QPs (III)
Proximal-point also applies to the saddle-point formulation:

max
λ⩾0

min
x

L(x , λ)

which is convex-convave, yielding the proximal method of multipliers:

(λk+1, xk+1) = argmax
λ⩾0

argmin
x

{
L(x , λ) + 1

2γk
∥x − xk∥2 − 1

2βk
∥λ− λk∥2

}
.

In practice, we need to:

⋄ approximate

(λk+1, xk+1) ≈ϵ argmax
λ⩾0

argmin
x

{
L(x , λ) + 1

2γk
∥x − xk∥2 − 1

2βk
∥λ− λk∥2

}
,

⋄ choose appropriate step size policies (βk and γk) trading-off:

− large values: less iterations,
− small values: inner problem is simpler.
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A priori working guarantees?
for numerical optimization algorithms
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Convergence of an algorithm? (if it works)

Classical approaches:

⋄ “convergence” analysis (no speed),
⋄ “asymptotical” (local) analyses,
⋄ worst-case (global) analyses,
⋄ average-case analyses,
⋄ high-probability analyses,
⋄ smoothed analyses.

Here: classical worst-case framework
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Worst-case complexity analyses
Requires assumptions on f (formally: f ∈ F for a certain F).

How to ensure an algorithm to “always” work with prescribed guarantees?

⋄ “if it works on the worst f ∈ F , it works on all f ∈ F .”

Philosophically, what we target:

Good tuning of γk

0 250 500

Iteration counter

10
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10
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10
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— Worst-case guarantee — Experiments

(Here: convex quadratic min., gradient descent with random init.)
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Worst-case complexity analyses

Key points:

⋄ worst-case convergence ⇒ we can trust method as black-boxes,

⋄ worst-case guarantees ⇒ guide for method tuning.

This is a whole field of study, with many results.11,12,13

A few limitations of the traditional viewpoint:

⋄ conservative nature,

⋄ technical, error-prone,

⋄ lack global insights.

11Polyak (1964). Some methods of speeding up the convergence of iteration methods.
12Nemirovskii, Yudin (1983). Problem complexity and method efficiency in optimization.
13Nesterov (2018). Lectures on convex optimization.
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Global insight of worst-case analyses?

33



Example: analysis of a gradient method

Find x⋆ ∈ Rd such that

f (x⋆) = min
x∈Rd

f (x).

(Gradient method) We decide to use: xk+1 = xk − γk∇f (xk )

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x⋆), ∥∇f (xN)∥, ∥xN − x⋆∥?

Alternatively: how fast does the ratio “error at iteration N”
“initial error” decrease with N?

Such guarantees reachable only by assuming something on f .
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Typical assumptions

Nontrivial guarantees only by assuming something on class of problems!

Many standard (documented) classes of functions.

Among many others: diff. function f is commonly assumed to be (for all x , y ∈ Rd ):

⋄ L-smooth: f (x) ⩽ f (y) + ⟨∇f (y), x − y⟩+ L
2∥x − y∥2,

⋄ convex: f (x) ⩾ f (y) + ⟨∇f (y), x − y⟩,
⋄ µ-strongly convex: f (x) ⩾ f (y) + ⟨∇f (y), x − y⟩+ µ

2 ∥x − y∥2.
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Smooth strongly convex functions

Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ⩾ f (y) + ⟨∇f (y), x − y⟩,

(1b) (µ-strong convexity) f (x) ⩾ f (y) + ⟨∇f (y), x − y⟩+ µ
2 ∥x − y∥2,

(2) (L-smoothness) f (x) ⩽ f (y) + ⟨∇f (y), x − y⟩+ L
2∥x − y∥2.
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Convergence rate of a gradient step

'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all

⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all

⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all
⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all
⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all
⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all
⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all
⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all
⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

∥x1 − x⋆∥2 ⩽ τ∥x0 − x⋆∥2,

for all
⋄ L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),

⋄ x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

⋄ x⋆ = argmin
x

f (x)?

Computing τ?

τ = max
f ,x0,x1,x⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x⋆) = 0 Optimality of x⋆

Variables: f , x0, x1, x⋆; parameters: µ, L, γ0.

Problem can be reformulated as semidefinite program (SDP).

37



Sampled version

⋄ Performance estimation problem:

max
f ,x0,x1,x⋆

∥x1 − x0∥2

∥x0 − x⋆∥2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x⋆) = 0.

⋄ Variables: f , x0, x1, x⋆.

⋄ Sampled version: f is only used at x0 and x⋆ (no need to sample other points)

max
x0,x1,x⋆
g0,g⋆
f0,f⋆

∥x1 − x0∥2

∥x0 − x⋆∥2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, ⋆
gi = ∇f (xi ) i = 0, ⋆

x1 = x0 − γ0g0

g⋆ = 0.

⋄ Variables: x0, x1, x⋆, g0, g⋆, f0, f⋆.
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x1 = x0 − γ0∇f (x0)

∇f (x⋆) = 0.

⋄ Variables: f , x0, x1, x⋆.
⋄ Sampled version: f is only used at x0 and x⋆ (no need to sample other points)

max
x0,x1,x⋆
g0,g⋆
f0,f⋆

∥x1 − x0∥2

∥x0 − x⋆∥2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, ⋆
gi = ∇f (xi ) i = 0, ⋆

x1 = x0 − γ0g0

g⋆ = 0.

⋄ Variables: x0, x1, x⋆, g0, g⋆, f0, f⋆.

38



Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi ) = fi , and gi = ∇f (xi ), ∀i ∈ S .

- Necessary and sufficient condition: ∀i , j ∈ S

fi ⩾ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj )

∥∥2
.

- Simpler example: pick µ = 0 and L = ∞ (just convexity):

fi ⩾ fj +
〈
gj , xi − xj

〉
.
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Replace constraints

⋄ Interpolation conditions allow removing red constraints

max
x0,x1,x⋆
g0,g⋆
f0,f⋆

∥x1 − x⋆∥2

∥x0 − x⋆∥2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, ⋆
gi = ∇f (xi ) i = 0, ⋆

x1 = x0 − γ0g0

g⋆ = 0,

⋄ replacing them by

f⋆ ⩾ f0 + ⟨g0, x⋆ − x0⟩+ 1
2L∥g⋆ − g0∥2 + µ

2(1−µ/L)

∥∥x⋆ − x0 − 1
L
(g⋆ − g0)

∥∥2

f0 ⩾ f⋆ + ⟨g⋆, x0 − x⋆⟩+ 1
2L∥g0 − g⋆∥2 + µ

2(1−µ/L)

∥∥x0 − x⋆ − 1
L
(g0 − g⋆)

∥∥2
.

⋄ Same optimal value (no relaxation); but still non-convex quadratic problem.
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Semidefinite lifting

⋄ Using the new variables G ≽ 0 and F

G =

[
∥x0 − x⋆∥2 ⟨g0, x0 − x⋆⟩
⟨g0, x0 − x⋆⟩ ∥g0∥2

]
, F = f0 − f⋆,

⋄ previous problem can be reformulated as a 2 × 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µ

G1,2 ⩽ 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µ

G1,2 ⩽ 0

G1,1 = 1

G ≽ 0

(using an an homogeneity argument and substituting x1 and g⋆).
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Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ0.

−1 0 1 2 3
0

1

2

3

4

step-size γ0

∥x1−x⋆∥2

∥x0−x⋆∥2

⋄ Observation: numerics match max{(1 − γ0L)2, (1 − γ0µ)2}.
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Solving the SDP...
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Performance estimation & gradient descent

⋄ We can compute for the smallest τ(γ0) such that

∥x1 − x⋆∥2 ⩽ τ(γ0)∥x0 − x⋆∥2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γ0∇f (x0).

⋄ Feasible points to the previous SDP correspond to lower bounds on τ(γ0).

⋄ Feasible points to dual SDP correspond to upper bounds on τ(γ0).

⋄ Want to know more?
− https://francisbach.com/computer-aided-analyses/
− Toolboxes (next slides).

43

https://francisbach.com/computer-aided-analyses/


Performance estimation & gradient descent

⋄ We can compute for the smallest τ(γ0) such that

∥x1 − x⋆∥2 ⩽ τ(γ0)∥x0 − x⋆∥2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γ0∇f (x0).

⋄ Feasible points to the previous SDP correspond to lower bounds on τ(γ0).

⋄ Feasible points to dual SDP correspond to upper bounds on τ(γ0).

⋄ Want to know more?
− https://francisbach.com/computer-aided-analyses/
− Toolboxes (next slides).

43

https://francisbach.com/computer-aided-analyses/


Performance estimation & gradient descent

⋄ We can compute for the smallest τ(γ0) such that

∥x1 − x⋆∥2 ⩽ τ(γ0)∥x0 − x⋆∥2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γ0∇f (x0).

⋄ Feasible points to the previous SDP correspond to lower bounds on τ(γ0).

⋄ Feasible points to dual SDP correspond to upper bounds on τ(γ0).

⋄ Want to know more?
− https://francisbach.com/computer-aided-analyses/
− Toolboxes (next slides).

43

https://francisbach.com/computer-aided-analyses/


Performance estimation & gradient descent

⋄ We can compute for the smallest τ(γ0) such that

∥x1 − x⋆∥2 ⩽ τ(γ0)∥x0 − x⋆∥2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γ0∇f (x0).

⋄ Feasible points to the previous SDP correspond to lower bounds on τ(γ0).

⋄ Feasible points to dual SDP correspond to upper bounds on τ(γ0).

⋄ Want to know more?
− https://francisbach.com/computer-aided-analyses/
− Toolboxes (next slides).

43

https://francisbach.com/computer-aided-analyses/


Software

François Julien

Céline Baptiste Aymeric

⋄ Performance Estimation Toolbox (PESTO) in Matlab, 2017.

⋄ Performance Estimation in Python (PEPit), 2022.
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PESTO example: an inexact accelerated gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Accelerated Gradient Method
Input: f L-smooth and convex, x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
∇f (yi )

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi )

What if inexact gradient used instead? Relative inaccuracy model:

∥d̃f (yi )−∇f (yi )∥ ⩽ ε∥∇f (yi )∥.

What guarantees of type
f (xN)− f⋆

∥x0 − x⋆∥2 ⩽ τ(N, L)?

Next slide: compute τ(N, L) numerically using SDP.
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PESTO example: an inexact accelerated gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path
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clear all; clc;

% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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clear all; clc;
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F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...
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✔ fast prototyping (∼ 20 effective lines)
✔ quick analyses (∼ 10 minutes)
✔ computer-aided proofs (multipliers)
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PESTO example: an inexact accelerated gradient method
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

✔ fast prototyping (∼ 20 effective lines)
✔ quick analyses (∼ 10 minutes)
✔ computer-aided proofs (multipliers)
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PESTO example: an inexact accelerated gradient method
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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clear all; clc;

% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...
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✔ fast prototyping (∼ 20 effective lines)
✔ quick analyses (∼ 10 minutes)
✔ computer-aided proofs (multipliers)
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PESTO example: Douglas-Rachford splitting

Minimize sum of two convex (cpp) functions

min
x∈Rd

f (x) + h(x).

Douglas-Rachford Splitting
Input: f , h convex (cpp) functions, w0 ∈ Rd .

For i = 0 : N − 1

xi+1 = argminx∈Rd {γh(x) + 1
2∥x − wi∥2}

yi+1 = argminy∈Rd {γf (y) + 1
2∥y − 2xi+1 + wi∥2}

wi+1 = wi +
1
2 (yi+1 − xi+1).

Next slide: compute convergence rates when f is strongly convex and h is smooth.
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PESTO example: Douglas-Rachford splitting
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PESTO example: Douglas-Rachford splitting
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How general is this?

Includes... but not limited to

⋄ subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

⋄ projected and proximal variants, accelerated/momentum versions,

⋄ steepest descent, greedy/conjugate gradient methods,

⋄ Frank-Wolfe/conditional gradients,

⋄ Douglas-Rachford (ADMM), other operator splitting schemes,

⋄ Krasnoselskii-Mann and Halpern fixed-point iterations,

⋄ inexact versions of all the above,

⋄ stochastic versions: SGD, SAG, SAGA and variants.

Toolboxes contain most of the recent PEP-related advances (including techniques by
other groups) available. Clean updated references & examples in user manual.

First ideas in this line of research coined by Drori and Teboulle (2014).
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Important inspiration & reference:

⋄ Drori, and Teboulle (’14). “Performance of first-order methods for smooth
convex minimization: a novel approach.”

Second part of the presentation:

⋄ T., Hendrickx, Glineur (’17). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.”

⋄ T., Hendrickx, Glineur (’17). “Exact worst-case performance of first-order
methods for composite convex optimization.”

⋄ T., Hendrickx, Glineur (’17). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods.”

⋄ Goujaud, Moucer, et al. (’22). “PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python.”

Designing algorithms with PEPs:

⋄ Drori, T (’20). “Efficient first-order methods for convex minimization: a
constructive approach.”

⋄ Drori, T (’22). “On the oracle complexity of smooth strongly convex
minimization.”

⋄ T, Drori (’23). “An optimal gradient method for smooth strongly convex
minimization.”

Informal introduction: https://francisbach.com/computer-aided-analyses/.
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Concluding remarks

Optimization algorithms: currently a wild jungle.

⋄ still: certain guiding principles & main driving algorithms,

⋄ guarantees ⇒ trust and black box,

⋄ ... but somewhat behind schedule.

Performance estimation’s philosophy

⋄ numerically allows obtaining tight bounds (rigorous baselines),

− fast prototyping
− worth checking before trying to prove a method works.

⋄ algebraic insights into proofs: principled approach.

⋄ validation & benchmark tool for proofs (also for reviews ,).
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Thanks! Questions?
PerformanceEstimation/Performance-Estimation-Toolbox on Github

PerformanceEstimation/PEPit on Github


