
Introduction
Theoretical foundations

Software

The stack of tasks

Florent Lamiraux, Olivier Stasse and Nicolas Mansard

CNRS-LAAS, Toulouse, France

The stack of tasks

Introduction
Theoretical foundations

Software

The stack of tasks

Introduction

Theoretical foundations

Software

The stack of tasks

Introduction
Theoretical foundations

Software

Outline

Introduction

Theoretical foundations

Software

The stack of tasks

Introduction
Theoretical foundations

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo.

The stack of tasks

Introduction
Theoretical foundations

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo.

The stack of tasks

Introduction
Theoretical foundations

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo.

The stack of tasks

Introduction
Theoretical foundations

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo.

The stack of tasks

Introduction
Theoretical foundations

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo.

The stack of tasks

Introduction
Theoretical foundations

Software

Outline

Introduction

Theoretical foundations

Software

The stack of tasks

Introduction
Theoretical foundations

Software

Rigid body B

I Configuration represented by an homogeneous matrix

MB =

(
RB tB

0 0 0 1

)
∈ SE(3)

RB ∈ SO(3)⇔ RT
BRB = I3 and det(R) = 1

Point x ∈ R3 in local frame of B is moved to y ∈ R3 in
global frame: (

y
1

)
= MB

(
x
1

)

The stack of tasks

Introduction
Theoretical foundations

Software

Rigid body B

I Configuration represented by an homogeneous matrix

MB =

(
RB tB

0 0 0 1

)
∈ SE(3)

RB ∈ SO(3)⇔ RT
BRB = I3 and det(R) = 1

Point x ∈ R3 in local frame of B is moved to y ∈ R3 in
global frame: (

y
1

)
= MB

(
x
1

)

The stack of tasks

Introduction
Theoretical foundations

Software

Rigid body B

I Configuration represented by an homogeneous matrix

MB =

(
RB tB

0 0 0 1

)
∈ SE(3)

RB ∈ SO(3)⇔ RT
BRB = I3 and det(R) = 1

Point x ∈ R3 in local frame of B is moved to y ∈ R3 in
global frame: (

y
1

)
= MB

(
x
1

)

The stack of tasks

Introduction
Theoretical foundations

Software

Rigid body B
I Velocity represented by (vB, ωB) ∈ R6 where

ṘB = ω̂BRB

and

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


is the matrix corresponding to the cross product operator

I Velocity of point P on B

vp = ṫB + ωB × ~OBP

where OB is the origin of the local frame of B.

The stack of tasks

Introduction
Theoretical foundations

Software

Rigid body B
I Velocity represented by (vB, ωB) ∈ R6 where

ṘB = ω̂BRB

and

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


is the matrix corresponding to the cross product operator

I Velocity of point P on B

vp = ṫB + ωB × ~OBP

where OB is the origin of the local frame of B.

The stack of tasks

Introduction
Theoretical foundations

Software

Rigid body B
I Velocity represented by (vB, ωB) ∈ R6 where

ṘB = ω̂BRB

and

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


is the matrix corresponding to the cross product operator

I Velocity of point P on B

vp = ṫB + ωB × ~OBP

where OB is the origin of the local frame of B.

The stack of tasks

Introduction
Theoretical foundations

Software

Configuration space

I Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

I Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

I Position of Bi depends on q:

MBi (q) ∈ SE(3)

The stack of tasks

Introduction
Theoretical foundations

Software

Configuration space

I Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

I Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

I Position of Bi depends on q:

MBi (q) ∈ SE(3)

The stack of tasks

Introduction
Theoretical foundations

Software

Configuration space

I Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

I Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

I Position of Bi depends on q:

MBi (q) ∈ SE(3)

The stack of tasks

Introduction
Theoretical foundations

Software

Velocity

I Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

I Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6

The stack of tasks

Introduction
Theoretical foundations

Software

Velocity

I Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

I Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6

The stack of tasks

Introduction
Theoretical foundations

Software

Velocity

I Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

I Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6

The stack of tasks

Introduction
Theoretical foundations

Software

Task
I Definition: function of the

I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Example: position tracking of an end-effector Bee
I M(q) ∈ SE(3) position of the end-effector,
I M∗(t) ∈ SE(3) reference position

T (q, t) =
(

t(M∗−1(t)M(q))
uθ(R∗−1(t)R(q))

)
where

I t() is the translation part of an homogeneous matrix,
I R and R∗ are the rotation part of M and M∗.

The stack of tasks

Introduction
Theoretical foundations

Software

Task
I Definition: function of the

I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Example: position tracking of an end-effector Bee
I M(q) ∈ SE(3) position of the end-effector,
I M∗(t) ∈ SE(3) reference position

T (q, t) =
(

t(M∗−1(t)M(q))
uθ(R∗−1(t)R(q))

)
where

I t() is the translation part of an homogeneous matrix,
I R and R∗ are the rotation part of M and M∗.

The stack of tasks

Introduction
Theoretical foundations

Software

Task
I Definition: function of the

I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Example: position tracking of an end-effector Bee
I M(q) ∈ SE(3) position of the end-effector,
I M∗(t) ∈ SE(3) reference position

T (q, t) =
(

t(M∗−1(t)M(q))
uθ(R∗−1(t)R(q))

)
where

I t() is the translation part of an homogeneous matrix,
I R and R∗ are the rotation part of M and M∗.

The stack of tasks

Introduction
Theoretical foundations

Software

Task
I Definition: function of the

I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Example: position tracking of an end-effector Bee
I M(q) ∈ SE(3) position of the end-effector,
I M∗(t) ∈ SE(3) reference position

T (q, t) =
(

t(M∗−1(t)M(q))
uθ(R∗−1(t)R(q))

)
where

I t() is the translation part of an homogeneous matrix,
I R and R∗ are the rotation part of M and M∗.

The stack of tasks

Introduction
Theoretical foundations

Software

Task
I Definition: function of the

I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Example: position tracking of an end-effector Bee
I M(q) ∈ SE(3) position of the end-effector,
I M∗(t) ∈ SE(3) reference position

T (q, t) =
(

t(M∗−1(t)M(q))
uθ(R∗−1(t)R(q))

)
where

I t() is the translation part of an homogeneous matrix,
I R and R∗ are the rotation part of M and M∗.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

Given
I a configuration q,
I two tasks of decreasing priorities:

I T1 ∈ C∞(C × R,Rm1),
I T2 ∈ C∞(C × R,Rm2),

compute a control vector q̇
I that makes T1 converge toward 0 and
I that makes T2 converge toward 0 if possible.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

Given
I a configuration q,
I two tasks of decreasing priorities:

I T1 ∈ C∞(C × R,Rm1),
I T2 ∈ C∞(C × R,Rm2),

compute a control vector q̇
I that makes T1 converge toward 0 and
I that makes T2 converge toward 0 if possible.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

Jacobian:
I we denote

I Ji =
∂Ti
∂q for i ∈ {1,2}

I then
I ∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti

∂t (q, t)

We try to enforce
I Ṫ1 = −λ1T1 ⇒ T1(t) = e−λ1tT1(0)→ 0
I Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0
I λ1 and λ2 are called the gains associated to T1 and T2.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

Jacobian:
I we denote

I Ji =
∂Ti
∂q for i ∈ {1,2}

I then
I ∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti

∂t (q, t)

We try to enforce
I Ṫ1 = −λ1T1 ⇒ T1(t) = e−λ1tT1(0)→ 0
I Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0
I λ1 and λ2 are called the gains associated to T1 and T2.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

Jacobian:
I we denote

I Ji =
∂Ti
∂q for i ∈ {1,2}

I then
I ∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti

∂t (q, t)

We try to enforce
I Ṫ1 = −λ1T1 ⇒ T1(t) = e−λ1tT1(0)→ 0
I Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0
I λ1 and λ2 are called the gains associated to T1 and T2.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

Jacobian:
I we denote

I Ji =
∂Ti
∂q for i ∈ {1,2}

I then
I ∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti

∂t (q, t)

We try to enforce
I Ṫ1 = −λ1T1 ⇒ T1(t) = e−λ1tT1(0)→ 0
I Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0
I λ1 and λ2 are called the gains associated to T1 and T2.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

Jacobian:
I we denote

I Ji =
∂Ti
∂q for i ∈ {1,2}

I then
I ∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti

∂t (q, t)

We try to enforce
I Ṫ1 = −λ1T1 ⇒ T1(t) = e−λ1tT1(0)→ 0
I Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0
I λ1 and λ2 are called the gains associated to T1 and T2.

The stack of tasks

Introduction
Theoretical foundations

Software

Moore Penrose pseudo-inverse
Given a matrix A ∈ Rm×n, the Moore Penrose pseudo inverse
A+ ∈ Rn×m of A is the unique matrix satisfying:

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

Given a linear system:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

x = A+b minimizes
I ‖Ax − b‖ over Rn,
I ‖x‖ over argmin‖Ax − b‖.

The stack of tasks

Introduction
Theoretical foundations

Software

Moore Penrose pseudo-inverse
Given a matrix A ∈ Rm×n, the Moore Penrose pseudo inverse
A+ ∈ Rn×m of A is the unique matrix satisfying:

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

Given a linear system:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

x = A+b minimizes
I ‖Ax − b‖ over Rn,
I ‖x‖ over argmin‖Ax − b‖.

The stack of tasks

Introduction
Theoretical foundations

Software

Moore Penrose pseudo-inverse
Given a matrix A ∈ Rm×n, the Moore Penrose pseudo inverse
A+ ∈ Rn×m of A is the unique matrix satisfying:

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

Given a linear system:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

x = A+b minimizes
I ‖Ax − b‖ over Rn,
I ‖x‖ over argmin‖Ax − b‖.

The stack of tasks

Introduction
Theoretical foundations

Software

Moore Penrose pseudo-inverse
Given a matrix A ∈ Rm×n, the Moore Penrose pseudo inverse
A+ ∈ Rn×m of A is the unique matrix satisfying:

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

Given a linear system:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

x = A+b minimizes
I ‖Ax − b‖ over Rn,
I ‖x‖ over argmin‖Ax − b‖.

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control
Resolution of the first constraint:

Ṫ1 = J1q̇ +
∂T1

∂t
= −λ1T1 (1)

J1q̇ = −λ1T1 −
∂T1

∂t
(2)

q̇1 , −J+
1 (λ1T1 +

∂T1

∂t
) (3)

Where J+
1 is the (Moore Penrose) pseudo-inverse of J1.

q̇1 minimizes
I ‖J1q̇ + λ1T1 +

∂T1
∂t ‖ = ‖Ṫ1 + λ1T1‖

I ‖q̇‖ over argmin ‖J1q̇ + λ1T1 +
∂T1
∂t ‖

Hence,
I if λ1T1 +

∂T1
∂t is in Im(J1), (1) is satisfied

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control
Resolution of the first constraint:

Ṫ1 = J1q̇ +
∂T1

∂t
= −λ1T1 (1)

J1q̇ = −λ1T1 −
∂T1

∂t
(2)

q̇1 , −J+
1 (λ1T1 +

∂T1

∂t
) (3)

Where J+
1 is the (Moore Penrose) pseudo-inverse of J1.

q̇1 minimizes
I ‖J1q̇ + λ1T1 +

∂T1
∂t ‖ = ‖Ṫ1 + λ1T1‖

I ‖q̇‖ over argmin ‖J1q̇ + λ1T1 +
∂T1
∂t ‖

Hence,
I if λ1T1 +

∂T1
∂t is in Im(J1), (1) is satisfied

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control
Resolution of the first constraint:

Ṫ1 = J1q̇ +
∂T1

∂t
= −λ1T1 (1)

J1q̇ = −λ1T1 −
∂T1

∂t
(2)

q̇1 , −J+
1 (λ1T1 +

∂T1

∂t
) (3)

Where J+
1 is the (Moore Penrose) pseudo-inverse of J1.

q̇1 minimizes
I ‖J1q̇ + λ1T1 +

∂T1
∂t ‖ = ‖Ṫ1 + λ1T1‖

I ‖q̇‖ over argmin ‖J1q̇ + λ1T1 +
∂T1
∂t ‖

Hence,
I if λ1T1 +

∂T1
∂t is in Im(J1), (1) is satisfied

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control
Resolution of the first constraint:

Ṫ1 = J1q̇ +
∂T1

∂t
= −λ1T1 (1)

J1q̇ = −λ1T1 −
∂T1

∂t
(2)

q̇1 , −J+
1 (λ1T1 +

∂T1

∂t
) (3)

Where J+
1 is the (Moore Penrose) pseudo-inverse of J1.

q̇1 minimizes
I ‖J1q̇ + λ1T1 +

∂T1
∂t ‖ = ‖Ṫ1 + λ1T1‖

I ‖q̇‖ over argmin ‖J1q̇ + λ1T1 +
∂T1
∂t ‖

Hence,
I if λ1T1 +

∂T1
∂t is in Im(J1), (1) is satisfied

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control
Resolution of the first constraint:

Ṫ1 = J1q̇ +
∂T1

∂t
= −λ1T1 (1)

J1q̇ = −λ1T1 −
∂T1

∂t
(2)

q̇1 , −J+
1 (λ1T1 +

∂T1

∂t
) (3)

Where J+
1 is the (Moore Penrose) pseudo-inverse of J1.

q̇1 minimizes
I ‖J1q̇ + λ1T1 +

∂T1
∂t ‖ = ‖Ṫ1 + λ1T1‖

I ‖q̇‖ over argmin ‖J1q̇ + λ1T1 +
∂T1
∂t ‖

Hence,
I if λ1T1 +

∂T1
∂t is in Im(J1), (1) is satisfied

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

In fact
∀u ∈ Rn, J1

(
q̇1+(In − J+

1 J1)u
)
= J1q̇1

therefore,
q̇ = q̇1 + (In − J+

1 J1)u

also minimizes ‖J1q̇ + λ1T1 +
∂T1
∂t ‖.

P1 = (In − J+
1 J1) is a projector on J1 kernel:

J1P1 = 0
∀u ∈ Rn, if q̇ = P1u, then, Ṫ1 = ∂T1

∂t .

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

In fact
∀u ∈ Rn, J1

(
q̇1+(In − J+

1 J1)u
)
= J1q̇1

therefore,
q̇ = q̇1 + (In − J+

1 J1)u

also minimizes ‖J1q̇ + λ1T1 +
∂T1
∂t ‖.

P1 = (In − J+
1 J1) is a projector on J1 kernel:

J1P1 = 0
∀u ∈ Rn, if q̇ = P1u, then, Ṫ1 = ∂T1

∂t .

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

In fact
∀u ∈ Rn, J1

(
q̇1+(In − J+

1 J1)u
)
= J1q̇1

therefore,
q̇ = q̇1 + (In − J+

1 J1)u

also minimizes ‖J1q̇ + λ1T1 +
∂T1
∂t ‖.

P1 = (In − J+
1 J1) is a projector on J1 kernel:

J1P1 = 0
∀u ∈ Rn, if q̇ = P1u, then, Ṫ1 = ∂T1

∂t .

The stack of tasks

Introduction
Theoretical foundations

Software

Hierarchical task based control

In fact
∀u ∈ Rn, J1

(
q̇1+(In − J+

1 J1)u
)
= J1q̇1

therefore,
q̇ = q̇1 + (In − J+

1 J1)u

also minimizes ‖J1q̇ + λ1T1 +
∂T1
∂t ‖.

P1 = (In − J+
1 J1) is a projector on J1 kernel:

J1P1 = 0
∀u ∈ Rn, if q̇ = P1u, then, Ṫ1 = ∂T1

∂t .

The stack of tasks

Introduction
Theoretical foundations

Software

Controlling the second task
We have

q̇ = q̇1 + P1u

Ṫ2 = J2q̇ +
∂T2

∂t

Ṫ2 = J2q̇1 +
∂T2

∂t
+ J2P1u

We want

Ṫ2 = −λ2T2

Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t

The stack of tasks

Introduction
Theoretical foundations

Software

Controlling the second task
We have

q̇ = q̇1 + P1u

Ṫ2 = J2q̇ +
∂T2

∂t

Ṫ2 = J2q̇1 +
∂T2

∂t
+ J2P1u

We want

Ṫ2 = −λ2T2

Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t

The stack of tasks

Introduction
Theoretical foundations

Software

Controlling the second task
We have

q̇ = q̇1 + P1u

Ṫ2 = J2q̇ +
∂T2

∂t

Ṫ2 = J2q̇1 +
∂T2

∂t
+ J2P1u

We want

Ṫ2 = −λ2T2

Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t

The stack of tasks

Introduction
Theoretical foundations

Software

Controlling the second task
Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t

u = −(J2P1)
+(λ2T2 + J2q̇1 +

∂T2

∂t
)

q̇2 , q̇1 + P1u

= q̇1 − P1(J2P1)
+(λ2T2 + J2q̇1 +

∂T2

∂t
))

minimizes ‖Ṫ2 + λ2T2‖ over q̇1 + Ker J1.
The stack of tasks

Introduction
Theoretical foundations

Software

Controlling the second task
Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t

u = −(J2P1)
+(λ2T2 + J2q̇1 +

∂T2

∂t
)

q̇2 , q̇1 + P1u

= q̇1 − P1(J2P1)
+(λ2T2 + J2q̇1 +

∂T2

∂t
))

minimizes ‖Ṫ2 + λ2T2‖ over q̇1 + Ker J1.
The stack of tasks

Introduction
Theoretical foundations

Software

Example

I T1: position of the feet +
projection of center of
mass,

I T2: position of the right
wrist.

The stack of tasks

Introduction
Theoretical foundations

Software

Outline

Introduction

Theoretical foundations

Software

The stack of tasks

Introduction
Theoretical foundations

Software

Architecture overview

-jrl-mal

-jrl-dynamics
-abstract-robot-dynamics

-jrl-mathtools

libraries

dynamic-graph

-entity
-signal
-command

-pool
-factory

dynamic-graph-python

-bindings
-remote interpreter

sot-core

-solvers
-feature

-task

sot-dynamic

-forward kinematics
-inverse dynamics

sot-pattern-generator

-walk motion generation

sot-hrp2 sot-romeo sot-nao

sot-hrprtc-hrp2

} abstract
controllers

} immersion into
robot controller

-Robot

dynamic-graph-tutorial

-inverted pendulum

-jrl-walkgen

sot-tools

-helper tools

sot-hrp2-hrpsys

OpenHRP-3.1 OpenHRP-3.0

dynamic_graph_bridge

services
/run_command

/start_dynamic_graph

/stop_dynamic_graph

topics
/joint_state

from/to signals

ros-electric

sot-application

-application dependent
 initializations

The stack of tasks

Introduction
Theoretical foundations

Software

Libraries

I jrl-mathtools: implementation of small size matrices,
I to be replaced by Eigen

I jrl-mal: abstract layer for matrices,
I to be replaced by Eigen

I abstract-robot-dynamics: abstraction for humanoid
robot description,

I jrl-dynamics: implementation of the above abstract
interfaces,

I jrl-walkgen: ZMP based dynamic walk generation.

The stack of tasks

Introduction
Theoretical foundations

Software

Libraries

I jrl-mathtools: implementation of small size matrices,
I to be replaced by Eigen

I jrl-mal: abstract layer for matrices,
I to be replaced by Eigen

I abstract-robot-dynamics: abstraction for humanoid
robot description,

I jrl-dynamics: implementation of the above abstract
interfaces,

I jrl-walkgen: ZMP based dynamic walk generation.

The stack of tasks

Introduction
Theoretical foundations

Software

Libraries

I jrl-mathtools: implementation of small size matrices,
I to be replaced by Eigen

I jrl-mal: abstract layer for matrices,
I to be replaced by Eigen

I abstract-robot-dynamics: abstraction for humanoid
robot description,

I jrl-dynamics: implementation of the above abstract
interfaces,

I jrl-walkgen: ZMP based dynamic walk generation.

The stack of tasks

Introduction
Theoretical foundations

Software

Libraries

I jrl-mathtools: implementation of small size matrices,
I to be replaced by Eigen

I jrl-mal: abstract layer for matrices,
I to be replaced by Eigen

I abstract-robot-dynamics: abstraction for humanoid
robot description,

I jrl-dynamics: implementation of the above abstract
interfaces,

I jrl-walkgen: ZMP based dynamic walk generation.

The stack of tasks

Introduction
Theoretical foundations

Software

Libraries

I jrl-mathtools: implementation of small size matrices,
I to be replaced by Eigen

I jrl-mal: abstract layer for matrices,
I to be replaced by Eigen

I abstract-robot-dynamics: abstraction for humanoid
robot description,

I jrl-dynamics: implementation of the above abstract
interfaces,

I jrl-walkgen: ZMP based dynamic walk generation.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph

I Entity
I Signal: synchronous interface
I Command: asynchronous interface

I Factory
I builds a new entity of requested type,
I new entity types can be dynamically added (advanced).

I Pool
I stores all instances of entities,
I return reference to entity of given name.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph

I Entity
I Signal: synchronous interface
I Command: asynchronous interface

I Factory
I builds a new entity of requested type,
I new entity types can be dynamically added (advanced).

I Pool
I stores all instances of entities,
I return reference to entity of given name.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph

I Entity
I Signal: synchronous interface
I Command: asynchronous interface

I Factory
I builds a new entity of requested type,
I new entity types can be dynamically added (advanced).

I Pool
I stores all instances of entities,
I return reference to entity of given name.

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I output signals:

I recomputed by a callback function, or
I set to constant value
I warning: setting to constant value deactivate callback,

I input signals:
I plugged by an output signal, or
I set to constant value,
I warning: setting to constant value unplugs,

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I output signals:

I recomputed by a callback function, or
I set to constant value
I warning: setting to constant value deactivate callback,

I input signals:
I plugged by an output signal, or
I set to constant value,
I warning: setting to constant value unplugs,

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I output signals:

I recomputed by a callback function, or
I set to constant value
I warning: setting to constant value deactivate callback,

I input signals:
I plugged by an output signal, or
I set to constant value,
I warning: setting to constant value unplugs,

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I output signals:

I recomputed by a callback function, or
I set to constant value
I warning: setting to constant value deactivate callback,

I input signals:
I plugged by an output signal, or
I set to constant value,
I warning: setting to constant value unplugs,

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I dependency relation: s1 depends on s2 if s1 callback

needs the value of s2,
I each signal s stores time of last recomputation in member
s.t

I s is said outdated at time t if
I t > s.t , and
I one dependency s dep of s

I is out-dated or
I has been recomputed later than s: s dep.t > s.t .

I reading an out-dated signal triggers recomputation.
I New types can be dynamically added (advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I dependency relation: s1 depends on s2 if s1 callback

needs the value of s2,
I each signal s stores time of last recomputation in member
s.t

I s is said outdated at time t if
I t > s.t , and
I one dependency s dep of s

I is out-dated or
I has been recomputed later than s: s dep.t > s.t .

I reading an out-dated signal triggers recomputation.
I New types can be dynamically added (advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I dependency relation: s1 depends on s2 if s1 callback

needs the value of s2,
I each signal s stores time of last recomputation in member
s.t

I s is said outdated at time t if
I t > s.t , and
I one dependency s dep of s

I is out-dated or
I has been recomputed later than s: s dep.t > s.t .

I reading an out-dated signal triggers recomputation.
I New types can be dynamically added (advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I dependency relation: s1 depends on s2 if s1 callback

needs the value of s2,
I each signal s stores time of last recomputation in member
s.t

I s is said outdated at time t if
I t > s.t , and
I one dependency s dep of s

I is out-dated or
I has been recomputed later than s: s dep.t > s.t .

I reading an out-dated signal triggers recomputation.
I New types can be dynamically added (advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I dependency relation: s1 depends on s2 if s1 callback

needs the value of s2,
I each signal s stores time of last recomputation in member
s.t

I s is said outdated at time t if
I t > s.t , and
I one dependency s dep of s

I is out-dated or
I has been recomputed later than s: s dep.t > s.t .

I reading an out-dated signal triggers recomputation.
I New types can be dynamically added (advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

Signal (class SignalTimeDependent)

Synchronous interface storing a given data type
I dependency relation: s1 depends on s2 if s1 callback

needs the value of s2,
I each signal s stores time of last recomputation in member
s.t

I s is said outdated at time t if
I t > s.t , and
I one dependency s dep of s

I is out-dated or
I has been recomputed later than s: s dep.t > s.t .

I reading an out-dated signal triggers recomputation.
I New types can be dynamically added (advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

Command

Asynchronous interface
I input in a fixed set of types,
I trigger an action,
I returns a result in the same set of types.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-python

Python bindings to dynamic-graph
I module dynamic graph linked to
libdynamic-graph.so

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods
I method help lists commands
I method displaySignals displays signals

I class Signal
I property value to set and get signal value

I remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-python

Python bindings to dynamic-graph
I module dynamic graph linked to
libdynamic-graph.so

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods
I method help lists commands
I method displaySignals displays signals

I class Signal
I property value to set and get signal value

I remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-python

Python bindings to dynamic-graph
I module dynamic graph linked to
libdynamic-graph.so

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods
I method help lists commands
I method displaySignals displays signals

I class Signal
I property value to set and get signal value

I remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-python

Python bindings to dynamic-graph
I module dynamic graph linked to
libdynamic-graph.so

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods
I method help lists commands
I method displaySignals displays signals

I class Signal
I property value to set and get signal value

I remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-python

Python bindings to dynamic-graph
I module dynamic graph linked to
libdynamic-graph.so

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods
I method help lists commands
I method displaySignals displays signals

I class Signal
I property value to set and get signal value

I remote interpreter to be embedded into a robot controller
(advanced)

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial

Simple use case for illustration
I Definition of 2 entity types

I InvertedPendulum
I input signal: force
I output signal: state

I FeedbackController
I input signal: state
I output signal: force

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial
>>> from dynamic graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)
>>> b = FeedbackController (’K’)
>>> a.displaySignals ()
--- <IP> signal list:
|-- <Sig:InvertedPendulum(IP)::input(double)::force (Type Cst) AUTOPLUGGED
‘-- <Sig:InvertedPendulum(IP)::output(vector)::state (Type Cst)
>>> a.help ()
Classical inverted pendulum dynamic model

List of commands:

getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass

>>> a.help (’incr’)
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

>>>

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial
>>> from dynamic graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)
>>> b = FeedbackController (’K’)
>>> a.displaySignals ()
--- <IP> signal list:
|-- <Sig:InvertedPendulum(IP)::input(double)::force (Type Cst) AUTOPLUGGED
‘-- <Sig:InvertedPendulum(IP)::output(vector)::state (Type Cst)
>>> a.help ()
Classical inverted pendulum dynamic model

List of commands:

getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass

>>> a.help (’incr’)
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

>>>

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial
>>> from dynamic graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)
>>> b = FeedbackController (’K’)
>>> a.displaySignals ()
--- <IP> signal list:
|-- <Sig:InvertedPendulum(IP)::input(double)::force (Type Cst) AUTOPLUGGED
‘-- <Sig:InvertedPendulum(IP)::output(vector)::state (Type Cst)
>>> a.help ()
Classical inverted pendulum dynamic model

List of commands:

getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass

>>> a.help (’incr’)
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

>>>

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial
>>> from dynamic graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)
>>> b = FeedbackController (’K’)
>>> a.displaySignals ()
--- <IP> signal list:
|-- <Sig:InvertedPendulum(IP)::input(double)::force (Type Cst) AUTOPLUGGED
‘-- <Sig:InvertedPendulum(IP)::output(vector)::state (Type Cst)
>>> a.help ()
Classical inverted pendulum dynamic model

List of commands:

getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass

>>> a.help (’incr’)
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

>>>

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial
>>> from dynamic graph.tutorial import InvertedPendulum, FeedbackController
>>> a = InvertedPendulum (’IP’)
>>> b = FeedbackController (’K’)
>>> a.displaySignals ()
--- <IP> signal list:
|-- <Sig:InvertedPendulum(IP)::input(double)::force (Type Cst) AUTOPLUGGED
‘-- <Sig:InvertedPendulum(IP)::output(vector)::state (Type Cst)
>>> a.help ()
Classical inverted pendulum dynamic model

List of commands:

getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass

>>> a.help (’incr’)
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

>>>

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial

Package provides
I C++ code of classes InvertedPendulum and
FeedbackController,

I explanation about how to create a new entity type in C++,
I information about how to create a command in C++,
I information about how to create a python module defining

the bindings in cmake,
I python script that runs an example.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial

Package provides
I C++ code of classes InvertedPendulum and
FeedbackController,

I explanation about how to create a new entity type in C++,
I information about how to create a command in C++,
I information about how to create a python module defining

the bindings in cmake,
I python script that runs an example.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial

Package provides
I C++ code of classes InvertedPendulum and
FeedbackController,

I explanation about how to create a new entity type in C++,
I information about how to create a command in C++,
I information about how to create a python module defining

the bindings in cmake,
I python script that runs an example.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial

Package provides
I C++ code of classes InvertedPendulum and
FeedbackController,

I explanation about how to create a new entity type in C++,
I information about how to create a command in C++,
I information about how to create a python module defining

the bindings in cmake,
I python script that runs an example.

The stack of tasks

Introduction
Theoretical foundations

Software

dynamic-graph-tutorial

Package provides
I C++ code of classes InvertedPendulum and
FeedbackController,

I explanation about how to create a new entity type in C++,
I information about how to create a command in C++,
I information about how to create a python module defining

the bindings in cmake,
I python script that runs an example.

The stack of tasks

Introduction
Theoretical foundations

Software

sot-core

Class FeatureAbstract
I function of the robot and environment states

I position of an end-effector,
I position of a feature in an image (visual servoing)

I with values in a Lie group G (SO(3), SE(3), Rn,...),
I with a mapping e from G into Rm such that

e(0G) = 0

The stack of tasks

Introduction
Theoretical foundations

Software

sot-core

Class FeatureAbstract
I function of the robot and environment states

I position of an end-effector,
I position of a feature in an image (visual servoing)

I with values in a Lie group G (SO(3), SE(3), Rn,...),
I with a mapping e from G into Rm such that

e(0G) = 0

The stack of tasks

Introduction
Theoretical foundations

Software

sot-core

Class FeatureAbstract
I function of the robot and environment states

I position of an end-effector,
I position of a feature in an image (visual servoing)

I with values in a Lie group G (SO(3), SE(3), Rn,...),
I with a mapping e from G into Rm such that

e(0G) = 0

The stack of tasks

Introduction
Theoretical foundations

Software

sot-core

Class FeatureAbstract
I function of the robot and environment states

I position of an end-effector,
I position of a feature in an image (visual servoing)

I with values in a Lie group G (SO(3), SE(3), Rn,...),
I with a mapping e from G into Rm such that

e(0G) = 0

The stack of tasks

Introduction
Theoretical foundations

Software

Feature

When paired with a reference, features become tasks.
I Example

error

errordot

jacobian

Jq
value

FeaturePoint6d

reference

FeaturePoint6d

velocity

position

position

I error = e (value.position	reference.position)
I errordot: derivative of error when value.position

is constant.

The stack of tasks

Introduction
Theoretical foundations

Software

Feature

When paired with a reference, features become tasks.
I Example

error

errordot

jacobian

Jq
value

FeaturePoint6d

reference

FeaturePoint6d

velocity

position

position

I error = e (value.position	reference.position)
I errordot: derivative of error when value.position

is constant.

The stack of tasks

Introduction
Theoretical foundations

Software

Feature

When paired with a reference, features become tasks.
I Example

error

errordot

jacobian

Jq
value

FeaturePoint6d

reference

FeaturePoint6d

velocity

position

position

I error = e (value.position	reference.position)
I errordot: derivative of error when value.position

is constant.

The stack of tasks

Introduction
Theoretical foundations

Software

Task

I Collection of features with a control gain,
I implements abstraction TaskAbstract

error

errordot

jacobian

feature 1

error

errordot

jacobian

feature n

error

errorTimeDeriv

jacobian

TaskcontrolGain

damping

controlSelec

task

I task = −controlGain.error

The stack of tasks

Introduction
Theoretical foundations

Software

Solver SOT
Hierarchical task solver

I computes robot joint velocity

The stack of tasks

Introduction
Theoretical foundations

Software

sot-dynamic

dynamic graph.sot.dynamics.Dynamic builds a
kinematic chain from a file and

I computes forward kinematics
I position and Jacobian of end effectors (wrists, ankles),
I position of center of mass

I computes dynamics
I inertia matrix.

The stack of tasks

Introduction
Theoretical foundations

Software

sot-pattern-generator

dynamic graph.sot.pattern generator
I Entity PatternGenerator produces walk motions as

I position and velocity of the feet
I position and velocity of the center of mass

The stack of tasks

Introduction
Theoretical foundations

Software

sot-application

dynamic graph.sot.application
I Provide scripts for standard control graph initialization

I depends on application: control mode (velocity,
acceleration)

The stack of tasks

Introduction
Theoretical foundations

Software

Packages specific to robots

sot-hrp2
I defines a class Robot that provides

I ready to use features for feet, hands, gaze and center of
mass,

I ready to use tasks for the same end effectors,
I an entity Dynamic,
I an entity Device (interface with the robot control system)

sot-hrprtc-hrp2

I provide an RTC component to integrate sot-hrp2 into the
robot controller.

The stack of tasks

Introduction
Theoretical foundations

Software

Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks

Introduction
Theoretical foundations

Software

Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks

Introduction
Theoretical foundations

Software

Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks

Introduction
Theoretical foundations

Software

Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks

Introduction
Theoretical foundations

Software

Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks

Introduction
Theoretical foundations

Software

Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks

Introduction
Theoretical foundations

Software

Utilities

I dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

I dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,

I MetaTask6d:
I MetaTaskPosture:
I MetaTaskKine6d:
I MetaTaskKinePosture:
I MetaTaskCom:

The stack of tasks

Introduction
Theoretical foundations

Software

Installation

Through robotpkg
I git clone http://trac.laas.fr/git/robots/robotpkg.git

cd robotpkg
./bootstrap/bootstrap --prefix=<your prefix>
cd motion/sot-dynamic

make install

The stack of tasks

Introduction
Theoretical foundations

Software

Installation

Through github:
I git clone --recursive git://github.com/jrl-umi3218/jrl-mal.git

git clone --recursive git://github.com/jrl-umi3218/jrl-mathtools.git
git clone --recursive git://github.com/laas/abstract-robot-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-walkgen.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph-python.git
git clone --recursive git://github.com/jrl-umi3218/sot-core.git
git clone --recursive git://github.com/laas/sot-tools.git
git clone --recursive git://github.com/jrl-umi3218/sot-dynamic.git
git clone --recursive git://github.com/jrl-umi3218/sot-pattern-generator.git
git clone --recursive git://github.com/stack-of-tasks/sot-application.git
git clone --recursive git://github.com/laas/sot-hrp2.git
git clone --recursive git://github.com/stack-of-tasks/sot-hrprtc-hrp2.git

I for each package,
mkdir package/build
cd package/build
cmake -DCMAKE INSTALL PREFIX=<your prefix> ..

make install

The stack of tasks

Introduction
Theoretical foundations

Software

Installation

Through github:
I git clone --recursive git://github.com/jrl-umi3218/jrl-mal.git

git clone --recursive git://github.com/jrl-umi3218/jrl-mathtools.git
git clone --recursive git://github.com/laas/abstract-robot-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-walkgen.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph-python.git
git clone --recursive git://github.com/jrl-umi3218/sot-core.git
git clone --recursive git://github.com/laas/sot-tools.git
git clone --recursive git://github.com/jrl-umi3218/sot-dynamic.git
git clone --recursive git://github.com/jrl-umi3218/sot-pattern-generator.git
git clone --recursive git://github.com/stack-of-tasks/sot-application.git
git clone --recursive git://github.com/laas/sot-hrp2.git
git clone --recursive git://github.com/stack-of-tasks/sot-hrprtc-hrp2.git

I for each package,
mkdir package/build
cd package/build
cmake -DCMAKE INSTALL PREFIX=<your prefix> ..

make install

The stack of tasks

Introduction
Theoretical foundations

Software

Installation

Through installation script
I git clone git://github.com/stack-of-tasks/install-sot.git

cd install-sot/scripts

./install sot.sh

The stack of tasks

Introduction
Theoretical foundations

Software

Running the stack of tasks into OpenHRP-3.1

You need to install:
I ros-electric

I OpenHRP-3.1

you will find instructions in https://wiki.laas.fr/robots/HRP/Software

Then follow instructions in sot-hrprtc/README.md:
https://github.com/stack-of-tasks/sot-hrprtc-hrp2

The stack of tasks

Introduction
Theoretical foundations

Software

Running the stack of tasks into OpenHRP-3.0.7
Assumptions

I OpenHRP 3.0.7 is installed
I The Stack of Tasks has been installed thanks to previous

slide with install sot.sh in the directory:

/ home / user / devel / ros uns tab le

I Your /opt/grx3.0/HRP2LAAS/bin/config.sh is well setup.

The golden commands
$>roscore
#Launching HRP2 s imu la t i on wi th OpenHPR
$>ros launch hrp2 br ingup openhrp br idge . launch robot := hrp2 14

mode:= d g w i t h s t a b i l i z e r s imu la t i on := true
$>rosse rv i ce c a l l / s ta r t dynamic graph
$>rosrun dynamic graph br idge run command

The stack of tasks

Introduction
Theoretical foundations

Software

Running the stack of tasks into OpenHRP-3.0.7

Initialize the application: create tracer and solver

[INFO] [WallTime : 1370854858.786392] wa i t i ng for
serv i ce . . .

I n t e r a c t i n g wi th remote server .
>>> from dynamic graph . sot . a p p l i c a t i o n . v e l o c i t y .\\

precomputed tasks import i n i t i a l i z e
>>> so l ve r = i n i t i a l i z e (robot)
>>> robot . i n i t i a l i z e T r a c e r ()

The stack of tasks

Introduction
Theoretical foundations

Software

Running the stack of tasks into OpenHRP-3.0.7

Build the graph including the pattern generator

[INFO] [WallTime : 1370854858.786392] wa i t i ng for
serv i ce . . .

I n t e r a c t i n g wi th remote server .
>>> from

dynamic graph . sot . pa t t e rn gene ra to r . walk ing
import CreateEverythingForPG , walkFewSteps

With meta s e l e c t o r

The stack of tasks

Introduction
Theoretical foundations

Software

Running the stack of tasks into OpenHRP-3.0.7

Create the graph

>>> CreateEverythingForPG (robot , so l ve r)
At t h i s stage
(’ modelDir : ’ ,

’ ˜ / devel / ros−unstab le / i n s t a l l / share / hrp2−14 ’)
(’modelName : ’ , ’ HRP2JRLmainsmall . w r l ’)
(’ s p e c i f i c i t i e s P a t h : ’ ,

’ HRP2Spec i f i c i t iesSmal l . xml ’)
(’ jo in tRankPath : ’ , ’ HRP2LinkJointRankSmall . xml ’)
A f t e r Task for Right and L e f t Feet

The stack of tasks

Introduction
Theoretical foundations

Software

Running the stack of tasks into OpenHRP-3.0.7

Switch to the new graph

>>> walkFewSteps (robot)
>>>

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Conceptual view

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

Python

IOR

ROS
: SoT Entity

: C++ server

: Process/Task

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Link with Model

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Link with Model

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Link with Model

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Link with Model

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Link with Model

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Link with Model

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

The stack of tasks

Introduction
Theoretical foundations

Software

Software structure - Repositories

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

sot-hrp2

sot-dynamics sot-core

sot-core

sot-dyninv
sot-core

sot-dyninv

sot-core

sot-pattern-generator

IOR

sot-hrp2-hrpsys
sot-hrprtc-hrp2

The stack of tasks

	Introduction
	Theoretical foundations
	Software

