

WATCH YOUR STEPS Torque controlled locomotion in unknown environments

Pierre Fernbach, Maximilien Naveau | JNRH 2023

$\top \circ \vee \wedge \land \neg \circ$

Task Space Inverse Dynamics

Hierarchical QP solving for joints torque with respect to rigid body dynamics, friction cone constraints and a weighted set of tasks.

Estimator:

EKF with IMU and Kinematics odometry Hip flexibility compensation

$\mathsf{T} \mathrel{\mathsf{O}} \mathsf{W} \mathrel{\wedge} \mathsf{f} \mathrel{\boldsymbol{\mathcal{I}}}$

Task references:

Contact position Feet trajectories Center of mass trajectory

$\top \circ W \land \mathbf{\Gamma} \mathbf{\mathcal{I}}$

Centroidal Predictive Controller

MPC based on Linear Inverted Pendulum Model Formulation of Kajita 2003^[1]

[1] S. Kajita et al., "Biped walking pattern generation by using preview control of zero-moment point," 2003 IEEE International Conference on Robotics and Automation

$C_1 \land W \circ T$

Centroidal Predictive Controller

MPC based on Linear Inverted Pendulum Model Formulation of Kajita 2003^[1]

Optimize center of mass jerk over time horizon:

- Minimize center of mass jerk
- Track center of pressure references (computed from a contact sequence)

[1] S. Kajita et al., "Biped walking pattern generation by using preview control of zero-moment point," 2003 IEEE International Conference on Robotics and Automation

$T \cap W \wedge \Gamma \mathcal{I}$

Stabilizer

Capture Point control using natural dynamics of LIP^[2]

[2] J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer and G. Hirzinger, "Bipedal walking control based on Capture Point dynamics," 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems

$\mathsf{T} \mathsf{O} \mathsf{W} \land \mathsf{I} \mathsf{I}$

Walk with predefined footsteps:

30cm steps, 1.4 seconds per steps

$T \cap W \wedge \mathbf{r} \mathbf{2}$

Walk with predefined footsteps:

30cm steps, 1.4 seconds per steps

20cm steps, 0.9 seconds per steps

$\mathsf{T} \mathsf{O} \mathsf{W} \land \mathsf{I} \mathsf{I}$

Contact Planner: SL1M^[3]

Optimization-based method Work on non-coplanar surfaces Feasibility constraints considering kinematic limits and equilibrium

[3] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taïx and A. Del Prete, "SL1M: Sparse L1-norm Minimization for contact planning on uneven terrain," 2020 IEEE International Conference on Robotics and Automation (ICRA)

Contact Planner: SL1M^[3]

[3] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taïx and A. Del Prete, "SL1M: Sparse L1-norm Minimization for contact planning on uneven terrain," 2020 IEEE International Conference on Robotics and Automation (ICRA)

$T \cap W \wedge \Gamma \mathcal{I}$

Contact surfaces:

- Defines the locations where the center of the feet can create a contact
- Convex polygons
- Non overlapping

$T \cap W \wedge \mathbf{r} \mathbf{i}$

Realsense L515

$T \cap W \wedge \Gamma \mathcal{I}$

Point cloud from LIDAR

No perception of the close surrounding of the robot

Elevation map construction

Build and update an elevation map from the LIDAR point cloud during the motion

Elevation map construction

Build and update an elevation map from the LIDAR point cloud during the motion

Plane segmentation

Based on RANSAC method

Elevation map construction

Build and update an elevation map from the LIDAR point cloud during the motion

Plane segmentation

Based on RANSAC method

Surface processing

Convexify surfaces Reduce number of vertices Reduce with feet size margin Remove overlapping

T ~ O ~ W ~ A ~ I ~ J

$\textbf{T} \ \textbf{O} \ \textbf{W} \ \land \textbf{\Gamma} \ \textbf{J}$

Conclusion:

- Implementation of an architecture for locomotion in unknown environments
- Able to replan online
- Fully integrated with ROS
- Run fully onboard

Conclusion:

- Implementation of an architecture for locomotion in unknown environments
- Able to replan online
- Fully integrated with ROS
- Run fully onboard

Future work:

- Robustify the perception block
- Improve floating base estimation with visual odometry
- Fusion of head and waist sensors
- Global path planning

DYNAMOGRADE

Thank you

$C \land W \land \Gamma$

pierre.fernbach@toward.fr toward.fr