The stack of tasks

Florent Lamiraux, Olivier Stasse and Nicolas Mansard

CNRS-LAAS, Toulouse, France

The stack of tasks

The stack of tasks

The stack of tasks

Introduction

Outline

Introduction

The stack of tasks

Introduction

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

The stack of tasks

Introduction

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

» implementation of a data-flow,

The stack of tasks

Introduction

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

» implementation of a data-flow,
» control of the graph by python scripting,

The stack of tasks

Introduction

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

» implementation of a data-flow,
» control of the graph by python scripting,
» task-based hierarchical control,

The stack of tasks

Introduction

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

» implementation of a data-flow,

» control of the graph by python scripting,
» task-based hierarchical control,

» portable: tested on HRP-2, Nao, Romeo.

The stack of tasks

Theoretical foundations

Outline

Theoretical foundations

The stack of tasks

Theoretical foundations

Rigid body B

» Configuration represented by an homogeneous matrix

_ Rs 15
M3_<000 :)eSE(S)

The stack of tasks

Theoretical foundations

Rigid body B

» Configuration represented by an homogeneous matrix

_ Rs 15
M3_<000 :)eSE(S)

Rs € SO(3) & RiRs = I3 and det(R) = 1

The stack of tasks

Theoretical foundations

Rigid body B

» Configuration represented by an homogeneous matrix

_ Rs 13
M3_<000 ;)eSE(S)

Rs € SO(3) & RiRs = I3 and det(R) = 1

Point x € R3 in local frame of B is moved to y € R3 in

global frame:
y\ X
(1) -m()

The stack of tasks

Rigid body B

» Velocity represented by (vz,ws) € R® where

The stack of tasks

Rigid body B

» Velocity represented by (vz,ws) € R® where

Rz = &pRs
and
0 —ws wo
W= w3 0 —wq
—Wo W4 0

is the matrix corresponding to the cross product operator

The stack of tasks

Rigid body B

» Velocity represented by (vz,ws) € R® where

Rs = &pRs

0 —w3 wo
W= w3 0 —wq
—Wo W4 0

is the matrix corresponding to the cross product operator
» Velocity of point P on B

and

Vp =tz +wp x OgP

where Og is the origin of the local frame of B.

The stack of tasks

Theoretical foundations

Configuration space

» Robot: set of rigid-bodies linked by
joints By, - - - Bm.

The stack of tasks

Theoretical foundations

Configuration space

» Robot: set of rigid-bodies linked by

joints By, - - - Bm.
» Configuration: position in space of each
body.

q = (Quaist> 01, - - On—s) € SE(3) x R"-6
Quaist = (X, ¥, Z, roll, pitch, yaw)

The stack of tasks

Theoretical foundations

Configuration space

» Robot: set of rigid-bodies linked by

joints By, - - - Bm.
» Configuration: position in space of each
body.

q = (Quaist> 01, - - On—s) € SE(3) x R"-6
Quaist = (X, ¥, Z, roll, pitch, yaw)

» Position of B; depends on q:

My () € SE(3)

The stack of tasks

Theoretical foundations

Velocity

» Velocity:
q = (X7.}I/727anwy7wZ70.17'"én—ﬁ)
w e R3

The stack of tasks

Theoretical foundations

Velocity

» Velocity:
q = (X7.}I/727anwy7wZ70.17'"én—ﬁ)
w e R3

» Velocity of 5;

The stack of tasks

Theoretical foundations

Velocity
» Velocity:
q = (X7.}I/727anwy7wZ70.17'"én—s)
w € RS

» Velocity of 5;

(Y5) @a - du@aer

wg;

The stack of tasks

Theoretical foundations

Task

» Definition: function of the
» robot configuration,
» time and
» possibly external parameters
that should converge to 0:

T e C™®(C xR,R™)

The stack of tasks

Theoretical foundations

Task

» Definition: function of the
» robot configuration,
» time and
» possibly external parameters
that should converge to 0:

T e C™®(C xR,R™)

» Example: position tracking of an end-effector Bee

The stack of tasks

Theoretical foundations

Task

» Definition: function of the
» robot configuration,
» time and
» possibly external parameters
that should converge to 0:

T e C™®(C xR,R™)

» Example: position tracking of an end-effector Bee
» M(q) € SE(3) position of the end-effector,

The stack of tasks

Theoretical foundations

Task

» Definition: function of the
» robot configuration,
» time and
» possibly external parameters
that should converge to 0:

T e C™®(C xR,R™)

» Example: position tracking of an end-effector Bee
» M(q) € SE(3) position of the end-effector,
» M*(t) € SE(3) reference position

The stack of tasks

Theoretical foundations

Task

» Definition: function of the
» robot configuration,
» time and
» possibly external parameters

that should converge to 0:
T e C™®(C xR,R™)

» Example: position tracking of an end-effector Bee
» M(q) € SE(3) position of the end-effector,
» M*(t) € SE(3) reference position

(M (M(Q))
@t = (up(RT(H)R(q)) >

where
» t() is the translation part of an homogeneous matrix,
» Rand R* are the rotation part of M and M*.

The stack of tasks

Theoretical foundations

Hierarchical task based control

Given

» a configuration q,

» two tasks of decreasing priorities:
» T1 € C®(C x R,R™),
» To € C°(C x R,R™),

The stack of tasks

Theoretical foundations

Hierarchical task based control

Given

» a configuration q,

» two tasks of decreasing priorities:
» T1 € C®(C x R,R™),
» To € C°(C x R,R™),

compute a control vector q
» that makes Ty converge toward 0 and
» that makes T, converge toward 0 if possible.

The stack of tasks

Theoretical foundations

Hierarchical task based control

Jacobian:
» we denote
> Ji=Glforie{1,2}

The stack of tasks

Theoretical foundations

Hierarchical task based control

Jacobian:
» we denote
> Ji=Glforie{1,2}
» then
» Vg eC,Vte R, Vg eR", T; = Ji(q.)q + 25 (q, 1)

The stack of tasks

Theoretical foundations

Hierarchical task based control

Jacobian:
» we denote
> Ji=Glforie{1,2}
» then
» VqeC,vVteRYqeR", T;=J(q,t)q+ 25 (q,)
We try to enforce
» Ti=-MTy = Ti(t)=e MT(0) =0

The stack of tasks

Theoretical foundations

Hierarchical task based control

Jacobian:
» we denote
> Ji=Glforie{1,2}
» then
» VqeC,vVteRYqeR", T;=J(q,t)q+ 25 (q,)
We try to enforce
» Ti=-MTy = Ti(t)=e MT(0) =0
» To=—dTa = Ty(t)=eT,(0) =0

The stack of tasks

Theoretical foundations

Hierarchical task based control

Jacobian:
» we denote
> Ji=Glforie{1,2}
» then
» VqeC,vVteRYqeR", T;=J(q,t)q+ 25 (q,)
We try to enforce
» Ti=-MTy = Ti(t)=e MT(0) =0
> To=-XTy = Ta(t)=e T0) -0
» A\ and)\, are called the gains associated to 77 and T».

The stack of tasks

Theoretical foundations

Moore Penrose pseudo-inverse
Given a matrix A € R™" the Moore Penrose pseudo inverse
AT € R™M of Ais the unique matrix satisfying:
AATA = A
ATAAT = AT
(AAT)T = AA*T
(ATA)T = ATA

The stack of tasks

Theoretical foundations

Moore Penrose pseudo-inverse
Given a matrix A € R™" the Moore Penrose pseudo inverse
AT € R™M of Ais the unique matrix satisfying:

AATA = A

ATAAT = At
(AAT)T = AA*T
(ATA)T = ATA

Given a linear system:
Ax=b, AcR™" xcR" beR"

X = ATb minimizes

The stack of tasks

Theoretical foundations

Moore Penrose pseudo-inverse
Given a matrix A € R™" the Moore Penrose pseudo inverse
AT € R™M of Ais the unique matrix satisfying:

AATA = A

ATAAT = At
(AAT)T = AA*T
(ATA)T = ATA

Given a linear system:
Ax=b, AcR™" xcR" beR"

X = ATb minimizes
» |Ax — b|| over R",

The stack of tasks

Theoretical foundations

Moore Penrose pseudo-inverse
Given a matrix A € R™" the Moore Penrose pseudo inverse
AT € R™M of Ais the unique matrix satisfying:
AATA = A
ATAAT = AT
(AAT)T = AA*T
(ATA)T = ATA

Given a linear system:
Ax=b, AcR™" xcR" beR"
x = AT b minimizes
» |Ax — b|| over R",
> ||x|| over argmin||Ax — b||.

The stack of tasks

Theoretical foundations

Hierarchical task based control
Resolution of the first constraint:

T1 =Jdiq + WZ—)\1T1 (1)
. oT;
J1q = —/\1 T1 — 871‘1 (2)
. oT-
G £ ST+ 50 (3)

The stack of tasks

Theoretical foundations

Hierarchical task based control
Resolution of the first constraint:

H=dq + WZ—ME (1)
: oT.
J1q = —/\1 T1 — 871‘1 (2)
: oT
G £ ST+ 50 (3)

Where J;L is the (Moore Penrose) pseudo-inverse of J;.

The stack of tasks

Theoretical foundations

Hierarchical task based control
Resolution of the first constraint:

H=dq + WZ—ME (1)
: oT.
J1q = —/\1 T1 — 871‘1 (2)
: oT
G £ ST+ 50 (3)

Where J;L is the (Moore Penrose) pseudo-inverse of J;.
g; minimizes
> HQ+ M T+ G =T+ M T4

The stack of tasks

Theoretical foundations

Hierarchical task based control
Resolution of the first constraint:

H=dq + WZ—ME (1)
: oT.
J1q = —/\1 T1 — 871‘1 (2)
: oT
G £ ST+ 50 (3)

Where J;L is the (Moore Penrose) pseudo-inverse of J;.
g; minimizes
> HQ+ M T+ G =T+ M T4

> ||g|| over argmin ||Jiq + X\ Ty + 90|

The stack of tasks

Theoretical foundations

Hierarchical task based control
Resolution of the first constraint:

H=dq + WZ—ME (1)
: oT.
J1q = —/\1 T1 — 871‘1 (2)
: oT
G £ ST+ 50 (3)

Where J;L is the (Moore Penrose) pseudo-inverse of J;.
g; minimizes

> HQ+ M T+ G =T+ M T4
> ||g|| over argmin ||Jiq + X\ Ty + 90|
Hence,

> if A\ Ty + 2t is in Im(dh), (1) is satisfied

The stack of tasks

Theoretical foundations

Hierarchical task based control

In fact
YueR", Ji (Q1+(lh — Ji dh)u) = Jiq;

The stack of tasks

Theoretical foundations

Hierarchical task based control

In fact
YueR", Ji (Q1+(lh — Ji dh)u) = Jiq;
therefore,
q=0a; + (Ih— Jfdy)u

also minimizes [|J1q + M Tq + %H.

The stack of tasks

Theoretical foundations

Hierarchical task based control

In fact
YueR", Ji (Q1+(lh — Ji dh)u) = Jiq;

therefore,
A= +(lh— Jitdh)u

also minimizes ||Jiq -+ X\ T + 91|

Py = (I, — J; Jy) is a projector on J; kernel:
JiPy =0

The stack of tasks

Theoretical foundations

Hierarchical task based control

In fact
YueR", Ji (Q1+(lh — Ji dh)u) = Jiq;

therefore,
q =8+ (hh— Jfh)u

also minimizes ||Jiq -+ X\ T + 91|

Py = (I, — J; Jy) is a projector on J; kernel:
JiPy=0
Yu e R",ifq = Pu, then, Ty = 1.

The stack of tasks

Theoretical foundations

Controlling the second task

We have
q = q1 + Piu
. . 0T
T, = Jbhq+ ot
. . oT:
T, = Jhqq+ 37t2 + bPyu

The stack of tasks

Theoretical foundations

Controlling the second task

We have
q = q;+Pu
T, = J2<i|+aa7;2
T, = J2q1+887;2+J2P1u
We want
T, = -

The stack of tasks

Theoretical foundations

Controlling the second task

We have
q = q1 + Piu
. . 0T
T, = Jbhq+ ot
.) oT:
T, = Jhqq+ 37t2 + bPyu
We want
o = Xl
Thus
. oT.
ATz = Jqq+ 872‘2 + JoPru
) oT:
SPiu = —XoT2— gy — ({th

The stack of tasks

Theoretical foundations

Controlling the second task

Thus
) oT.
ATy = J2q1+8—t2+J2P1U
. oT:
SPiu = —XT2-Jq _871‘2

The stack of tasks

Theoretical foundations

Controlling the second task
Thus

T2 + bPiu

ot
oT.
hPiu = —XTo—Joq _871‘2

T2 = oQi+ -

oT:
u = —(=P) (NeT2+ gy + mz)

qQ = q;+Pu

. 0T,
= 1 — P1 (J2P1) ()\QTQ + J2C|1 + —

;)

minimizes || T2 + X2 T2|| over g, + Ker J;.

The stack of tasks

Theoretical foundations

Example

» T;: position of the feet +
projection of center of
mass,

» T,: position of the right
wrist.

The stack of tasks

Outline

Software

The stack of tasks

Software

Architecture overview

sot-hrp2-hrpsys
immersion into
OpenHRP-3.0 robot controller sot-application

-application dependent

initializations
[sot-hrp2 | [sot-romeo | [sot-nao 11 ,pctract
‘ ~Robot ‘ ‘ ‘ controllers
dynamic_graph_bridge [sot-tools | [[sot-dynamic | [[sot-pattern-generator
~forward kinematics ‘ ' -walk motion generation|

services -helper tools
/run_conmand

/start_dynamic_graph

/stop_dynanic_graph e—

topics. [sot-core [dynamic-graph-tutorial

/joint_state |
‘ solvers | -task ‘ -inverted pendulum I

-inverse dynamics

fromito signals
-feature

dynami.c-graph-python

~bindings
-remote_interpreter

ros-electric

dynamic-graph

-entity -pool
-signal -factory
- comnand

libraries

-jrl-walkgen
-jri-dynamics
-abstract-robot-dynamics
-jri-mal

-jri-mathtools

The stack of tasks

Libraries

» jrl-mathtools: implementation of small size matrices,
» to be replaced by Eigen

The stack of tasks

Libraries

» jrl-mathtools: implementation of small size matrices,
» to be replaced by Eigen

» jrl-mal: abstract layer for matrices,
» to be replaced by Eigen

The stack of tasks

Libraries

» jrl-mathtools: implementation of small size matrices,
» to be replaced by Eigen
» jrl-mal: abstract layer for matrices,
» to be replaced by Eigen
» abstract-robot-dynamics: abstraction for humanoid
robot description,

The stack of tasks

Libraries

» jrl-mathtools: implementation of small size matrices,
» to be replaced by Eigen
» jrl-mal: abstract layer for matrices,
» to be replaced by Eigen
» abstract-robot-dynamics: abstraction for humanoid
robot description,
» Jrl-dynamics: implementation of the above abstract
interfaces,

The stack of tasks

Libraries

» jrl-mathtools: implementation of small size matrices,
» to be replaced by Eigen
» jrl-mal: abstract layer for matrices,
» to be replaced by Eigen
» abstract-robot-dynamics: abstraction for humanoid
robot description,
» Jrl-dynamics: implementation of the above abstract
interfaces,

» jrl-walkgen: ZMP based dynamic walk generation.

The stack of tasks

dynamic—graph

» Entity
» Signal: synchronous interface
» Command: asynchronous interface

The stack of tasks

dynamic—graph

» Entity
» Signal: synchronous interface
» Command: asynchronous interface

» Factory

» builds a new entity of requested type,
» new entity types can be dynamically added (advanced).

The stack of tasks

dynamic—graph

» Entity
» Signal: synchronous interface
» Command: asynchronous interface

» Factory

» builds a new entity of requested type,
» new entity types can be dynamically added (advanced).

» Pool

» stores all instances of entities,
» return reference to entity of given name.

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
» output signals:

» recomputed by a callback function, or
» set to constant value

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
» output signals:

» recomputed by a callback function, or
» set to constant value
» warning: setting to constant value deactivate callback,

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
» output signals:

» recomputed by a callback function, or
» set to constant value
» warning: setting to constant value deactivate callback,

» input signals:

» plugged by an output signal, or
» set to constant value,

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
» output signals:
» recomputed by a callback function, or
» set to constant value
» warning: setting to constant value deactivate callback,
» input signals:
» plugged by an output signal, or
» set to constant value,
» warning: setting to constant value unplugs,

The stack of tasks

Signal (class SignalTimeDependent)
Synchronous interface storing a given data type

» dependency relation: s1 depends on s2 if s1 callback
needs the value of s2,

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type

» dependency relation: s1 depends on s2 if s1 callback
needs the value of s2,

» each signal s stores time of last recomputation in member
S.t_

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type

» dependency relation: s1 depends on s2 if s1 callback
needs the value of s2,

» each signal s stores time of last recomputation in member
S.t_

» s is said outdated at time t if
» £t > s.t_,and

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type

» dependency relation: s1 depends on s2 if s1 callback
needs the value of s2,

» each signal s stores time of last recomputation in member
S.t_
» s is said outdated at time t if
»t > s.t,and
» one dependency s_dep of s
> is out-dated or
» has been recomputed later than s: s dep.t_ > s.t_.

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type

» dependency relation: s1 depends on s2 if s1 callback
needs the value of s2,

» each signal s stores time of last recomputation in member
S.t_

» s is said outdated at time t if

» t > s.t_,and
» one dependency s_dep of s

» is out-dated or
» has been recomputed later than s: s dep.t_ > s.t_.

» reading an out-dated signal triggers recomputation.

The stack of tasks

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type

» dependency relation: s1 depends on s2 if s1 callback
needs the value of s2,

v

each signal s stores time of last recomputation in member
S.t_

s is said outdated at time t if

» t > s.t_,and
» one dependency s_dep of s
» is out-dated or
» has been recomputed later than s: s dep.t_ > s.t_.

v

» reading an out-dated signal triggers recomputation.
New types can be dynamically added (advanced)

v

The stack of tasks

Command

Asynchronous interface
» input in a fixed set of types,
» trigger an action,
» returns a result in the same set of types.

The stack of tasks

dynamic—graph—-python

Python bindings to dynamic—graph

The stack of tasks

dynamic—graph—-python
Python bindings to dynamic—graph

» module dynamic_graph linked to
libdynamic—graph.so

The stack of tasks

dynamic—graph—-python

Python bindings to dynamic-graph
» module dynamic_graph linked to
libdynamic—graph.so
» class Entity

>

vvyyewy

each C++ entity class declared in the factory generates a
python class of the same name,

signals are instance members,

commands are bound to instance methods

method help lists commands

method displaySignals displays signals

The stack of tasks

dynamic—graph—-python

Python bindings to dynamic-graph
» module dynamic_graph linked to
libdynamic—graph.so
» class Entity

>

vvyy

| 4

each C++ entity class declared in the factory generates a
python class of the same name,

signals are instance members,

commands are bound to instance methods

method help lists commands

method displaySignals displays signals

» class Signal

>

property value to set and get signal value

The stack of tasks

dynamic—graph—-python

Python bindings to dynamic-graph
» module dynamic_graph linked to
libdynamic—graph.so
» class Entity

>

vvyy

| 4

each C++ entity class declared in the factory generates a
python class of the same name,

signals are instance members,

commands are bound to instance methods

method help lists commands

method displaySignals displays signals

» class Signal

>

property value to set and get signal value

» remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks

dynamic—-graph-tutorial

Simple use case for illustration
» Definition of 2 entity types
» InvertedPendulum
> input signal: force
> output signal: state
» FeedbackController

> input signal: state
» output signal: force

The stack of tasks

Software

dynamic—-graph-tutorial

>>> from dynamic._graph.tutorial import InvertedPendulum, FeedbackController
>>>

The stack of tasks

Software

dynamic—-graph-tutorial

>>> from dynamic._graph.tutorial import InvertedPendulum, FeedbackController

>>> a = InvertedPendulum (’'IP")
>>> b = FeedbackController ('K’)
>>>

The stack of tasks

Software

dynamic—-graph-tutorial

>>> from dynamic_graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)

>>> b = FeedbackController (’K’)

>>> a.displaySignals ()

—--- <IP> signal list:

|-- <Sig:InvertedPendulum(IP)::input (double) ::force (Type Cst) AUTOPLUGGED
‘-—- <Sig:InvertedPendulum(IP) ::output (vector) ::state (Type Cst)

>>>

The stack of tasks

Software

dynamic—-graph-tutorial

>>> from dynamic_graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)

>>> b = FeedbackController (’K’)

>>> a.displaySignals ()

—--- <IP> signal list:

|-- <Sig:InvertedPendulum(IP)::input (double) ::force (Type Cst) AUTOPLUGGED
‘-—- <Sig:InvertedPendulum(IP) ::output (vector) ::state (Type Cst)

>>> a.help ()

Classical inverted pendulum dynamic model

List of commands:

getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass
>>>

The stack of tasks

Software

dynamic—-graph-tutorial

>>> from dynamic_graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)

>>> b = FeedbackController (’K’)

>>> a.displaySignals ()

—--- <IP> signal list:

|-- <Sig:InvertedPendulum(IP)::input (double) ::force (Type Cst) AUTOPLUGGED
‘-—- <Sig:InvertedPendulum(IP) ::output (vector) ::state (Type Cst)

>>> a.help ()

Classical inverted pendulum dynamic model

List of commands:

getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass
>>> a.help (’incr’
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

The stack of tasks

dynamic—-graph-tutorial

Package provides

» C++ code of classes InvertedPendulum and
FeedbackController,

The stack of tasks

dynamic—-graph-tutorial

Package provides

» C++ code of classes InvertedPendulum and
FeedbackController,

» explanation about how to create a new entity type in C++,

The stack of tasks

dynamic—-graph-tutorial

Package provides

» C++ code of classes InvertedPendulum and
FeedbackController,

» explanation about how to create a new entity type in C++,
» information about how to create a command in C++,

The stack of tasks

dynamic—-graph-tutorial

Package provides

» C++ code of classes InvertedPendulum and
FeedbackController,

» explanation about how to create a new entity type in C++,
» information about how to create a command in C++,

» information about how to create a python module defining
the bindings in cmake,

The stack of tasks

dynamic—-graph-tutorial

Package provides

>

C++ code of classes InvertedPendulum and
FeedbackController,

explanation about how to create a new entity type in C++,
information about how to create a command in C++,

information about how to create a python module defining
the bindings in cmake,

python script that runs an example.

The stack of tasks

sot—core

Class FeatureAbstract
» function of the robot and environment states

The stack of tasks

sot—core

Class FeatureAbstract
» function of the robot and environment states

» position of an end-effector,
» position of a feature in an image (visual servoing)

The stack of tasks

sot—core

Class FeatureAbstract
» function of the robot and environment states

» position of an end-effector,
» position of a feature in an image (visual servoing)

» with values in a Lie group G (SO(3), SE(3), R",...),

The stack of tasks

sot—core

Class FeatureAbstract
» function of the robot and environment states

» position of an end-effector,
» position of a feature in an image (visual servoing)

» with values in a Lie group G (SO(3), SE(3), R",...),
» with a mapping e from G into R such that

e(0g) =0

The stack of tasks

Feature

When paired with a reference, features become tasks.

» Example

position
e

velocity

FeaturePoint6ed

reference

positi

It

FeaturePoint6d

Ja —

on —>

value

——>error

—>errordot

—>jacobian

The stack of tasks

Feature

When paired with a reference, features become tasks.

» Example

position
e

velocity

FeaturePoint6ed

reference

positi

It

FeaturePoint6d

Ja —

on —>

value

——>error

—>errordot

—>jacobian

» error = e (value.positionSreference.position)

The stack of tasks

Feature

When paired with a reference, features become tasks.

» Example

position
e

velocity

FeaturePoint6ed

reference

positi

It

FeaturePoint6d

Ja —

on —>

value

——>error

—>errordot

—>jacobian

» error = e (value.positionSreference.position)

» errordot: derivative of error when value.position

is constant.

The stack of tasks

Task

» Collection of features with a control gain,
» implements abstraction TaskAbstract

controlGain Task
feature n error task
S
damping errordot
— | _jacobian error

controlSelec
—_—
prTimeDeriv
I

jacobian
—

errordot
locobion |

» task = —controlGain.error

The stack of tasks

<4
@
2
©
n

Solver sOT

Hierarchical task solver

» computes robot joint velocity

»
<
7}
&
ks
~
S
8
7}
©
=
=

sot—-dynamic

dynamic_graph.sot.dynamics.Dynamic builds a
kinematic chain from a file and
» computes forward kinematics

» position and Jacobian of end effectors (wrists, ankles),
» position of center of mass

» computes dynamics
» inertia matrix.

The stack of tasks

sot—-pattern—generator

dynamic_graph.sot.pattern_generator
» Entity PatternGenerator produces walk motions as

» position and velocity of the feet
» position and velocity of the center of mass

The stack of tasks

sot—application

dynamic_graph.sot.application
» Provide scripts for standard control graph initialization

» depends on application: control mode (velocity,
acceleration)

The stack of tasks

Packages specific to robots

sot-hrp2
» defines a class Robot that provides
» ready to use features for feet, hands, gaze and center of
mass,
» ready to use tasks for the same end effectors,
» an entity Dynamic,
» an entity Device (interface with the robot control system)
sot-hrprtc-hrp2
» provide an RTC component to integrate sot-hrp2 into the
robot controller.

The stack of tasks

Utilities

» dynamic_graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

The stack of tasks

Utilities

» dynamic_graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

» dynamic_graph.sot.core.FeaturePosition Wraps
two FeaturePoint 6d: a value and a reference,

The stack of tasks

Utilities

» dynamic_graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

» dynamic_graph.sot.core.FeaturePosition Wraps
two FeaturePoint 6d: a value and a reference,

» MetaTasko6d:

The stack of tasks

Utilities

» dynamic_graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

» dynamic_graph.sot.core.FeaturePosition Wraps
two FeaturePoint 6d: a value and a reference,

» MetaTasko6d:

» MetaTaskPosture:

The stack of tasks

Utilities

» dynamic_graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

» dynamic_graph.sot.core.FeaturePosition Wraps
two FeaturePoint 6d: a value and a reference,

» MetaTasko6d:
» MetaTaskPosture:

» MetaTaskKineo6d:

The stack of tasks

Utilities

» dynamic_graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

» dynamic_graph.sot.core.FeaturePosition Wraps
two FeaturePoint 6d: a value and a reference,

» MetaTaskod:
» MetaTaskPosture:
» MetaTaskKine6d:

» MetaTaskKinePosture:

The stack of tasks

Utilities

» dynamic_graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

» dynamic_graph.sot.core.FeaturePosition Wraps
two FeaturePoint 6d: a value and a reference,

» MetaTaskod:

» MetaTaskPosture:

> MetaTaskKine6d:

» MetaTaskKinePosture:

» MetaTaskCom:

The stack of tasks

Software

Installation

Through robotpkg

> git clone http://trac.laas.fr/git/robots/robotpkg.git
cd robotpkg

./bootstrap/bootstrap --prefix=<your_prefix>
cd motion/sot-dynamic

make install

The stack of tasks

Software

Installation

Through github:

> git clone --recursive ://github.com/jrl-umi3218/jrl-mal.git
git clone —--recursive ://github.com/jrl-umi3218/jrl-mathtools.git
git clone —-recursive ://github.com/laas/abstract-robot-dynamics.git
git clone —-recursive ://github.com/jrl-umi3218/jrl-dynamics.git
git clone —-recursive ://github.com/jrl-umi3218/jrl-walkgen.git
git clone --recursive ://github.com/jrl-umi3218/dynamic-graph.git
git clone --recursive ://github.com/jrl-umi3218/dynamic-graph-python.git
git clone --recursive ://github.com/jrl-umi3218/sot-core.git
git clone --recursive ://github.com/laas/sot-tools.git
git clone --recursive ://github.com/jrl-umi3218/sot-dynamic.git
git clone --recursive ://github.com/jrl-umi3218/sot-pattern-generator.git
git clone --recursive ://github.com/stack-of-tasks/sot-application.git

git clone --recursive git://github.com/laas/sot-hrp2.git
git clone --recursive git://github.com/stack-of-tasks/sot-hrprtc-hrp2.git

The stack of tasks

Software

Installation

Through github:

> git clone --recursive ://github.com/jrl-umi3218/jrl-mal.git
git clone —--recursive ://github.com/jrl-umi3218/jrl-mathtools.git
git clone —-recursive ://github.com/laas/abstract-robot-dynamics.git
git clone —-recursive ://github.com/jrl-umi3218/jrl-dynamics.git
git clone —-recursive ://github.com/jrl-umi3218/jrl-walkgen.git
git clone --recursive ://github.com/jrl-umi3218/dynamic-graph.git
git clone --recursive ://github.com/jrl-umi3218/dynamic-graph-python.git
git clone --recursive ://github.com/jrl-umi3218/sot-core.git
git clone --recursive ://github.com/laas/sot-tools.git
git clone --recursive ://github.com/jrl-umi3218/sot-dynamic.git
git clone --recursive ://github.com/jrl-umi3218/sot-pattern-generator.git
git clone --recursive ://github.com/stack-of-tasks/sot-application.git

git clone --recursive git://github.com/laas/sot-hrp2.git
git clone --recursive git://github.com/stack-of-tasks/sot-hrprtc-hrp2.git

» for each package,

mkdir package/build
cd package/build
cmake -DCMAKE_INSTALL_PREFIX=<your_prefix>

make install

The stack of tasks

II!!!!l!l!III

Installation

Through installation script

> git clone git://github.com/stack-of-tasks/install-sot.git
cd install-sot/scripts

./install_sot.sh

The stack of tasks

Running the stack of tasks into OpenHRP-3.1

You need to install:
» ros—electric
» OpenHRP-3.1

yOU Wl” flnd InStI’UCtIOI’]S |n https://wiki.laas.fr/robots/HRP/Software
Then follow instructions iN sot-nrprtc/zzanue. ma:
https://github.com/stack-of-tasks/sot-hrprtc-hrp2

The stack of tasks

Running the stack of tasks into OpenHRP-3.0.7
Assumptions

» OpenHRP 3.0.7 is installed

» The Stack of Tasks has been installed thanks to previous
slide with install_sot.sh in the directory:

/home/user/devel/ros_unstable

» Your /opt/grx3.0/HRP2LAAS/bin/config.sh is well setup.

The golden commands

$>roscore

#Launching HRP2 simulation with OpenHPR

$>roslaunch hrp2_bringup openhrp_bridge.launch robot:=hrp2.14
mode:=dg-with_stabilizer simulation:=true

$>rosservice call /start-dynamic-graph

$>rosrun dynamic_graph_bridge run.command

The stack of tasks

Running the stack of tasks into OpenHRP-3.0.7

Initialize the application: create tracer and solver
[INFO] [WallTime:
service ...
Interacting with remote server.

>>> from dynamic_graph.sot.application.velocity.\\
precomputed_tasks import initialize

>>> solver = initialize (robot)

>>> robot.initializeTracer ()

1370854858.786392] waiting for

The stack of tasks

Running the stack of tasks into OpenHRP-3.0.7

Build the graph including the pattern generator

[INFO] [WallTime: 1370854858.786392] waiting for
service ...

Interacting with remote server.

>>> from
dynamic_graph.sot.pattern_generator.walking
import CreateEverythingForPG, walkFewSteps

With meta selector

The stack of tasks

Running the stack of tasks into OpenHRP-3.0.7

Create the graph

>>> CreateEverythingForPG (robot, solver)

At this stage

(’modelDir:.",
*“/devel/ros—unstable/install/share/hrp2—-14")

('modelName:’, *HRP2JRLmainsmall.wrl)

('specificitiesPath:’,
"HRP2SpecificitiesSmall.xml ")

('jointRankPath:’, "HRP2LinkJointRankSmall.xml")

After Task for Right and Left Feet

The stack of tasks

Running the stack of tasks into OpenHRP-3.0.7

Switch to the new graph

>>> walkFewSteps(robot)
>>>

The stack of tasks

Software structure - Conceptual view

Y

Feature ‘ WPG ’

Dyn
\ 1 \ 4
Desired
‘ Solver Task ’ Feature
A
\ é y ‘
g | : SoT Entity

: C++ server ‘Python F {‘ ROS ‘

The stack of tasks

Software structure - Link with Model

q ‘ Dyn » Feature ‘ WPG ’
Y
Desired
a Solver Task ’ ‘ Feature

The stack of tasks

Software structure - Link with Model

M(q)
q ‘ Dyn » Feature ‘ WPG ’
Y
Desired
a Solver Task ’ ‘ Feature

The stack of tasks

Software structure - Link with Model

M(q)
q ‘ Dyn » Feature ‘ WPG ’
Y
Desired
a Solver Task ’ ‘ Feature
M*(q)

The stack of tasks

Software structure - Link with Model

_ (M ()M (q))
L (uo (R (1) R(a))
J = ¢

M(q) = 9q
q ‘ Dyn > Feature ‘ WPG ’
4
Desired
’ o Tosk ’ ‘Feature
M*(q)

The stack of tasks

Software structure - Link with Model

~(t(M()M(q))
T(q,t) = (ug(R*~(t)R(q)))
M@ =
q ‘ Dyn > Feature ‘ WPG ’
Y
q Solver Task ’ ‘ Eﬁ;éﬂ?g
=\ M*(q)

ot

The stack of tasks

Software structure - Link with Model

~(t(M()M(q))
T(q,t) = (ug(R*~(t)R(q)))
M@ =
q ‘ Dyn g ‘ Wee ’
. v
q Solver Task ’ ‘ Eﬁ;éﬂ?g
A 7+ ory T =—-\T M*(q)
q=-—JT(\T'+ ;) .

The stack of tasks

Software

Software structure - Repositories

sot-dynamics sot-core got.pattern-generator

sot-hrp2

\4

Feature WPG

‘ Dyn

Robot

Y

Solver Task ’ ‘ E::t'[ﬁg
sot-core sot-core sot-core
§ sot-dyninv sot-dyninv
o o sot-hrp2-hrpsys

u H sot-hrprtc-hrp2

The stack of tasks

	Introduction
	Theoretical foundations
	Software

