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What is Pinocchio?
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Pinocchio is an open-source and efficient framework  
implementing most common rigid body dynamics algorithms 

written in C++ and coming with Python bindings

github.com/stack-of-tasks/pinocchio

Pinocchio
Efficient and versatile rigid body dynamics algorithms
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Pinocchio is an open-source and highly efficient framework for simulation, 
planning and control used in robotics, biomechanics, civil engineering, etc.


 
Resulting from a joint and fruitful collaboration between Willow and Gepetto 

(LAAS-CNRS), with an active roadmap:

Pinocchio
Efficient and versatile rigid body dynamics algorithms Pinocchio

Rigid body dynamics for articulated systems

In brief:

‣ C++ / Python

‣ BSD-2 license

‣ 5k+ commits

‣ 100k+ lines of code

‣ 4k downloads per day

‣ online documentation

‣ code generation CPU/GPU

‣ automatic differentiation

‣ deployed on major OS

‣ examples + tutorials 


Worldwide community:

‣ 100+ academic labs

‣ 20+ universities for 

teaching robotics

‣ many robotic companies, 

among them:
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A real influencer
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The Rigid Body Dynamics Algorithms

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Goal: exploit at best the sparsity induced by the kinematic tree

Roy Featherstone

The Articulated Body Algorithm
··q = ForwardDynamics (q, ·q, τ, λc)

Simulation

The Recursive Newton-Euler Algorithm

τ = InverseDynamics (q, ·q, ··q, λc)
Control
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6.4. BRANCH-INDUCED SPARSITY 111
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Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff
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supports a large number of joints (revolute, prismatic, free-flyer, etc.) [flexible]
handles the complete sparsity via the Featherstone algorithms [fast]
implements classic + advanced rigid body dynamics algorithms [versatile]
deals with Lie group geometry [accurate] 
analytical derivatives [online predictive control, reinforcement learning]
automatic differentiation [flexible]  
source code generation [dedicated to each architecture]
Python bindings [fast prototyping]
multi-thread friendly [fast] 
collision detection with HPP-FCL [simulation]
reads robot model from URDF, SDF, etc. [compatibility]



The central paradigm
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The key aspect is the explicit splitting between model and data:

algorithm<Scalar>(model, data, arg1, arg2, …)
constant  
quantity

cached 
variables

full 
templatization
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The key aspect is the explicit splitting between model and data:

Main advantages


the compiler guesses what is constant, what varies

no online memory allocation

good prediction/anticipation of the CPU

algorithms are easier to write

… 

algorithm<Scalar>(model, data, arg1, arg2, …)
constant  
quantity

cached 
variables

full 
templatization



Sequence of contacts planning - 1st stage
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Benchmarks of basic algorithms
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The source code generation
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Pinocchio also supports source code generation: 
you can compile on the fly (JIT paradigm) your code  

for the best performances on your hardware

100 101

Inverse Dynamics
ID CodeGen

Forward Dynamic
FD Codegen
Mass Matrix

MM CodeGen

3.7 µs

1.7 µs

7.8 µs

1.6 µs

3.8 µs

1.9 µs

10-1100101

Inverse Dynamics
ID CodeGen
Forward Dynamic
FD Codegen
Mass Matrix
MM CodeGen

0.8 µs

0.2 µs

2.8 µs

0.2 µs

1.4 µs

0.2 µs



The upcoming features of Pinocchio
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GPU/FPGA code source generation (mostly for Model Predictive Control)

handling constrained systems

a dedicated open-source robotics simulator

100% differentiable simulator

extending the support of biomechical systems (muscles)

code generation of robot controllers

features on demand 

extension of the collision/detection part

…



Pinocchio on GitHub
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Installing Pinocchio

14JNRH Pinocchio Tutorial — Introduction to Pinocchio — Justin Carpentier

github.com/stack-of-tasks/pinocchio

conda install pinocchio -c conda-forge



Installing Pinocchio
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github.com/stack-of-tasks/pinocchio

conda install pinocchio -c olivier.roussel



Citing Pinocchio
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Contributing to Pinocchio
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really



Planning of the day
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Live discussions
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matrix.to/#/#jnrh2023-tuto:laas.fr

http://matrix.to/#/%23jnrh2023-tuto:laas.fr



