A comparison of human skeleton extractors for real-time human-robot interaction

Wanchen LI^[1] Robin Passama^[1] Vincent Bonnet^[2] Andrea Cherubini^[1]

¹ LIRMM UM/ CNRS, Montpellier, France ² LAAS-CNRS, Toulouse, France

Motivation: Safety insurance

Context understanding

Ergonomic adaptation

Multi-modal data for activity recognition:

Skeleton extraction frameworks comparison:

General functionality:

Skeleton extractors	Framework	Output		Technique			Specialty			
•• Detectron2	Pytorch	17 key-points		Segmentation on ea one-step estimation	ach key-point, N	S	Segmentation			
III MediaPipe	Tensorflow	33 key-points with 3d inference		Two-step estimation detector + joint post	st Jo	Joint position tracking				
YOIDVZ	Pytorch	17 key-points		One-step estimation	С	Occlusion does not influence detection				
ALPHA POSE Bose Estimation	Pytorch	17/26/136 key-points		Two-step estimation			Pose aware identity mechanism			
OpenPose	Caffe	15/18/25/67/137 key-points		Two-step estimation Using part affinity fi	L 3 S	Direct C++ API is available 3D estimation is possible upon multiple synchronized camera views				
Performance evalu	lation:									
Skeleton extractors	Identification	Multi- person detection	Foot keypoi	t Hand nts keypoints	Facial keypoints	Easy C++ interfacing	Robustness with respect to motion	GPU integration	Framerate	
Detectron2	×	\checkmark	×	×	ears,eyes,nose	×	\checkmark	\checkmark	3.57 fps	
Mediapipe	\checkmark	\times	\checkmark	\checkmark	ears,eyes, nose,mouth	\times	\times	√ on Linux	17 fps	
YOLOv7	×	\checkmark	×	\times	ears,eyes,nose	×	\checkmark	\checkmark	11.04 fps	

Future work:

- Quantitative comparison of 5 frameworks' outputs
- Using OpenPose library with human biomechanical model to estimate human skeleton on image inputs in real-time
- Human activity classification based on joint space information

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871237.

