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Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo.
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Rigid body B

I Configuration represented by an homogeneous matrix

MB =

(
RB tB

0 0 0 1

)
∈ SE(3)

RB ∈ SO(3)⇔ RT
BRB = I3 and det(R) = 1

Point x ∈ R3 in local frame of B is moved to y ∈ R3 in
global frame: (

y
1

)
= MB

(
x
1

)
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Rigid body B
I Velocity represented by (vB, ωB) ∈ R6 where

ṘB = ω̂BRB

and

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


is the matrix corresponding to the cross product operator

I Velocity of point P on B

vp = ṫB + ωB × ~OBP

where OB is the origin of the local frame of B.

The stack of tasks



Introduction
Theoretical foundations

Software

Rigid body B
I Velocity represented by (vB, ωB) ∈ R6 where
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Configuration space

I Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

I Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

I Position of Bi depends on q:

MBi (q) ∈ SE(3)
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Velocity

I Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

I Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6
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Task
I Definition: function of the

I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Example: position tracking of an end-effector Bee
I M(q) ∈ SE(3) position of the end-effector,
I M∗(t) ∈ SE(3) reference position

T (q, t) =
(

t(M∗−1(t)M(q))
uθ(R∗−1(t)R(q))

)
where

I t() is the translation part of an homogeneous matrix,
I R and R∗ are the rotation part of M and M∗.
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Hierarchical task based control

Given
I a configuration q,
I two tasks of decreasing priorities:

I T1 ∈ C∞(C × R,Rm1),
I T2 ∈ C∞(C × R,Rm2),

compute a control vector q̇
I that makes T1 converge toward 0 and
I that makes T2 converge toward 0 if possible.
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Hierarchical task based control

Jacobian:
I we denote

I Ji =
∂Ti
∂q for i ∈ {1,2}

I then
I ∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti

∂t (q, t)

We try to enforce
I Ṫ1 = −λ1T1 ⇒ T1(t) = e−λ1tT1(0)→ 0
I Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0
I λ1 and λ2 are called the gains associated to T1 and T2.
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∂t (q, t)

We try to enforce
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∂t (q, t)

We try to enforce
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Moore Penrose pseudo-inverse
Given a matrix A ∈ Rm×n, the Moore Penrose pseudo inverse
A+ ∈ Rn×m of A is the unique matrix satisfying:

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

Given a linear system:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

x = A+b minimizes
I ‖Ax − b‖ over Rn,
I ‖x‖ over argmin‖Ax − b‖.
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Hierarchical task based control
Resolution of the first constraint:

Ṫ1 = J1q̇ +
∂T1

∂t
= −λ1T1 (1)

J1q̇ = −λ1T1 −
∂T1

∂t
(2)

q̇1 , −J+
1 (λ1T1 +

∂T1

∂t
) (3)

Where J+
1 is the (Moore Penrose) pseudo-inverse of J1.

q̇1 minimizes
I ‖J1q̇ + λ1T1 +

∂T1
∂t ‖ = ‖Ṫ1 + λ1T1‖

I ‖q̇‖ over argmin ‖J1q̇ + λ1T1 +
∂T1
∂t ‖

Hence,
I if λ1T1 +

∂T1
∂t is in Im(J1), (1) is satisfied
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Hierarchical task based control

In fact
∀u ∈ Rn, J1

(
q̇1+(In − J+

1 J1)u
)
= J1q̇1

therefore,
q̇ = q̇1 + (In − J+

1 J1)u

also minimizes ‖J1q̇ + λ1T1 +
∂T1
∂t ‖.

P1 = (In − J+
1 J1) is a projector on J1 kernel:

J1P1 = 0
∀u ∈ Rn, if q̇ = P1u, then, Ṫ1 = ∂T1

∂t .
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Controlling the second task
We have

q̇ = q̇1 + P1u

Ṫ2 = J2q̇ +
∂T2

∂t

Ṫ2 = J2q̇1 +
∂T2

∂t
+ J2P1u

We want

Ṫ2 = −λ2T2

Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t
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Ṫ2 = J2q̇1 +
∂T2

∂t
+ J2P1u

We want
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Example

I T1: position of the feet +
projection of center of
mass,

I T2: position of the right
wrist.
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Architecture overview

-jrl-mal

-jrl-dynamics
-abstract-robot-dynamics

-jrl-mathtools

libraries

dynamic-graph

-entity
-signal
-command

-pool
-factory

dynamic-graph-python

-bindings
-remote interpreter

sot-core

-solvers
-feature

-task

sot-dynamic

-forward kinematics
-inverse dynamics

sot-pattern-generator

-walk motion generation

sot-hrp2 sot-romeo sot-nao

sot-hrprtc-hrp2

} abstract
controllers

} immersion into
robot controller

-Robot

dynamic-graph-tutorial

-inverted pendulum

-jrl-walkgen

sot-tools

-helper tools

sot-hrp2-hrpsys

OpenHRP-3.1 OpenHRP-3.0

dynamic_graph_bridge

services
/run_command

/start_dynamic_graph

/stop_dynamic_graph

topics
/joint_state

from/to signals

ros-electric

sot-application

-application dependent
 initializations

The stack of tasks
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Libraries

I jrl-mathtools: implementation of small size matrices,
I to be replaced by Eigen

I jrl-mal: abstract layer for matrices,
I to be replaced by Eigen

I abstract-robot-dynamics: abstraction for humanoid
robot description,

I jrl-dynamics: implementation of the above abstract
interfaces,

I jrl-walkgen: ZMP based dynamic walk generation.

The stack of tasks
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Software

dynamic-graph

I Entity
I Signal: synchronous interface
I Command: asynchronous interface

I Factory
I builds a new entity of requested type,
I new entity types can be dynamically added (advanced).

I Pool
I stores all instances of entities,
I return reference to entity of given name.
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Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I output signals:

I recomputed by a callback function, or
I set to constant value
I warning: setting to constant value deactivate callback,

I input signals:
I plugged by an output signal, or
I set to constant value,
I warning: setting to constant value unplugs,
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Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I dependency relation: s1 depends on s2 if s1 callback

needs the value of s2,
I each signal s stores time of last recomputation in member
s.t

I s is said outdated at time t if
I t > s.t , and
I one dependency s dep of s

I is out-dated or
I has been recomputed later than s: s dep.t > s.t .

I reading an out-dated signal triggers recomputation.
I New types can be dynamically added (advanced)

The stack of tasks
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Command

Asynchronous interface
I input in a fixed set of types,
I trigger an action,
I returns a result in the same set of types.

The stack of tasks
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dynamic-graph-python

Python bindings to dynamic-graph
I module dynamic graph linked to
libdynamic-graph.so

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods
I method help lists commands
I method displaySignals displays signals

I class Signal
I property value to set and get signal value

I remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks
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python class of the same name,
I signals are instance members,
I commands are bound to instance methods
I method help lists commands
I method displaySignals displays signals

I class Signal
I property value to set and get signal value

I remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks



Introduction
Theoretical foundations

Software

dynamic-graph-tutorial

Simple use case for illustration
I Definition of 2 entity types

I InvertedPendulum
I input signal: force
I output signal: state

I FeedbackController
I input signal: state
I output signal: force

The stack of tasks



Introduction
Theoretical foundations

Software

dynamic-graph-tutorial
>>> from dynamic graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)
>>> b = FeedbackController (’K’)
>>> a.displaySignals ()
--- <IP> signal list:
|-- <Sig:InvertedPendulum(IP)::input(double)::force (Type Cst) AUTOPLUGGED
‘-- <Sig:InvertedPendulum(IP)::output(vector)::state (Type Cst)
>>> a.help ()
Classical inverted pendulum dynamic model

List of commands:
-----------------
getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass

>>> a.help (’incr’)
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

>>>

The stack of tasks
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dynamic-graph-tutorial

Package provides
I C++ code of classes InvertedPendulum and
FeedbackController,

I explanation about how to create a new entity type in C++,
I information about how to create a command in C++,
I information about how to create a python module defining

the bindings in cmake,
I python script that runs an example.

The stack of tasks
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sot-core

Class FeatureAbstract
I function of the robot and environment states

I position of an end-effector,
I position of a feature in an image (visual servoing)

I with values in a Lie group G (SO(3), SE(3), Rn,...),
I with a mapping e from G into Rm such that

e(0G) = 0

The stack of tasks
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Feature

When paired with a reference, features become tasks.
I Example

error

errordot

jacobian

Jq
value

FeaturePoint6d

reference

FeaturePoint6d

velocity

position

position

I error = e (value.position	reference.position)
I errordot: derivative of error when value.position

is constant.

The stack of tasks
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Task

I Collection of features with a control gain,
I implements abstraction TaskAbstract

error

errordot

jacobian

feature 1

error

errordot

jacobian

feature n

error

errorTimeDeriv

jacobian

TaskcontrolGain

damping

controlSelec

task

I task = −controlGain.error

The stack of tasks
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Solver SOT
Hierarchical task solver

I computes robot joint velocity

The stack of tasks
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sot-dynamic

dynamic graph.sot.dynamics.Dynamic builds a
kinematic chain from a file and

I computes forward kinematics
I position and Jacobian of end effectors (wrists, ankles),
I position of center of mass

I computes dynamics
I inertia matrix.

The stack of tasks
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sot-pattern-generator

dynamic graph.sot.pattern generator
I Entity PatternGenerator produces walk motions as

I position and velocity of the feet
I position and velocity of the center of mass

The stack of tasks



Introduction
Theoretical foundations

Software

sot-application

dynamic graph.sot.application
I Provide scripts for standard control graph initialization

I depends on application: control mode (velocity,
acceleration)

The stack of tasks
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Software

Packages specific to robots

sot-hrp2
I defines a class Robot that provides

I ready to use features for feet, hands, gaze and center of
mass,

I ready to use tasks for the same end effectors,
I an entity Dynamic,
I an entity Device (interface with the robot control system)

sot-hrprtc-hrp2

I provide an RTC component to integrate sot-hrp2 into the
robot controller.

The stack of tasks
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Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks
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Software

Installation

Through robotpkg
I git clone http://trac.laas.fr/git/robots/robotpkg.git

cd robotpkg
./bootstrap/bootstrap --prefix=<your prefix>
cd motion/sot-dynamic

make install

The stack of tasks
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Installation

Through github:
I git clone --recursive git://github.com/jrl-umi3218/jrl-mal.git

git clone --recursive git://github.com/jrl-umi3218/jrl-mathtools.git
git clone --recursive git://github.com/laas/abstract-robot-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-walkgen.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph-python.git
git clone --recursive git://github.com/jrl-umi3218/sot-core.git
git clone --recursive git://github.com/laas/sot-tools.git
git clone --recursive git://github.com/jrl-umi3218/sot-dynamic.git
git clone --recursive git://github.com/jrl-umi3218/sot-pattern-generator.git
git clone --recursive git://github.com/stack-of-tasks/sot-application.git
git clone --recursive git://github.com/laas/sot-hrp2.git
git clone --recursive git://github.com/stack-of-tasks/sot-hrprtc-hrp2.git

I for each package,
mkdir package/build
cd package/build
cmake -DCMAKE INSTALL PREFIX=<your prefix> ..

make install

The stack of tasks
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git clone --recursive git://github.com/jrl-umi3218/dynamic-graph-python.git
git clone --recursive git://github.com/jrl-umi3218/sot-core.git
git clone --recursive git://github.com/laas/sot-tools.git
git clone --recursive git://github.com/jrl-umi3218/sot-dynamic.git
git clone --recursive git://github.com/jrl-umi3218/sot-pattern-generator.git
git clone --recursive git://github.com/stack-of-tasks/sot-application.git
git clone --recursive git://github.com/laas/sot-hrp2.git
git clone --recursive git://github.com/stack-of-tasks/sot-hrprtc-hrp2.git

I for each package,
mkdir package/build
cd package/build
cmake -DCMAKE INSTALL PREFIX=<your prefix> ..

make install

The stack of tasks
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Installation

Through installation script
I git clone git://github.com/stack-of-tasks/install-sot.git

cd install-sot/scripts

./install sot.sh

The stack of tasks



Introduction
Theoretical foundations

Software

Running the stack of tasks into OpenHRP-3.1

You need to install:
I ros-electric

I OpenHRP-3.1

you will find instructions in https://wiki.laas.fr/robots/HRP/Software

Then follow instructions in sot-hrprtc/README.md:
https://github.com/stack-of-tasks/sot-hrprtc-hrp2

The stack of tasks
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Running the stack of tasks into OpenHRP-3.0.7
Assumptions

I OpenHRP 3.0.7 is installed
I The Stack of Tasks has been installed thanks to previous

slide with install sot.sh in the directory:

/ home / user / devel / ros uns tab le

I Your /opt/grx3.0/HRP2LAAS/bin/config.sh is well setup.

The golden commands
$>roscore
#Launching HRP2 s imu la t i on wi th OpenHPR
$>ros launch hrp2 br ingup openhrp br idge . launch robot := hrp2 14

mode:= d g w i t h s t a b i l i z e r s imu la t i on := true
$>rosse rv i ce c a l l / s ta r t dynamic graph
$>rosrun dynamic graph br idge run command

The stack of tasks
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Running the stack of tasks into OpenHRP-3.0.7

Initialize the application: create tracer and solver

[ INFO ] [ WallTime : 1370854858.786392] wa i t i ng for
serv i ce . . .

I n t e r a c t i n g wi th remote server .
>>> from dynamic graph . sot . a p p l i c a t i o n . v e l o c i t y .\\

precomputed tasks import i n i t i a l i z e
>>> so l ve r = i n i t i a l i z e ( robot )
>>> robot . i n i t i a l i z e T r a c e r ( )

The stack of tasks
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Running the stack of tasks into OpenHRP-3.0.7

Build the graph including the pattern generator

[ INFO ] [ WallTime : 1370854858.786392] wa i t i ng for
serv i ce . . .

I n t e r a c t i n g wi th remote server .
>>> from

dynamic graph . sot . pa t t e rn gene ra to r . walk ing
import CreateEverythingForPG , walkFewSteps

With meta s e l e c t o r

The stack of tasks
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Running the stack of tasks into OpenHRP-3.0.7

Create the graph

>>> CreateEverythingForPG ( robot , so l ve r )
At t h i s stage
( ’ modelDir : ’ ,

’ ˜ / devel / ros−unstab le / i n s t a l l / share / hrp2−14 ’ )
( ’modelName : ’ , ’ HRP2JRLmainsmall . w r l ’ )
( ’ s p e c i f i c i t i e s P a t h : ’ ,

’ HRP2Spec i f i c i t iesSmal l . xml ’ )
( ’ jo in tRankPath : ’ , ’ HRP2LinkJointRankSmall . xml ’ )
A f t e r Task for Right and L e f t Feet

The stack of tasks
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Running the stack of tasks into OpenHRP-3.0.7

Switch to the new graph

>>> walkFewSteps ( robot )
>>>
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Software structure - Conceptual view

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

Python

IOR

ROS
: SoT Entity

: C++ server

: Process/Task
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Software structure - Link with Model
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Software structure - Repositories

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

sot-hrp2

sot-dynamics sot-core

sot-core

sot-dyninv
sot-core

sot-dyninv

sot-core

sot-pattern-generator

IOR

sot-hrp2-hrpsys
sot-hrprtc-hrp2
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