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REINFORCEMENT LEARNING
inside the CONTROL LOOP?



Optimization-Based Control for
Dynamic Legged Robots

Patrick M. Wensingl, Michael Posa2, Yue Hu®, Adrien Escande?, Nicolas Mansard®, Andrea Del Prete®

Abstract—In a world designed for legs, quadrupeds, bipeds,
and humanoids have the opportunity to impact emerging robotics
applications from logistics, to agriculture, to home assistance. The
goal of this survey is to cover the recent progress toward these
applications that has been driven by model-based optimization
for the real-time generation and control of movement. The
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swing leg motion). For trajectory optimization over whole-
body models, the solver 1s often limited to running at a slower
rate (though these rates are continually improving), requiring
some additional high-rate closed-loop control. Optimal closed-
loop feedback policies can sometimes be extracted from TO
solutions, e.g., as with DDP [44]. In most other cases, some
additional reactive control is required to realize optimized
motion plans and handle disturbances.




Feedback MPC for Torque-Controlled Legged Robots

Ruben Grandia', Farbod Farshidian!, René Ranftl®, Marco Hutter'

Abstract— The computational power of mobile robots is
currently insufficient to achieve torque level whole-body Model
Predictive Control (MPC) at the update rates required for
complex dynamic systems such as legged robots. This problem
is commonly circumvented by using a fast tracking controller
to compensate for model errors between updates. In this
work, we show that the feedback policy from a Differential
Dynamic Programming (DDP) based MPC algorithm is a
viable alternative to bridge the gap between the low MPC
update rate and the actuation command rate. We propose to
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Remark: the whole=body controller (WBC)
can be a neural network policy

Learning Humanoid Locomotion with Transformers

Ilija Radosavovic*  Tete Xiao* Bike Zhang* Trevor Darrell!  Jitendra Malik  Koushil Sreenath’

University of California, Berkeley
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Proposition:

rough plan from

motion planning

Use RL to frain
the WBC on the

local plan
Apply the
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WBC

0,001 seC
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Differentiable simulation for physical system
identification

Quentin Le Lidec!, Igor Kalevatykh!, Ivan Laptev!, Cordelia Schmid' and Justin Carpentier’

Abstract—Simulating frictional contacts remains a challeng-
ing research topic in robotics. Recently, differentiable physics
emerged and has proven to be a Key element in model-based Re-
inforcement Learning (RL) and optimal control fields. However,
most of the current formulations deploy coarse approximations of
the underlying physical principles. Indeed, the classic simulators
loose precision by casting the Nonlinear Complementarity Prob-
lem (NCP) of frictional contact into a Linear Complementarity
Problem (LCP) to simplify computations. Moreover, such meth-
ods deploy non-smooth operations and cannot be automatically
differentiated. In this paper, we propose (i) an extension of the
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How many steps of training can we do in 1 second?

About 200k To 500k
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RL FROM A SINGLE DEMONSTRATION

To make This approach
possible, we must learn
trom a single rough
demonstration in 500k
sTeps.,

rough plan from

motion planning

Use RL fo train
the WBC on the

local plan 0,001 secC

Apply the
fine=tuned
WBC
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The plan, or demonstration, is a sequence ot states,

Similarly To multiple shooting, we wish To frain almost
independenly a sequence ot skills and then chain them,

The main reward is reaching Targets, bul these farget
cannot be small high—dimensional spheres,
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We define low dimensional targefts.

% —§ i

3JI

1=4 1=5 coo =N
This has a big consequence on the difficulty of
chaining skills: their independence is lost, 21
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To density the rewards, we use a mechanism called
Hindsight Experience Replay (HER), which requires the
target fo be part of the input:

uis, q)

Bul, we must always *prepare’ tfor the next skill, so the
information ot the next farget must be available,

uls, g, 1)
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uis, g, 1)

This tormulation is fricky: the current farget is tree (fo
use HER), buf there is also a fixed sequence ot targefs,

Our arficle shows how fo do This properly, handling both the
farget relabelling of HER and the backward value
propagation coming from the fixed target sequence.
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Experiments
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Cassie Run
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Experiments
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PWIL:
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Experiments
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