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Key messages

o fixed-point perspective on optimization algorithms

many references on the topic.1:2:34

o a few (standard) ideas for designing methods,

¢ a constructive approach to algorithm analysis and design

. if time allows.

1 Moreau (1962). “Fonctions convexes duales et points proximaux dans un espace hilbertien.”

2Rockafellar (1976). “Augmented Lagrangians and applications of the proximal point algorithm in
convex programming.”

3Combettes, Pesquet (2011). “Proximal splitting methods in signal processing.”

4Ryu, Boyd. (2016). “Primer on monotone operator methods.”
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(%) £ min f(x),

with f, D convex.

Use iterative algorithm generating a sequence xg, x1, . - ., Xn-

Example: gradient descent iterates xx11 = xx — Yk V£ (xk).
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Trust in numerical algorithms is a desirable luxury.

Question: what a priori guarantees after N iterations?

Examples: what about f(xn) — f(x.), [[VF(xn)|. [Ixnv — x||?

Slow, then fast?

Diverging?

“Error’

7
Fast, then stall? “Time"
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Convergence of an algorithm? (if it works)

Classical approaches:

© “convergence” analysis (no speed),
“asymptotical” (local) analyses,
worst-case (global) analyses,
average-case analyses,

high-probability analyses,

[ R R

smoothed analyses.
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Extended-valued functions

We consider extended-valued functions f : R” — R U {+o0}.

Example: indicator function of interval [a, b]

] o if x € [a, b]
ifa,0)(X) = +o00  otherwise.

P === ==

Effective domain of f : R — R U {+o0}:
domf ={x : f(x) < 4oo}.

Note: so f might encode implicit constraints.

[ -
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Convex functions

Graph is below line connecting any pairs (x, f(x)) and (y, f(y)):
f(Ox + (1 - 0)y) < 0f(x) + (1 - 0)f(y),

Vo € [0, 1].

Examples:

1
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1
1
1
1
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[}
[}
1
L4

convex function non-convex function.
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Notation:
o subdifferential: of : R” — 28" (power set),

o subdifferential at x:
f(x)={g : f(y)=f(x)+g"(y —x) ¥y €eR"},
© any g € Of(x) is a subgradient of f at x.

Essentially: (closed) convex functions have subgradients in relint(dom f).
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Optimality conditions
Convex optimization problem:

o

Optimality condition (Fermat's rule): x, optimal iff 0 € Of(x,).

o Proof: x minimizes f if and only if
f(y) = f(x) = f(x) + 07 (y — x) for all y € R".

o Example: several subgradients at solution, including 0:

10
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Optimality conditions (I1)

Convex optimization problem (take Il):
min f(x) + h(x)

with both f and h convex (closed, non-empty effective domains).

o Under some conditions (e.g., “constraint qualifications”):
A(f 4 h)(x) = Of (x) + Oh(x).
o We will search (Fermat's rule) for x,:

0 € O(f + h)(x.) = Of (x,) + Oh(x,),

where equality follows from constraint qualifications (e.g., Slater's).

This is strongly related to the usual KKT optimality conditions
o in fact: it is exactly the same (alternate terminology)

o allows for simple manipulations.

11
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Splitting methods

No free lunch: no “general” method works well for all problems.

In numerical optimization, key is usually:
o clear identification of my specifications (timings, accuracy, etc.)?
o divide problem into “cheap”/“simple” pieces...

Current library of numerical optimization algorithms:
o clearly a jungle,

o still, a few key “algorithmic templates’ emerged.

13
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Splitting methods: a few examples

A few examples for the problem:

)Eré]ilgn{f(x) . x € D}

with f a (closed, proper) convex function and D a convex set.

Typical splitting strategies:
© can | project on D7
o can | perform linear optimization on D?
o can | compute gradients of f7 Hessian?
o stochastic approximations to 7
© coordinate-wise optimization is easy?

(choices also depends on the targets, e.g., accuracy).

14
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Example: Projected gradient descent (1)

Differentiable (closed, proper) convex function f and convex set D:

min {f(x) : x € D}.

x€ERnM
Assumptions:
o | can access gradients of f,

¢ | can project on D.

Iterate: xx;1 = argmin {f(xk) + VF(x) T (x — xx) + %Hx — xk||%} )

xeD

Equivalently:
Xkr1 = argmin{Hx — (xk — YV F(xx)) H%} )
xeD

s0 xk1 = Projp (xk — vV (x)) -

15



Example: Projected gradient descent (II)

X1 = Projp (xk — YV (x))

Projp(-)
—VI£()
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Example: Projected gradient descent (II)

X1 = Projp (xk — YV (x))

Projp(-)
—VI£()

Guarantees when f convex with L-Lipschitz gradient and v € (0,2/L).
For instance, when v = 1/L:

L|lxo — x.||2
f(XN)—f;, < || 02N *HZ.
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Example: Projected gradient descent (l11)

Smooth convex function f and (closed) convex set D:

min £(x) + i(x),

with (convex) indicator function of set D: ip(x) = {

0 if xeD

400 otherwise.
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Iterate:
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Example: Frank-Wolfe / conditional gradient (I)

Differentiable (closed, proper) convex f and compact convex D:

g}i}gﬂ{f(x) . x €D}

Assumptions:
o | can access gradients of f,
o | can perform linear optimization on D.

Iterate:

Sk = ar;gergin {f(x) + V(x) (s — xi) }

Xk = (1 = M )xk—1 + AkSk.

Typical choice for A = k%l

18



Example: Frank-Wolfe / conditional gradient (II)

!

Picture from M. Jaggi (2013):

“Revisiting Frank-Wolfe:

Projection-Free Sparse Convex
Optimization.”
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Example: Frank-Wolfe / conditional gradient (II)
.

Picture from M. Jaggi (2013):
“Revisiting Frank-Wolfe:
Projection-Free Sparse Convex
Optimization.”

Guarantees when f convex with L-Lipschitz gradient and Diam(D) < occ:

LDiam(D)?
N+2
Similarly, can be seen as a fixed-point algorithm:

f(xn) — f <

0 € Vf(x) + dip(x) < x € dix(~VF(x))
& x € (1 - \)9in (=VF(x)) + Ax.
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Governing umbrella: fixed-point iterations

Splitting methods:
o reformulate optimality conditions as fixed points,

— using the operations that are “easy”
— ex: can | invert a gradient? can | project? etc.

o check/hope that the fixed-point iteration converges,

o a few other standard schemes and many variations around them

— Douglas-Rachford Splitting, ADMM, Chambolle-Pock
algorithm, three-operator (Davis-Yin) splitting...

© most of those strategies apply to more general situations

— that include primal-dual optimality conditions.
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The proximal-point method



Continuous-time perspective

Minimization of a convex function f:

WAl
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Continuous-time perspective

Minimization of a convex function f:

WAl

Continuous-time interpretation of the minimization procedure:

o “gradient flow": Zx(t) = —Vf(x(t)).

o Explicit Euler approx.: xzyat = x¢ — AtV f(x;:) (gradient descent),
o Implicit Euler approx.: xi1ar = x¢ — AtV F(xe1ar) (proximal point).
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Proximal-point algorithm

Minimize a (closed, proper) convex functions:

o

<&

Optimality condition: search x such that 0 € 9f(x).

<

A fixed-point reformulation:
X € x —y0f(x)

for some v > 0.

<

Proximal point: xxi1 € xx — YOf (xk+1). Equivalently:

Xk41 = argmin {f(x) + %Hx - xk||2} ,
x€ER"

o

guaranteed:
Ix0 — x>

f(xe) — f(xe) < .
(k) ( ) 42;(:_01%_
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Proximal-point splittings

Proximal-point operation:

o has a very long history
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Proximal-point operation:
o has a very long history®6:7

o are at the center of many “first-order” algorithms,&:9:10

o Many examples of proximal operators with closed forms:
http://proximity-operator.net/,

© many results on “approximated” proximal-point too.

5Moreau (1962). “Fonctions convexes duales et points proximaux dans un espace hilbertien.”
®Minty (1962). “Monotone (nonlinear) operators in Hilbert space.”

7Rockafellar (1976). “Augmented Lagrangians and applications of the proximal point algorithm in
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Proximal-point for convex QPs (I)

Minimize a quadratic function (with Q = 0) under linear constraints:
mXin {%XTQX  Ax < b} .
with the proximal-point algorithm:

Xk+1 = argmin {f(x) + i”x - Xk||2} .
x€eR"

Bad news:

X1 = argmin {%XTQX + ﬁ”x —x? ¢ Ax < b}
xeRn

is just as hard as the original problem.
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Proximal-point for QPs (I1)
Minimize a quadratic function (with Q = 0) under linear constraints:

min{%xTQx o Ax < b}.
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Minimize a quadratic function (with Q = 0) under linear constraints:

min{%xTQx o Ax < b}.

Introduce L(x,\) = 2x7 Qx+ q"x+ AT (Ax — b) and define dual (A >

d(A) = min L(x, ).
d(\) is concave so we can apply the proximal-point on the dual:

A = d A — Ak
i1 = argmax {d(0) - 2| 12}
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Proximal-point for QPs (I1)

Minimize a quadratic function (with Q = 0) under linear constraints:

min{%xTQx o Ax < b}.

Introduce L(x,\) = 2x7 Qx+ q"x+ AT (Ax — b) and define dual (A >

d(A) = min L(x, ).
d(\) is concave so we can apply the proximal-point on the dual:

Aes1 :ar%gtax{d( )= 2 1A= a2}

Explicitly max. over A (not over x) yields the method of mulipliers:

Xit1 € argmin L (x, [\ — 1 (Ax — b)],,)

Akt1 = [Ae — Y(Axiyr — b)),

(problem in x is piecewise quadratic, but convex and unconstrained).

0)
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Proximal-point for QPs (111)

Proximal-point also applies to the saddle-point formulation:

maxmin L(x, \)

> X

which is convex-convave, yielding the proximal method of multipliers:
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Proximal-point for QPs (111)

Proximal-point also applies to the saddle-point formulation:

maxmin L(x, \)

> X

which is convex-convave, yielding the proximal method of multipliers:

(Ak+1, Xk41) = argmax argmin {L(X A) + —||X — x]|? = 2[13k 1A — /\kHz} .
A>0 X

In practice, we need to:

© approximate

(Aes1.Xk41) e argmax argmin { L(x, A) + 2L [x = xcl2 = 551X = A2}
A=0 X

© choose appropriate step size policies (5 and ~,) trading-off:

— large values: less iterations,
— small values: inner problem is simpler.
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A priori working guarantees’

for numerical optimization algorithms
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Convergence of an algorithm? (if it works)

Classical approaches:

<

LR R R R

“convergence” analysis (no speed),
“asymptotical” (local) analyses,
worst-case (global) analyses,
average-case analyses,
high-probability analyses,
smoothed analyses.

Here: classical worst-case framework
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Worst-case complexity analyses
Requires assumptions on f (formally: f € F for a certain F).

How to ensure an algorithm to “always” work with prescribed guarantees?

o “if it works on the worst f € F, it works on all f € F.

Philosophically, what we target:
Good tuning of 7

102
101\

0 250 500
Iteration counter

Distance to a solution
=)

— Worst-case guarantee Experiments

(Here: convex quadratic min., gradient descent with random init.)
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Worst-case complexity analyses

Key points:
© worst-case convergence = we can trust method as black-boxes,

© worst-case guarantees = guide for method tuning.

This is a whole field of study, with many results.1?12.13

A few limitations of the traditional viewpoint:
& conservative nature,
o technical, error-prone,

¢ lack global insights.

11polyak (1964). Some methods of speeding up the convergence of iteration methods.
12Nemirovskii, Yudin (1983). Problem complexity and method efficiency in optimization.

13Nesterov (2018). Lectures on convex optimization.
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Example: analysis of a gradient method

Find x, € R? such that

f(x«) = min f(x).
xERI

(Gradient method) We decide to use: xx11 = xx — vk VF(xk)

Question: what a priori guarantees after N iterations?

Examples: what about f(xy) — f(x), [[VF(xn)|l, |Ixn — x«|?
Alternatively: how fast does the ratio -error at iteration N o rease with N7?

“initial error”

Such guarantees reachable only by assuming something on f.
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Typical assumptions

Nontrivial guarantees only by assuming something on class of problems!

Many standard (documented) classes of functions.

Among many others: diff. function f is commonly assumed to be (for all x,y € RY):

o Lsmooth: f(x) < f(y) + (VF(y),x —y) + 5lx — y[%,
o convex: f(x) = f(y)+ (VFf(y),x —y),
o p-strongly convex: f(x) > f(y) + (Vf(y),x —y) + 5llx — vl
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Smooth strongly convex functions

Consider a differentiable function f : R? — R, f is (u-strongly) convex and L-smooth
iff ¥x,y € R? we have:

f

(1) (Convexity) f(x) = f(y) +(VFf(y),x —y),

(1b) (u-strong convexity) f(x) = f(y) + (VFf(y),x —y) + 5llx — ylI2,
(2) (L-smoothness) f(x) < f(y) + (VF(y),x — y) + 5llx — y|*.
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o L-smooth and pu-strongly convex function f (notation f € F,, ),

© xp, and x1 generated by gradient step x1 = xo — 70V f(x0),

\o X; = argmin f(x)?
X

Computing 77

l[x1 — x|[?
T =
foxoxa.xx || X0 — X*H2
st. feF,. Functional class
x1 = x0 — Y0V f(xo) Algorithm
Vi(x«) =0 Optimality of x,

Variables: f, xg, x1, Xx; parameters: u, L, vo.
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Convergence rate of a gradient step

Koy example: What is the smallest 7 such that:
[ = xul? < 7llx0 — x|,
for all

o L-smooth and pu-strongly convex function f (notation f € F,, ),

© xp, and x1 generated by gradient step x1 = xo — 70V f(x0),

\o X; = argmin f(x)?
X

Computing 77

l[x1 — x|[?
T =
foxoxa.xx || X0 — X*H2
st. feF,. Functional class
x1 = x0 — Y0V f(xo) Algorithm
Vi(x«) =0 Optimality of x,

Variables: f, xg, x1, Xx; parameters: u, L, vo.

Problem can be reformulated as semidefinite program (SDP).
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Sampled version
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Sampled version

o Performance estimation problem:

[ = xol?
fxoxwxe  ||xo — x«||?
subject to  f is L-smooth and pu-strongly convex,
x1 = xo — Y0 Vf(xo)
Vif(xx)=0.
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Sampled version

o Performance estimation problem:

[ = xol?
fxoxwxe  ||xo — x«||?
subject to  f is L-smooth and pu-strongly convex,
x1 = xo — Y0 Vf(xo)
Vif(xx)=0.

o Variables: f, xo, X1, X«.
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Sampled version

o Performance estimation problem:

lIx1 — xo|?
fxoxwxe  ||xo — x«||?
subject to  f is L-smooth and pu-strongly convex,
x1 = xo — Y0 Vf(xo)
Vif(xx)=0.

o Variables: f, xo, X1, X«.
o Sampled version: f is only used at xg and x. (no need to sample other points)
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Sampled version

o Performance estimation problem:

x2 — xol?

f,X0,X1 , X HXO - X*Hz

subject to

x1 = x0 — Yo Vf(x0)

Vf(xx) =0.

o Variables: f, xo, X1, X«.

o Sampled version: f is only used at xg and x. (no need to sample other points)

max
X0,X1 5 X%

80,8+
fo,fx

subject to

Ix1 = xol?
[Ix0 — x |2
3f € F,,L such that {

X1 = X0 — Y080
g« =0.

fi = f(xi)

g = Vf(x)

f is L-smooth and p-strongly convex,

* ot
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Sampled version

o Performance estimation problem:

[ = xol?
f,X0,X1 , X HXO - X*Hz

subject to  f is L-smooth and pu-strongly convex,
x1 = xo — Y0 Vf(xo)
Vf(x«)=0.
o Variables: f, xo, X1, X«.

o Sampled version: f is only used at xg and x. (no need to sample other points)

lIx1 — xol|?
max I
S ol
fo,fx

Il
oo

subject to  3f € F,, | such that { ;::fV()z(‘l()x,)

* ot

X1 = X0 — Y080
g« =0.

o Variables: xp, x1, Xx, 0, &«, fo, fx.

38



Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
(sub)gradients g; and function values f;.
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f
AN .

X1

? Possible to find f € F, ; such that
f(x)=fi, and g = Vf(x), Vi€ S.



Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
(sub)gradients g; and function values f;.

f
AN .

X1

? Possible to find f € F, ; such that
f(x)=fi, and g = Vf(x), Vi€ S.

- Necessary and sufficient condition: Vi,j € S

fi> 6+ (g —x) + e — gl* + sl — 9 — Hei — &)l

39



Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
(sub)gradients g; and function values f;.

f
AN .

X1

? Possible to find f € F, ; such that
f(X,') =f;, and g = VIC(X,')7 VieS.
- Necessary and sufficient condition: Vi,j € S
1 2 1 2
fi > £+ (g, xi — %) + 31 ll& — glI” + st llx —x — e — )"
- Simpler example: pick 4 =0 and L = oo (just convexity):

fi > f; + (g, xi — xj)-

39



Replace constraints
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Replace constraints

¢ Interpolation conditions allow removing red constraints

lIx1 — x|
X0,X1 5 _ 2
G o=l
fo»f*
. fi = f(x;) i=0,%
subject to  Jf € F,, | such that { g = VF(x) i=0x

X1 = Xo — 7080
g+ =0,
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Replace constraints

o Interpolation conditions allow removing red constraints

lIx1 — x|
X0,X1 5 _ 2
G o=l
fo,fx
. fi = f(x) i=0,%
subject to  Jf € F,, | such that { g = VF(x) i=0x

X1 = Xo — Y080
8x = Oa

o replacing them by

1) 2
fi = fo + (g0, xx — x0) + i”g* *gOHz + m“x* — X0 — %(g* *gO)H

2
fo > fi + (g, %0 — xx) + 2 |lgo — &> + st o —x — 1(go — &)
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Replace constraints

¢ Interpolation conditions allow removing red constraints

Nl
e o2
fo,fx

subject to  Jf € F,, | such that { g

X1 = Xo — Y080
8x = Oa

o replacing them by

1) 2
fi = fo + (g0, xx — x0) + i”g* *gOHz + m“x* — X0 — %(g* *gO)H

2
fo > fi + (g, %0 — xx) + 2 |lgo — &> + st o —x — 1(go — &)

© Same optimal value (no relaxation); but still non-convex quadratic problem.
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Semidefinite lifting
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Semidefinite lifting

o Using the new variables G = 0 and F

lIxo — x|

G =
(g0, X0 — Xx)

(g0, x0 — Xx)
llgol|?

)

F=f—f,

41



Semidefinite lifting

o Using the new variables G 3= 0 and F

_ 2 _
6= Lg%y Pl ™| Pt
& previous problem can be reformulated as a 2 x 2 SDP
max Gi1 +78G22 — 270612
subject to  F + 5% )Gl 1+ 5 MG 2— £;6G12<0
—F+ 2(L—;¢) G111+ 2(L7u) Goo— 5. G12 <0

Gii1=1
G»0
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Semidefinite lifting

o Using the new variables G 3= 0 and F

2
G = ”XO_X*” <g07X0_X*> , —f—f
(g0, X0 — xx) llgoll? °

& previous problem can be reformulated as a 2 x 2 SDP

max Gi1+73G22—2v0Gi2

s

subject to  F + 2( )Gl 1+ 2(L u) G22 — ﬁ(ﬁ@ <0

-F+ 2(L—;¢) Gi1+ 2(L7u) G2 — £, G12<0
G171 =1
G=0

(using an an homogeneity argument and substituting x1 and gy).
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Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of ~p.
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Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of 7.

4

[ —x 12
lIx0—x« 12

N
I
L

0 | | |
-1 0 1 2 3

step-size o
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Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of 7.

4

l[xa—x« |12
lIx0—x« 12

N
I

0 | | |

-1 0 1 2

step-size o

o Observation: numerics match max{(1 —yoL)?, (1 — vou)?}.

42



Performance estimation & gradient descent

o We can compute for the smallest 7(o) such that
lIx1 = Xl < 7(70)lIx0 — xul|?

is satisfied for all xo € R, d €N, f € Fu,L, and x1 = xo — 70 Vf(xo).
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Performance estimation & gradient descent

o We can compute for the smallest 7(o) such that
lIx1 = Xl < 7(70)lIx0 — xul|?

is satisfied for all xo € R, d €N, f € Fu,L, and x1 = xo — 70 Vf(xo).

o Feasible points to the previous SDP correspond to lower bounds on 7(7o).
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o We can compute for the smallest 7(o) such that
lIx1 = Xl < 7(70)lIx0 — xul|?

is satisfied for all xo € R, d €N, f € Fu,L, and x1 = xo — 70 Vf(xo).
o Feasible points to the previous SDP correspond to lower bounds on 7(7o).

o Feasible points to dual SDP correspond to upper bounds on 7(7o).
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Performance estimation & gradient descent

o We can compute for the smallest 7(o) such that
lIx1 = Xl < 7(70)lIx0 — xul|?

is satisfied for all xo € R, d €N, f € Fu,L, and x1 = xo — 70 Vf(xo).
o Feasible points to the previous SDP correspond to lower bounds on 7(7o).
o Feasible points to dual SDP correspond to upper bounds on 7(7o).

o Want to know more?

— https://francisbach.com/computer-aided-analyses/
— Toolboxes (next slides).
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Software

AP

Francois Julien

Céline Baptiste Aymeric

¢ Performance Estimation Toolbox (PESTO) in Matlab, 2017.
o Performance Estimation in Python (PEPit), 2022.
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PESTO example: an inexact accelerated gradient method

Minimize L-smooth convex function f(x):

min f(x).
x€R
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PESTO example: an inexact accelerated gradient method

Minimize L-smooth convex function f(x):

min f(x).
x€R

Accelerated Gradient Method
Input: f L-smooth and convex, xp = yo € RY.

Fori=0:N—-1

1
Xiy1 = Yi — ZVf(y,-)
i—1

= x 1 — X
Yi+1 = Xi+1 + it (XI+1 r)
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PESTO example: an inexact accelerated gradient method

Minimize L-smooth convex function f(x):

min f(x).
x€R

Accelerated Gradient Method
Input: f L-smooth and convex, xp = yo € RY.

Fori=0:N—-1

1
Xiy1 = Yi — ZVf(y,-)
i—1

Yi+1 = Xi+1 + I.+72(Xi+1 - Xj)

What if inexact gradient used instead? Relative inaccuracy model:

e (vi) = V)l < el VF()ll-
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PESTO example: an inexact accelerated gradient method

Minimize L-smooth convex function f(x):

min f(x).
x€R

Accelerated Gradient Method
Input: f L-smooth and convex, xp = yo € RY.

Fori=0:N—-1

1.
X1 = Yi — de(Yi)
i—1

Yi+1 = Xi+1 + I.+72(Xi+1 - Xj)

What if inexact gradient used instead? Relative inaccuracy model:

I1de (vi) = VE)Il < el V)
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PESTO example: an inexact accelerated gradient method

Minimize L-smooth convex function f(x):

min f(x).
x€R

Accelerated Gradient Method
Input: f L-smooth and convex, xp = yo € RY.

Fori=0:N—-1

1.
X1 = Yi — de(Yi)
i—1

Yi+1 = Xi+1 + I.+72(Xi+1 - Xj)

What if inexact gradient used instead? Relative inaccuracy model:

I1de (vi) = VE)Il < el V)

What guarantees of type

Flxn) — fo
Fl) = e <N, L)?
[Ixo — x|l

Next slide: compute 7(N, L) numerically using SDP.
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PESTO example: an inexact accelerated gradient method

% (0) Initialize an empty PEP
P = pep();

% (1) set up the objective function
param.mu = 0; % strong convexity parameter
param.L = 1; % Smoothness parameter

.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

X0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)
P.InitialCondition((x0-xs)A2 <= 1); % Add an initial condition ||x@-xs||A2<= 1

% (3) Algorithm
N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience
x{1} = x0;
y x0;
eps = .1;
for i =1:N
d = inexactsubgradient(y, F, eps);
x{i+1} =y - 1/param.L * d;
y = x{i+1} + (i-1)/(i*2) * (x{i*1} - x{i});

end

% (4) Set up the performance measure
[9, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)
p.PerformanceMetric(f - fs); % orst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP
P.solve()

% (6) Evaluate the output
double(f - fs) % worst-case objective function accuracy
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PESTO example: an inexact accelerated gradient

% (0) Initialize an empty PEP
P = pep();

% (1) Set up the objective function

param.mu = ©; % strong convexity parameter

param.L = 1; % Smoothness parameter
F=P.DeclareFunction( 'SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

X0 = P.StartingPoint(); % x0 is some starting point
el e & ooiizaiooio: ; gl i Saselie
x{1} = x0; 3
y = x0;
eps = .1;
for i = 1:N
d = inexactsubgradient(y, F, eps);
x{i+1} =y - 1/param.L * d;
y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});
end
Y LR cetan ey zae sy v oo amn ceva
end

% (4) Set up the performance measure
[9, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)
p.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP
P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

method
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PESTO example: an inexact

% () Initialize an empty PEP
P = pep();

% (1) Set up the objective function
param.mu = 0; % strong convexity parameter
param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

i) = f(x)

X0 = P.StartingPoint(); % x0 is some starting point
PPt I WS R PV IN e inal and fooo L L
x{1} = x0; i Iteration counter k
y = x0;
eps = .1;
for i = 1:N
d = inexactsubgradient(y, F, eps);
x{i+1} =y - 1/param.L * d;
y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});
end
4 ey e Sy A ea B eSS Ea s B S e RO 1
end

% (4) Set up the performance measure
[g9, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)
p.PerformanceMetric(f - fs); % orst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP
P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

accelerated gradient method

(LR R URU)
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PESTO example: Douglas-Rachford splitting

Minimize sum of two convex (cpp) functions

mind f(x) + h(x).
xeR

Douglas-Rachford Splitting
Input: f, h convex (cpp) functions, wp € RY.
Fori=0: N—-1
Xi41 = argmin, cga {vh(x) + 3 [x — wil|*}
Yit1 = argmin, cpa{7f(y) + 3 lly — 2xi11 + w2}

Wit1 = Wi + %(}’iﬂ = Xiy1)-

Next slide: compute convergence rates when f is strongly convex and h is smooth.
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PESTO example: Douglas-Rachford splitting

%

Py

N
%

(@) Initialize an empty PEP
pepl);

=1;
(1) Set up the class of monotone inclusions

paramA.L = 1; paramA.mu = 0; % A is l-Lipschitz and @-strongly monotone
paramB.mu = .1; % B 1s .1-strongly monotone

A
B

W

M

Y

%

= P.DeclareFunction('LipschitzStronglyMonotons' ,parama) ;
= P.DeclareFunction(' StronglyMonotone', paramg) ;

= cell(n1,1); wp = cell(nw1,1);
= cellin,1); xp = cell(Nn,1);
= cell(n,1); yp = cell(n,1);

(2) Set up the starting points

w{l} = P.StartingPoint(}; wp{l} = P.StartingPoint()

P.

%

Llambda =
theta =

InitialCondition( (w{l}-wp{l})~2<=1);

(3) Algorithm
1.3; % step size (in the resolvents)
% overrelaxation

fork=1:N

x{k} proximal_step(w{k},B, lambda) ;
yik} proximal_step(2*x{k}-w{k},a,lambda);
wlk+1} = wik}-theta®(x{k}-y{k});

xp{k} = proximal_step(wp{kl},E, lambda);
yplk} = proximal_step(2*xp{k}-wp{k},A,lambda);
wplk+1} = wplk}-theta*(xp{k}-ypikl);
end
% (4) Set up the performance measure: ||z0-z1|[|~2
P.PerformanceMetric((wik+1}-wp{k+1})~2);
% (5) Solve the PEP
P.solve()
% (8) Evaluate the output

double( (wik+1}-wp{k+1})~2) % worst-case contraction factor
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PESTO example: Douglas-Rachford splitting

% (0) Initialize an empty PEP

P=pep();

N=1;

% (1) Set up the class of monotene inclusions

paramA.L = 1; paramA.mu = 0; % A is l-Lipschitz and @-strongly monotone
paramB.mu = .1; % B 1s .1-strongly monotone

A = P.DeclareFunction('LipschitzStronglyMonotons' ,parama) ;

B = P.DeclareFunction('StronglyMonotone', paramg) ;

w = cell(n1,1);  wp = cell(nw1,1);
= cellin,1); xp = cell(Nn,1);
y = cellin,1]; yp = cell(n,1);

M

% (2) Set up the starting points
w{l} = P.StartingPoint(}; wp{l} = P.StartingPoint()
P.InitialCondition( (w{l}-wp{l})"2==1);

% (3) Algorithm

lambda = 1.3; % step size (in the resolvents)
theta = % overrelaxation
ik} = proximal_step(wik},B, lambda);
yik} = proximal_step(2*x{k}-wikl, A, lambda);
wik+1} = wik}-theta*(x{k}-y{k});
ET ToXIMal_STep(wp k] /B, LambdsT;

=p
yplk} = proximal_step(2*xp{k}-wp{k},A,lambda);
wplk+1} = wplk}-theta*(xp{k}-ypikl);

end

(4) Set up the performance measure: ||z0-z1|[~2
.PerformanceMetric((w{k+1}-wplk+1})~2);

o %

(5) Solve the PEP
.solve(]

o &

% (8) Evaluate the output
double( (wik+1}-wp{k+1})~2) % worst-case contraction factor
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PESTO example: Douglas-Rachford splitting

% (0) Initialize an empty PEP
P=pep();

N=1;
% (1) Set up the class of monotene inclusions

paramA.L
paramB.mu = .1;

A
B

W

M

Y

% B 1s .1-strongly monotone

P.DeclareFunction('LipschitzStronglyMonotone' ,parama);
P.DeclareFunction(' StronglyMonotone', paramg) ;

= cell(n1,1); wp = cell(nw1,1);
= cellin,1); xp = cell(Nn,1);
= cell(n,1); yp = cell(n,1);

% (2) Set up the starting points
w{l} = P.StartingPoint(}; wp{l} = P.StartingPoint()
P.InitialCondition( (w{l}-wp{l})"2==1);

% (3) Algorithm

Llambda =
theta =

1.3; % step size (in the resolvents)
% overrelaxation

= 1; paramA.mu = O; % A 1s 1-Lipschitz and 0-strongly monotone

© © o 9o
N A o ®

Contraction rate p?

x{k} = proximal_step(w{k},B, lambda);
yik} = proximal_step(2*x{k}-w{k},a, lambda);

wik+1}

end

o %

o &

%

wik}-theta*(x{k}-y{k});

xplks = proxima 7step(wp{k},B,Lamsaa];
yplk} = proximal_step(2*xp{k}-wp{k},A,lambda);
wplk+1} = wplk}-theta*(xp{k}-ypikl);

4) Set up the performance measure: ||z0-z1||~2

.PerformanceMetric((w{k+1}-wplk+1})~2);

S) Solve the PEP

.solve()

&) Evaluate the output

double( (wik+1}-wp{k+1})~2) % worst-case contraction factor

0.5

1

1.5
Lipschitz constant L

pn=0.1
w=0.5
p=1
nw =15
w=2
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How general is this?

Includes... but not limited to
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Includes... but not limited to

¢ subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
projected and proximal variants, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Frank-Wolfe/conditional gradients,
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i
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How general is this?

Includes... but not limited to

¢ subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
projected and proximal variants, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Frank-Wolfe/conditional gradients,
Douglas-Rachford (ADMM), other operator splitting schemes,

O 0 0 0 0

Krasnoselskii-Mann and Halpern fixed-point iterations,
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Includes... but not limited to

¢ subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
projected and proximal variants, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Frank-Wolfe/conditional gradients,
Douglas-Rachford (ADMM), other operator splitting schemes,
Krasnoselskii-Mann and Halpern fixed-point iterations,
inexact versions of all the above,
stochastic versions: SGD, SAG, SAGA and variants.
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How general is this?

Includes... but not limited to

¢ subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
projected and proximal variants, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Frank-Wolfe/conditional gradients,
Douglas-Rachford (ADMM), other operator splitting schemes,
Krasnoselskii-Mann and Halpern fixed-point iterations,
inexact versions of all the above,
stochastic versions: SGD, SAG, SAGA and variants.

L I R SR IR B o

Toolboxes contain most of the recent PEP-related advances (including techniques by
other groups) available. Clean updated references & examples in user manual.
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How general is this?

Includes... but not limited to

¢ subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
projected and proximal variants, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Frank-Wolfe/conditional gradients,
Douglas-Rachford (ADMM), other operator splitting schemes,
Krasnoselskii-Mann and Halpern fixed-point iterations,
inexact versions of all the above,
stochastic versions: SGD, SAG, SAGA and variants.

L I R SR IR B o

Toolboxes contain most of the recent PEP-related advances (including techniques by
other groups) available. Clean updated references & examples in user manual.

First ideas in this line of research coined by Drori and Teboulle (2014).
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PEPit: Performance Estimation in Python

This open source Python library provides a generic way to use PEP framework in Python. Performance
estimation problems were introduced in 2014 by Yoel Drori and Marc Teboulle, see [1]. PEPit is mainly based

on the formalism and developments from [2, 3] by a subset of the authors of this toolbox. A friendly informal
introduction to this formalism is available in this blog post and a corresponding Matlab library is presented in
[4] (PESTO).

Website and documentation of PEPit: https://pepit.readthedocs.io/

com/Performanc EPil

Source Code (MIT); https://

Using and citing the toolbox
This code comes jointly with the following reference :

B. Goujaud, C. Moucer, F. Glineur, J. Hendrickx, A. Taylor, A. Dieuleveut (2022).
"PEPit: computer-assisted worst-case analyses of first-order optimization methods in Python."

When using the toolbox in a project, please refer to this note via this Bibtex entry:

@article{pepit2022,
title={{PEPit}: computer-assisted worst-case analyses of first-order optimization methods in {P}yt
author={Goujaud, Baptiste and Moucer, C\'eline and Glineur, Fram\c{c}ois and Hendrickx, Julien and
Jjournal={arXiv preprint arXiv:2201.040403,
year={2022}
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Important inspiration & reference:

o Drori, and Teboulle ('14). “Performance of first-order methods for smooth
convex minimization: a novel approach.”
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o Drori, and Teboulle ('14). “Performance of first-order methods for smooth
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Second part of the presentation:

o T., Hendrickx, Glineur ('17). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.”

o T., Hendrickx, Glineur ('17). “Exact worst-case performance of first-order
methods for composite convex optimization.”

o T., Hendrickx, Glineur ('17). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods.”

o Goujaud, Moucer, et al. ('22). "PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python.”
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Important inspiration & reference:

o Drori, and Teboulle ('14). “Performance of first-order methods for smooth
convex minimization: a novel approach.”

Second part of the presentation:

o T., Hendrickx, Glineur ('17). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.”

o T., Hendrickx, Glineur ('17). “Exact worst-case performance of first-order
methods for composite convex optimization.”

o T., Hendrickx, Glineur ('17). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods.”

o Goujaud, Moucer, et al. ('22). "PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python.”

Designing algorithms with PEPs:

o Drori, T ('20). “Efficient first-order methods for convex minimization: a
constructive approach.”

o Drori, T ('22). “On the oracle complexity of smooth strongly convex
minimization.”

o T, Drori ('23). “An optimal gradient method for smooth strongly convex
minimization.”

Informal introduction: https://francisbach.com/computer-aided-analyses/.
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Concluding remarks

Optimization algorithms: currently a wild jungle.
o still: certain guiding principles & main driving algorithms,
© guarantees = trust and black box,

¢ ... but somewhat behind schedule.
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Optimization algorithms: currently a wild jungle.
o still: certain guiding principles & main driving algorithms,
© guarantees = trust and black box,
& ... but somewhat behind schedule.
Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),

— fast prototyping
— worth checking before trying to prove a method works.

o algebraic insights into proofs: principled approach.

o validation & benchmark tool for proofs (also for reviews @).
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Thanks! Questions?

PERFORMANCEESTIMATION / PERFORMANCE-ESTIMATION-T0OLBOX on GITHUB

PeErFORMANCEEsTIMATION /PEPIT on GITHUB



