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Contact: the Physical Problem

gravity

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Joseph-Louis Lagrange
The poly-articulated system dynamics  

is driven by the so-called Lagrangian dynamics:
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Contact: the Physical Problem
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The Rigid Body Dynamics Algorithms

Mass 
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Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Goal: exploit at best the sparsity induced by the kinematic tree

Roy Featherstone

The Articulated Body Algorithm
··q = ForwardDynamics (q, ·q, τ, λc)

Simulation

The Recursive Newton-Euler Algorithm

τ = InverseDynamics (q, ·q, ··q, λc)
Control
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The Rigid Body Dynamics Algorithms
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6.4. BRANCH-INDUCED SPARSITY 111
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Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff
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Gaol of this class
Understand the various approaches of the state of the art to compute   in:λc

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc
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Gaol of this class
Understand the various approaches of the state of the art to compute   in:λc

spring-damper model

bilateral contact model
unilateral contact model

the relaxed contact model

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc

Soft contact

Rigid contact

Mixed contact



The Soft Contact Problem



7JNRH Pinocchio Tutorial — Revisiting Constrained Dynamics — Justin Carpentier



7JNRH Pinocchio Tutorial — Revisiting Constrained Dynamics — Justin Carpentier



8JNRH Pinocchio Tutorial — Revisiting Constrained Dynamics — Justin Carpentier

Soft contact: the spring-damper model
This is the simplest contact model, very intuitive and straightforward to implement

λn
c = max(−k . p − d . ·p,0)

This contact model is defined by the spring  and the damper  quantities, reading:k d

the max function means: 
the ground can ONLY push

pk,d

soft rigid
0 +∞value of k
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Soft contact: the spring-damper model
This is the simplest contact model, very intuitive and straightforward to implement

BUT

pk,d

not relevant to model rigid interface ( ), requires stable integrator (stiff equation)k → ∞



The Rigid Contact Problem 
bilateral contacts



Fig. 16 C.F. Gauss in 1828 and his paper on the Principle of Least Constraint (1829) [24].

prescribed trajectory. The measure Z for the ”constraint” (Zwang) is proportional to the sum
of squares of the differences between free and constrained accelerations. Each term in the
sum is weighted by mass mi.

Z ∼
N∑

i=1

(
ai − afreei

)2
(5)

or Z =
N∑

i=1

mi

(
ai −

Fi

mi

)2

= MIN
+ kinematical conditions,

e.g. prescribed displacements

(6)

According to the principle Z is supposed to be a Minimum. Thus from all possible motions
(accelerations) the actual motion leads under given conditions to the least constraint.

Figure 17 applies the principle to the motion of a pendulum, the circle being the con-
strained trajectory. As expected the principle yields the equation of motion. This example
elucidates that there is a strong relation with d’Alembert’s Principle (Jean d’Alembert, 1717-
1783). We start from the Principle of Least Constraint and its variation with respect to its free
parameters ai

constraint Z =
N∑

i=1

mi

(
ai −

Fi

mi︸︷︷︸
fix

)2

= MIN (7)

variation δZ =
N∑

i=1

2mi

(
ai −

Fi

mi

)
δai︸︷︷︸

=̂δri=̂δdi

= 0 (8)

14
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The Least-Constraint Principle

”The motion of a system of material points. . . takes place in every moment in 
maximum accordance with the free movement or under least constraint; […] 
the measure of constraint, […], is considered as the sum of products of mass 
and the square of the deviation to the free motion”

Carl Friedrich Gauss
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The Least Constraint Principle as a classic QP
Problem: knowing  and , we aim at retrieving  and q ·q ··q λc

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0

least distance w.r.t to the 
unconstrained acceleration a metric induced by the 

kinetic energy

gap between 
floor and foot

where  is the so-called free acceleration (without constraint)··qf
def= M−1(q)(τ − C(q, ·q) − G(q))

contact/interaction forces

gravity
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Jc(q) ·q = 0
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= 0

index reduction 
= time derivation

index reduction

the constraint differentiated twice w.r.t. time
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The Least Action Principle as a classic QP
Problem: we have now formed an equality-constrained QP. 

  

How to solve it? Where do the contact forces lie?

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0

contact/interaction forces

gravity
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The Least Action Principle as a classic QP

The solution can be retrieved by deriving  
the KKT conditions of the QP problem via the so-called Lagrangian:

Problem: we have now formed an equality-constrained QP. 

  

How to solve it? Where do the contact forces lie?

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0

contact/interaction forces

gravity

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces



Solving the Lagrangian contact problem
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L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0



Solving the Lagrangian contact problem

15JNRH Pinocchio Tutorial — Revisiting Constrained Dynamics — Justin Carpentier

The KKT conditions of the QP problem are given by:

∇··q L = M(q)(··q − ··qf) − Jc(q)⊤λc = 0
∇λc

L = Jc(q)··q + γc(q, ·q) = 0

Joint space force propagation

Contact acceleration constraint

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0
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The KKT conditions of the QP problem are given by:

∇··q L = M(q)(··q − ··qf) − Jc(q)⊤λc = 0
∇λc

L = Jc(q)··q + γc(q, ·q) = 0
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[M(q) J⊤
c (q)

Jc(q) 0 ]
K(q)

[
··q

−λc] = [
M(q)··qf

−γc(q, ·q)]
BUT, there might be one solution, redundant solutions or no solution at all depending on the rank of . Jc(q)

L(··q, λc) =
1
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∥··q − ··qf∥2
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c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

min
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∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0



Classic resolution
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We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0



Classic resolution
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··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express  as function of  and ··q ··qf λc
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M(q)··q − Jc(q)⊤λc = M(q)··qf
s
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··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express  as function of  and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0
Jc(q)M−1(q)Jc(q)⊤

Λ−1
c (q)

λc + Jc(q)··qf + γc(q, ·q)

ac, f(q, ·q,··qf )

= 0

2 - Replace  and get an expression depending only on ··q λc

Delassus matrix 
Inverse Operational Space Inertia Matrix Free contact acceleration
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··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express  as function of  and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0
Jc(q)M−1(q)Jc(q)⊤

Λ−1
c (q)

λc + Jc(q)··qf + γc(q, ·q)

ac, f(q, ·q,··qf )

= 0

2 - Replace  and get an expression depending only on ··q λc

Delassus matrix 
Inverse Operational Space Inertia Matrix Free contact acceleration

λc = − Λc(q) ac,f(q, ·q, ··qf)
3 - Inverse  and find the optimal Λ−1

c λc



The Proximal Rigid Contact Problem 
bilateral contacts



The proximal settings
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The proximal operator of a convex function  is given by:f(x)

Jean-Jacques Moreau

proxf,α(y) def= arg min
x∈𝒳

f(x)+
α
2

∥x − y∥2
2

where  can be assimilated to the inverse of a step size.α



The proximal settings

18JNRH Pinocchio Tutorial — Revisiting Constrained Dynamics — Justin Carpentier

The proximal operator of a convex function  is given by:f(x)

Jean-Jacques Moreau

proxf,α(y) def= arg min
x∈𝒳

f(x)+
α
2

∥x − y∥2
2

where  can be assimilated to the inverse of a step size.α

Proximal algorithms typically iterate over the proximal operators, following the recursion:

xk+1 = proxf,α(xk)

In general, this results in a cascade of simpler problems to solve, at the price of 
possibly requiring a large number of iterations before converging to the solution of 

the original problem with a desired precision.



Smoothing the Lagrangian
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The solution is to add an extra smoothing term to the Lagrangian,  
similarly to proximal algorithms:

Lμ(··q, λc |λ−
c ) =

1
2

∥··q − ··qf∥2
M(q) + λ⊤

c (Jc(q)··q + γc(q, ·q))−
μ
2

∥λc − λ−
c ∥2

2
Jean-Jacques Moreau
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The solution is to add an extra smoothing term to the Lagrangian,  
similarly to proximal algorithms:

Lμ(··q, λc |λ−
c ) =

1
2

∥··q − ··qf∥2
M(q) + λ⊤

c (Jc(q)··q + γc(q, ·q))−
μ
2

∥λc − λ−
c ∥2

2

which has the strong effect of making KKT dynamics well posed:

[M(q) Jc(q)⊤

Jc(q) −μI ]
Kμ(q)

[
··q

λc] = (
M(q)··qf

−γc(q, ·q)−μλ−
c )

Jean-Jacques Moreau

converging to the least constraint solution if the problem is not feasible.
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Explicit proximal contact solution

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = −μ(λc − λ−
c )
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Explicit proximal contact solution
··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express  as function of  and ··q ··qf λc
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to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = −μ(λc − λ−
c )



20JNRH Pinocchio Tutorial — Revisiting Constrained Dynamics — Justin Carpentier

Explicit proximal contact solution
··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express  as function of  and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = −μ(λc − λ−
c ) (Jc(q)M−1(q)Jc(q)⊤+μI)

Λ−1
c,μ(q)

λc + Jc(q)··qf + γc(q, ·q)

ac, f(q, ·q,··qf )

= μλ−
c

damped Delassus’ matrix

2 - Replace  and get an expression depending only on ··q λc
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Explicit proximal contact solution
··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express  as function of  and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = −μ(λc − λ−
c ) (Jc(q)M−1(q)Jc(q)⊤+μI)

Λ−1
c,μ(q)

λc + Jc(q)··qf + γc(q, ·q)

ac, f(q, ·q,··qf )

= μλ−
c

damped Delassus’ matrix

2 - Replace  and get an expression depending only on ··q λc

λc = − Λc,μ(q) (ac, f(q, ·q, ··qf)−μλ−
c )

3 - Inverse  and find the optimal Λ−1
c,μ(q) λc



Sparse resolution  
of the Rigid Contact Problem 

bilateral contacts
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Solution: exploiting the sparsity in the Cholesky factorization of M(q)
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Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff
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Hki = Hki/Hkk

Hij = Hij − Hki Hkj
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3.

H’ki = Hki/Hkk

Hki = H’ki

Hij = Hij − H’ki Hkj

k = 7 k = 6 k = 5

1k

1. do nothing

Figure 6.4: Illustration of the factorization process

algorithm computes L and returns it in the lower triangle of H. The LTDL
algorithm computes D and L, returns D on the main diagonal, and returns the
off-diagonal elements of L below it. This works because the algorithm computes
a unit lower-triangular matrix, so its diagonal elements are known to have the
value 1, and therefore do not need to be returned.

Each algorithm has an outer loop that visits each row in turn, working from
n back to 1. At any stage in the factorization process, rows k + 1 to n are
finished, and contain rows k + 1 to n of the returned factors. Rows 1 to k can
be divided into three areas, as shown in the diagram. Area 1 consists of just
the element Hkk; area 2 consists of elements 1 to k − 1 of row k; and area 3
consists of the triangular region from rows 1 to k − 1. A different calculation
takes place in each area, as shown in the figure. The pseudocode for the LTL
factorization performs the area-2 and area-3 calculations in two separate loops;
but the pseudocode for the LTDL factorization interleaves these calculations
in such a way that it never needs to remember more than one H ′

ki value at any
point. The current remembered value is stored in the local variable a.

The inner loops are designed to iterate only over the values λ(k), λ(λ(k)),
and so on. This is where the sparsity is exploited. In effect, the algorithms
know where the zeros are, and simply skip over them. Figure 6.4 illustrates the
cost reduction by showing the first three steps in the factorization of the matrix
H from Figure 6.3. At k = 7, the algorithms perform two lots of the area-2
calculation and three lots of the area-3 calculation; and similarly at k = 6 and
k = 5. This is far fewer than the number of calculations that would have been
necessary if there had been no zeros.

The total complexity is  instead of   
when using a dense Cholesky decomposition

O(N2) O(N3)
Cholesky factorization 

1.  

2.  
3.

Uk,k = Mk,k

Uk,i = Mk,i /Uk,k
Ui, j = Mi, j − Uk,i Uk, j

Goal: compute  without computing Λ−1
c (q) def= Jc(q)M−1(q)J⊤

c (q) M−1(q)
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The goal is to exploit and reserve the sparsity in the factorization of the KKT matrix Kμ(q)

[M(q) Jc(q)⊤

Jc(q) −μI ]
Instead of working with: we gonna work with:

[
−μI Jc(q)
Jc(q)⊤ M(q)]
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The goal is to exploit and reserve the sparsity in the factorization of the KKT matrix Kμ(q)

[M(q) Jc(q)⊤

Jc(q) −μI ]
Instead of working with: we gonna work with:

[
−μI Jc(q)
Jc(q)⊤ M(q)]

The total complexity remains low in   
instead of  when using dense 

Cholesky decomposition

O((N + Nc)2)
O((N + Nc)3)

where ni is the size of the constraint ci and Ji[:, j] denotes the
jth column of the Jacobian matrix Ji. In particular, the total
size of the constraint vector is given by m =

P
i ni.

Similarly to the Cholesky decomposition of the JSIM alone,
the Cholesky decomposition of the KKT matrix Kµ exhibits a
structured sparsity pattern associated to the JSIM. This reads:

i /2 s(j) ) UKµ [j +m, i+m] = 0, (27)

where we need to add to the joint indexes the total size of
the constraints to correctly capture the dimensions of Kµ.
In addition, according to the properties (23) and (26), Kµ

also exhibits a structure sparsity pattern associated to the
constraints. If we denote by ri the indexes of the rows
associated to the constraint ci in UKµ , this pattern follows
the rule:

j /2 �i ) UKµ [ri, j +m] = 0ni . (28)

In other words, if a joint does not contribute to a constraint ci,
then the related block in UKµ will be zero. Finally, the only
non-structured part of UKµ is its upper left triangular block of
dimension m⇥m, totally dense in most standard cases [1].

Rigid body algorithms associated to (UKµ ,DKµ). Rooted
on the previous analysis, we provide here the main rigid body
dynamic algorithm to compute the Cholesky factorization of
the KKT matrix Kµ = UKµDKµU

t
Kµ

. The proposed algorithm
can be performed in-place, meaning that they will directly
operate on the entries of the KKT matrix without requiring
further vector or matrix copy operations. In what follows, for
clarity of presentation, we denote by A the matrix Kµ on
which the Cholesky factorization operates.

Pseudo-code of the Cholesky factorization of A:

for k = N to 1 do
i = p(k)
while i > 0 do

a = Ai+m,k+m/Ak+m,k+m

j = i
Pass over the joints
while j > 0 do

Aj+m,i+m = Aj+m,i+m �Aj+m,k+m a
j = p(j)

end
Pass over the constraints
for l = nc to 1 do

if i 2 �l

for j = ni to 1 do
Aj+il,i+m = Aj+il,i+m �Aj+il,k+m a

end
end

end
Ai+m,k+m = a
i = p(i)

end
end
Dense factorization related to the OSIM
for l = nc to 1 do

for k̃ = ni to 1 do
k = il + k̃
for i = k � 1 to 1 do

a = Ai,k/Ak,k

for j = i to 1 do
Aj,i = Aj,i �Aj,k a

end
Ai,k = a

end
end

end

where il stands for the index of the first row of the ith

constraint in Kµ. This pseudo-code is very similar in spirit
to the ones presented in [14]. Yet, we chose to present the
computations for a factorization exploiting an upper triangular
matrix, while Featherstone uses a lower triangular matrix.
The pass over the joints exactly corresponds to the Cholesky
decomposition of the JSIM. The other code blocks are com-
pletely novel and related to the constraints.

Following the essence of this pseudo-code, it is possible to
directly extend it to the matrix operations U tx, Ux, U�tx
or U�1x associated to the Cholesky decomposition. Not to
overload the paper, we skip their presentations.

Cholesky factorization of ⇤�1
µ . Following the structure

exhibited in Eq. (25), it appears that one can extract from the
Cholesky decomposition (UKµ , DKµ), the Cholesky decom-
position associated to ⇤µ, that we have previously denoted by

6.4. BRANCH-INDUCED SPARSITY 111

0

1

2 3

4 5 6 7 H LT L

Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff
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Kμ(q) = [
−μI Jc(q)
Jc(q)⊤ M(q)]

From the inverse of the KKT matrix, we can directly retrieve a lot of by-product and useful quantities:

K−1
μ (q) =

−
Λμ

(JcM−1J⊤
c +μI)−1 Λμ Jc M−1

(Λμ Jc M−1)
⊤

−M−1 − M−1J⊤
c ΛμJcM−1

Kμ = [
UΛ−1

μ
JcU−⊤

ΛM
D−1

M

0 UM]
UKμ

[
−DΛ−1

μ
0

0 DM]
DKμ

[
U⊤

Λ−1
μ

0

D−1
M U−1

M J⊤
c U⊤

M]
U⊤

Kμ

Cholesky  decomposition
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Proximal and sparse resolution
Proximal and Sparse Resolution

of Constrained Dynamic Equations
Author Names Omitted for Anonymous Review. Paper-ID 56

Abstract—Control of robots with kinematic constraints like

loop-closure constraints or interactions with the environment

require solving the underlying constrained dynamics equations

of motion. Several approaches have been proposed so far in the

literature to solve these constrained optimization problems, for

instance by either taking advantage in part of the sparsity of the

kinematic tree or by considering an explicit formulation of the

constraints in the problem resolution. Yet, not all the constraints

allow an explicit formulation and in general, approaches of the

state of the art suffer from singularity issues, especially in the

context of redundant or singular constraints. In this paper, we

propose a unified approach to solve forward or inverse dynamics

equations involving constraints in an efficient, generic and robust

manner. To this aim, we first (i) propose a proximal formulation of

the constrained dynamics which converges to an optimal solution

in the least-square sense even in the presence of singularities.

Based on this proximal formulation, we introduce (ii) a sparse

Cholesky factorization of the underlying Karush–Kuhn–Tucker

matrix related to the constrained dynamics, which exploits at

best the sparsity of the kinematic structure of the robot. We also

show (iii) that it is possible to extract from this factorization the

Cholesky decomposition associated to the so-called Operational

Space Inertia Matrix, inherent to task-based control frameworks

or physic simulations. These new formulation and factorization

are implemented and benchmark on various robotic platforms,

ranging from classic robotic arms or quadrupeds to humanoid

robots with closed kinematic chains, and show how they signifi-

cantly outperform alternative solutions of the state of the art.

I. INTRODUCTION

As soon as a robot makes contacts with the world or is
endowed with loop closures in its design, its dynamics is
governed by the constrained equations of motion. From a
phenomenological point of view, these equations of motion
follow the so-called least-action principle, also known under
the name of the Maupertuis principle which dates back to
the 17th century. This principle states that the motion of
the system follows the closest possible acceleration to the
free-falling acceleration (in the sense of the kinetic metric)
which respects the constraints. In other words, solving the
constrained equations of motion boils down to solving a
constrained optimization problem where forces acts as the
Lagrange multipliers of the motion constraints.

This fact has been has been recognized since [1], and our
work largely takes inspiration from it. In this work, Baraff
proposed to formulate the dynamics with maximal coordinates
(i.e. each rigid body is represented by its 6 coordinates of
motion) as a sparse constrained optimization problem, and pro-
posed an algorithm to solve it in linear time. While maximal
coordinates are interesting for their versatility and largely used
in simulation [2], working directly in the configuration space

Fig. 1. Robotic systems may be subject to different types of constraints: point
contact constraints (quadrupeds), flat foot constraints (humanoids), closed
kinematic chains (parallel robots, here the 4-bar linkages of Cassie) or even
contact with the end effectors (any robot). Each colored ”anchor” here shows
a possible kinematic constraint applied on the dynamics of the robot. In this
paper, we introduce a generic approach to handle all these types of constraints,
contacts and kinematic closures, in a unified and efficient manner, even in the
context of ill-posed or singular cases.

with generalized coordinates presents several advantages [14]
that we propose to exploit in this paper.

Some constraints can be put under an explicit form, i.e.
there exists a reduced parametrization of the configuration
that is free of constraints. This is often the case for classical
kinematic closures [32, 14]. Yet explicit formulation is not
always possible, and in particular is not possible for the
common case of contact constraints [37]. We address here
the more generic case where the constraints are written under
an implicit form i.e. the configuration should nullify a set
of equations, which makes it possible to handle any kind of
design or contact constraints, or both together (see Fig. 1).

While recursive formulation exists and are predominant
for unconstrained dynamics (both inverse [35, 31] and for-
ward [11]) and for decomposing and inverting the joint-
space inertia matrix (JSIM) [12], little effort seems to have
been put in formulating a recursive algorithm in reduced
coordinates for the constrained dynamics. Yet the constrained
system is directly inverted in several trajectory-optimization
implementation. In [6], the constrained dynamics is explicitly
solved in the context of trajectory optimization. In [22], a
hierarchical trajectory optimization is also inverting directly
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Kμ =

UKμ

[
UΛ−1

μ
JcU−⊤

ΛM
D−1

M

0 UM]
DKμ

[
−DΛ−1

μ
0

0 DM]
U⊤

Kμ

[
U⊤

Λ−1
μ

0

D−1
M U−1

M J⊤
c U⊤

M]

We benchmark the proposed Cholesky against classical approaches:
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min
··q

1
2

∥··q − ··qf∥2
M(q)

ac = Jc(q)··q + ·Jc(q, ·q) ·q
where  ··qf

def= M(q)−1(τ − C(q, ·q) − G(q))

We benchmark the constrained dynamics resolution against classical approaches:
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✓ Presentation by Louis Montaut on Collision Detection and their differentiation 

✓ Presentation by Quentin Le Lidec on Contact Models and Solvers in Robotics 

✓ Presentation by Bruce Wingo on efficient inverse dynamics for closed-loop mechanisms




