
ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 1

Task Sequencing for High Level
Sensor-Based Control

Nicolas Mansard, François Chaumette

Abstract— Classical sensor-based approaches tend to constrain
all the degrees of freedom of a robot during the execution of a
task. In this article a new solution is proposed. The key idea is
to divide the global full-constraining task into several subtasks
that can be applied or inactivated to take into account potential
constraints of the environment. Far from any constraint, the
robot moves according to the full task. When it comes closer
to a configuration to avoid, a higher level controller removes
one or several subtasks, and activates them again when the
constraint is avoided. The last controller ensures the convergence
at the global level by introducing some look-ahead capabilities
when a local minimum is reached. The robot accomplishes
the global task by automatically sequencing sensor-based tasks,
obstacle avoidance and short deliberative phases. In this article,a
complete solution to implement this idea is proposed, along with
several experiments that prove the validity of this approach.

Index Terms— Sensor-based control, tasks sequencing, redun-
dancy, avoidance, planning, visual servoing

I. I NTRODUCTION

SENSOR-feedback control loop techniques, such as visual
servoing [15], [11] provide very efficient solutions to con-

trol robot motions. It supplies high positioning accuracy,good
robustness to sensor noise and calibration uncertainties,and
reactivity to environment changes. However, the convergence
domain is often local: if the initial error is large, such a control
may become erratic or even impossible [5]. By adequately
choosing the sensor features used for the control, like in 2-
1/2-D visual servoing [25] or by using image moments [41],
the convergence domain is enlarged and the robot behavior is
enhanced without loosing the good properties of accuracy and
robustness. However these solutions are inefficient in taking
environment constraints into account. Such constraints are
generally considered as a secondary task [22], [29]. In that
case they can not be completed if the main task involves all the
robot degrees of freedom (DOF). A second solution is to real-
ize a trade off between the main task and the constraints [31]
but with no guarantee about control convergence or constraints
being respected.

A vast number of trajectories are generally available to reach
the goal. The classical control schemes choose a particular
trajectory without knowing if it is valid or not. In certain cases,
this trajectory may lead to instability or singularity. Reactive

Manuscript submitted November 20, 2005; revised June 1, 2006;accepted
for publication September 10, 2006. This paper was presentedin part at
the IEEE International Conference on Robotics and Automation, Barcelona,
Spain, April 2005.

The authors are with IRISA/INRIA Rennes, Lagadic Project, Cam-
pus de Beaulieu, 35042 Rennes-cedex, France. E-mail:{nmansard,
chaumett}@irisa.fr.

avoidance methods such as [22], [18], [31] simply modify this
trajectory locally, which is not always sufficient.

To always obtain an optimal execution, higher level control
chooses in advance the optimal trajectory by planning a path
to be followed, for example in the sensor space [9], [30]. This
provides a complete solution, which ensures optimality, sta-
bility and physical feasibility to the goal when it is reachable.
It is also able to take several environment constraints into
account, ensuring for example that the tracked object remains
in the camera field of view or the robot avoids its joint limits.
Path planning solves the deficiency of the low-level methods
but it is consequently hardly reactive to environment changes
or execution errors such as localization uncertainties. Some
methods have been proposed to reactively modify the path
[34], [20]. But these methods provide only a local convergence
of the modified path, and still require a lot of knowledge about
the environment to compute the initial path.

Several works have tried to take advantage of these two
solutions, generally by modifying the low-level control loop
with respect to a higher controller level. One approach is
to sequence several simple tasks using ana priori order
[32], [39], [33]. This provides a good robot behavior, but the
choice of the tasks to be sequenced along with the order have
to be tuned by hand for each application. A second set of
solutions are the switching systems: rather than deciding in
advance which path or which task should be used to reach
the goal, switched systems use a set of subsystems along
with a discrete switching control [12], [7]. The robot then
avoids difficult regions by switching from a first control law
(a particular trajectory) to another one when necessary. This
enlarges the stable area to the union of the stable area of each
task used. A last solution is to divide the global task into
several subtasks that are activated or inactivated according to
the current environment state. In [3] a mobile manipulator
moves according to two subtasks. The first one with higher
priority is a deformable-path following. The second one is a
positioning of the embedded arm into the fixed world frame,
that compensates the motions of the mobile platform. When
the deformable path is too far from the initially planned
path, the second subtask has to be suspended because it is
impossible to achieve. A similar idea was used in [42] to
control a highly redundant humanoid robot. The robot moves
in the Cartesian plane using a simple three-dimensional task.
A new subtask is activated to take obstacles into account
only when this task fails. However, the controller and the
criteria proposed in these works to suspend and to activate
the secondary subtasks are difficult to generalize to other
platforms.



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 2

In this work, a general method is proposed to sequence
tasks to reach the goal taking reactively into account several
environment constraints. The key idea is to separate a complete
servoing task into several subtasks, that use only a subspace
of all the robot DOF. At each step, the robot moves to achieve
the active subtasks, until it reaches the goal position where all
the subtasks are applied and realized. A higher-level controller
can remove or put back some subtasks, in order to relax some
DOF. These available DOF are used to take into account
additional constraints such as visual-occlusion or joint-limit
avoidance. More precisely when the robot comes close to
violate a constraint, the higher-level controller choosesthe
adequate DOF to be used to ensure the constraint is respected,
and removes the corresponding subtask from the active ones.
This subtask is later put back, when the robot no more violates
the constraint.

This paper presents a complete method to realize this
general idea. The complete controller is composed of several
layers that provide a good robot behavior at all levels, froma
local and accurate convergence to the convergence from a very
distant initial position around obstacles. To provide a good
overview on this scheme, the global structure including allthe
controllers is first presented in Section II. The complete system
is then built bottom-up, each different layer being detailed in a
different section from Section III to V. The described method
is general and can be applied for all sensor-feedback control
methods. For this article, it was nevertheless applied to visual
servoing. The additional constraints are classical avoidances
that can be encountered in real robotic system, such as joint-
limit, visual-occlusion and obstacle avoidance. The subtasks
and constraints used to realize the experiments are briefly
presented in Section VI. The experimental results are finally
set out in Section VII.

II. CONTROLLER ARCHITECTURE

We first present the global architecture of the system to
provide a large overview of the controllers detailed in the next
sections. The system is composed of four layers of controllers,
each stage controlling the actions of the controllers aboveit.
Figure 1 sums up the architecture.

1) The first controlleris composed of a stack which orders
the subtasks currently active. Only the subtasks in the stack are
taken into account in the control law. The subtask at the bottom
level has priority over all the others, and the priority decreases
as the stack level increases. The control law is computed from
the subtasks in the stack, in accordance with three rules:

- any new subtask added in the stack does not disturb the
subtasks already in the stack.

- the control law is continuous, even when a subtask is
added or removed from the stack. The robot is controlled
through the articular velocitẏq. A break of continuity
would mean an infinite acceleration during a short period
of time, which would imply that the control is not
correctly applied.

- if possible, the additional constraints should be added to
the control law, but without disturbing the subtasks in the
stack.

S
T
A
C
K

...Obstacle
Controller Controller

Joint−limit
Controller
Occlusion

Push−back
Controller

Controller

S
E

C
O

N
D

 L
E

V
E

L
S

E
N

S
O

R
−

B
A

S
E

D
LE

V
E

L

Look−ahead

co
ns

tr
ai

nt
s

se
co

nd
ar

y

T
H

IR
D

 L
E

V
E

L
F

O
U

R
T

H
 L

E
V

E
L

Remove 
a task

task
removed
Add a 

OBSTACLE AVOIDED?

LOCAL MINIMUM?
DEAD−LOCK?

COLLISION PREDICTED?

Add a
specific task

ei+1 eneie1

Fig. 1. Architecture of the global system, composed of four controller layers.
The first low level (sensor-based level) computes the controllaw from the
stack. At the second level, a first set of controllers (in bluein the figure)
ensures that the environment constraints are respected by removing subtasks
when needed. Upper level (push-back controller, in red in the figure) pushes
the removed subtasks back in the stack when the correspondingconstraint is
satisfied. Finally, the top level (convergence controller,in green in the figure)
ensures the convergence of the bottom controllers by endingpotential local
minimum and dead-lock.

The control law is computed from the stack, using the re-
dundancy formalism introduced in [36], [38]. The additional
constraints are added at the very top of the stack, which
means that they are taken into account only if some DOF
remain free after applying the active subtasks. This priority
order may seem illogical, considering that the constraintsare
obstacles that the robot should avoid above all. However, the
positioning task has priority since it is the task we want to see
completed, despite the presence of the obstacles. The second
level controller is then used to ensure that the constraintsare
respected when it is obvious that the robot will violate them.

2) The second controllerensures that enough DOF remain
free to take the constraints into account, and thus that the
environment constraints are respected. The controller detects
that the constraints are not sufficiently taken into accountby
a linear prediction over the robot position with respect to the
applied control law. When a constraint violation is predicted
for the next few iterations, the controller selects the optimal
subtask to be removed from the stack using the measures
we proposed in [27]. In some cases, the removing of one
subtask is not enough to satisfy the constraint. This could
occur when the dynamic of the constraint is too high with
respect to the robot reactivity, or when the necessary DOF
is shared by two tasks that are both to be removed before
the constraint is properly taken into account. In this case,the
controller removes a second task at next iteration, and so on.

3) The third controllerobserves the subtasks that have been
removed from the stack by the second controller and try to put
them back in the stack as soon as possible. At the beginning of
the servo, all the subtasks are in the stack. A subtask outside
the stack can thus always be linked to a constraint that was the
reason of its removal. The controller computes the effects on



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 3

the control law due to the reinsertion of the removed subtask
into stack. The subtask is put back in the stack when no
constraint violation is predicted any more.

4) The top controllerensures the convergence of the system
by solving the dead locks of the bottom controllers. The
three bottom controllers ensure only a local convergence. Two
problems may occur while using only these controllers:

- at some moment which will be emphasized in Section V-
A, the third controller may be unable to put back a
removed subtask in the stack. One subtask is thus in alo-
cal minimum. This is easily detectable: a local minimum
occurs when all the subtasks in the stack are completed
while a subtask remains out of the stack.

- on the contrary it may happen that the third controller
puts back a subtask too early. The subtask will then be
removed some times later for the same reason as before,
then put back again. Thesedead-lockscan be detected by
looking at a loop in the execution graph.

In these cases the controller adds a new specific task into the
stack that is dedicated to solve these problems, for example
by specifying an intermediary goal to reach or by computing a
local path to follow. The corresponding mechanism is detailed
in Section V-B.

The differences between our strategy and classical path
planning are thus significant. With the control strategy pro-
posed above, the robot is able to reach the goal by using
only the low level sensor-based controllers in the general
case. Only the current available sensor values are thus needed
at each iteration. In very difficult situations the low-level
minimization-based control is not sufficient. The last controller
then gets the robot out from the local minimum by using some
global knowledge such as a map or somea-priori about the
robotic system setup. In this case, the last controller is not used
till the end of the servo but only until the local minimum is left.
Using this global scheme, the robot execution keeps the good
properties of sensor-based control (rapidity, accuracy, low
computation rates...) along with a large convergence domain
provided by the look-ahead capabilities of the top controller.

III. SENSOR-BASED CONTROL USING A STACK OF TASKS

In this section, the control law of the first controller is de-
signed. This controller is based on a stack of tasks, composed
of the current active tasks, and on the constraints which have to
be taken into account. This stack makes possible very simple
actions on the robot, such as activate a task (put a task in the
stack), remove a task or swap the priority between two tasks.

We explain first how to sequence tasks and to maintain the
tasks already achieved. Section III-A recalls the redundancy
formalism [22], [14]. It has first been used for sensor-based
control in [36] and in numerous applications since (e.g. visual
servoing in [11], force distribution for the legs of a walking
machine [19], or human-machine cooperation using vision
control [13]). The idea is to use the DOF left by a first task to
realize a secondary task at best without disturbing the firstone.
The major advantage of the redundancy formalism with respect
to other methods that join two objectives in one control law
(such as [31] and [4]) is that the secondary task has no effect

on the task having priority due to the choice of an appropriate
projection operator.

Section III-B sets out the way the redundancy formalism
is used to stack several subtasks. The method presented here
has been first proposed in [14] and formalized in [38]. It has
often been used since for highly redundant systems such as
humanoids [37] or virtual-entity control for animation [1]. In
Section III-C, we briefly recall the method proposed in [26]
to ensure the control law continuity, using a non homoge-
neous first order differential equation. Finally, the Gradient
Projection Method (GPM) is recalled in Section III-D. This
method has been first proposed for non-linear optimization
[35]. It has been widely used for dealing with various types
of constraints in robotic (see for example [22], [23] for joint-
limit and singularity avoidance, [18] for obstacle avoidance or
[29] for occlusion avoidance). The final control law used is
given in Section III-E.

A. Redundancy formalism for two tasks

Let q be the articular vector of the robot. Lete1 ande2 be
two tasks,Ji = ∂ei

∂q
(i = 1, 2) their Jacobian, defined by:

ėi =
∂ei

∂q
q̇ = Jiq̇ (1)

Since the robot is controlled using its articular velocityq̇,
(1) has to be inverted. The general solution (withi = 1) is:

q̇ = J+
1 ė1 + P1z (2)

where P1 is the orthogonal projection operator on the null
space ofJ1 andJ+

1 the pseudoinverse ofJ1. Vectorz can be
used to apply a secondary command, that will not disturb the
task e1 having priority. Here,z is used to carry out at best
the taske2. Introducing (2) in (1) (withi = 2), we obtain:

ė2 = J2J
+
1 ė1 + J2P1z (3)

By solving this last equation forz, and introducing the
computedz in (2), we finally get:

q̇ = J+
1 ė1 + P1(J2P1)+(ė2 − J2J

+
1 ė1) (4)

Since P1 is Hermitian and idempotent (it is a projection
operator), (4) can be written:

q̇ = J+
1 ė1 + J̃2

+˜̇e2 (5)

whereJ̃2 = J2P1 is the limited Jacobian of the taske2, giv-
ing the available range for the secondary task to be performed
without affecting the first task, anḋ̃e2 = ė2 − J2J

+
1 ė1 is the

secondary task function, without the partJ2J
+
1 ė1 of the job

already accomplished by the first task. A very good intuitive
explanation of this equation is given in [1].

B. Extending redundancy formalism for several tasks

Let (e1,J1) ... (en,Jn) be n tasks. We want to extend (5)
to thesen tasks. Taskei should not disturb taskej if i > j.
A recursive extension of (5) is proposed in [38]:
{

q̇0 = 0
q̇i = q̇i−1 + (JiP

A
i−1)+(ėi − Jiq̇i−1), i = 1..n

(6)



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 4

where PA
i is the projector onto the null-space of the aug-

mented JacobianJA
i = (J1, . . .Ji) and J̃i = JiP

A
i−1 is the

limited Jacobian of the taski . The robot articular velocity
realizing all the tasks in the stack iṡq = q̇n.

Using directly this recursive equation, a projector has to be
computed at each step of the computation. A recursive formula
for the computation of the projector is proposed in [1]. We
recall this equation here:

{
PA

0 = I

PA
i = PA

i−1 − J̃i

+
J̃i

(7)

whereI is the identity matrix.
Such a hierarchical structure implies some new singularities

in the control [8]. Several solutions have been proposed to
avoid these new singularities. The first one would be to use the
damped-least-square inverse instead of the classical pseudo-
inverse [24], [10]. However, the damped factor is difficult to
tune, and is often required to be tuned “by hand”. A second
solution would be to use the JacobianJi instead of the limited
JacobianJ̃i when computing the pseudo-inverse in (6). The
resulting equation is [26], [8]:

q̇i = q̇i−1 + PA
i−1J

+
i ėi, i = 1..n (8)

Comparing to (6), this solution still preserves the hierarchy.
However, the control law of the secondary task is not optimal
since the projection operator is not taken into account in the
pseudo-inverse. In return, this solution is only subject tothe
singularities of the full JacobianJA

n . Finally, a last solution
would be to consider the new singularities as new constraints
to deal with during the servo [28] for example using the
Gradient Projection Method. Since we also use the GPM for
constraint application (see Section III-D), it is easy to combine
it to avoid the singularities. Finally, such singularitiesdo not
appear if the global task JacobianJA

n is full row rank (i.e.
the number of rows is equals to the rank). This is the case in
particular in the experiments presented in this article, thanks to
the use of approximately decoupled sensor-based features [41],
that is why we have chosen to use (6) in our implementation.

C. Smooth transition

Usually, the control law is obtained from the following
equation that constrains the behavior of the task function:

ė = f1(e) = −λe (9)

Sinceė = Jq̇, the control law realizing (9) as best as possible
is:

q̇ = −λJ+e (10)

whereλ is used as a parameter to tune the robot speed. The
function f1 in (9) is chosen by the programmer to linkė and
e. One generally choosesf1(e) = −λe to set an exponential
decoupled decreasing of the error.

The problem of continuity when changing the taske is due
to the lack of constraints on the initial value ofė. Let eA

be a global task, used to drive the robot until timet = 0. At
this time, the control law switches to a second taskeB. Since

e and q̇ are linearly linked, no continuity guarantee can be
ensured oṅq, at time t=0.

Soueres et al. proposed a solution to this problem in [39],
[40]. They used a second order linear dynamics instead of (10)
to take into account two initial conditions(e(0), ė(0)):

ë + α ė + β e = 0 (11)

where the two parametersα and β are used to control both
the robot speed and the length of the transient time response.
The main drawback is the difficulty in choosing these two
parameters to obtain the desired behavior.

In [26], we have proposed to use a non homogeneous
first order differential equation to ensure the continuity and
to properly decouple the tuning parameters. The differential
equation is

ė = f2(e) = −λe + ρ(t) (12)

where the non homogeneous partρ(t) is

ρ(t) = e−µt
(

˙eA(0) + λeB(0)
)

(13)

whereµ is used to set the length of the transient time, and
λ to set the decreasing speed of the error. This differential
equation is equivalent to a second order one:

ë + (λ + µ) ė + (λµ) e = 0 (14)

Nevertheless, unlike(α, β), this couple of parameters(λ, µ)
is properly decoupled. In particular, the end of the transient
time is only set byµ. Indeed, the transient period ends when
f1 (see (9)) andf2 (see (12)) are numerically equivalent, that
is to say whenρ(t) is insignificant compared toe(t), i.e.

δ(t) =
f1(t) − f2(t)

||f1(t)||
=

ρ(0)

λ
e−µt << 1 (15)

The term δ is exponentially decreasing, with a speed set
by µ. The task functione(t) is equivalent to a decreasing
exponential function set byλ. It is simply necessary to choose
µ bigger thanλ to ensure a short transient time response, in
comparison with the decreasing time of the task error. The
bigger the valueµ, the shorter the transient time, but the
stronger the acceleration. Experimentallyµ = 10 λ is chosen.

Let (e1, . . . , en) be a stack ofn tasks. The decreasing speed
of each task is chosen separately by using

ė =




ė1

...
ėn


 = −




λ1 0
. ..

0 λn







e1

...
en


 = −Λe (16)

Equation (6) can be written aṡq = Aė, where the explicit
expression ofA is left to the reader. Using (12) and (16), we
deduce the complete expression of the control law computed
from a stack of tasks

{
q̇i = q̇i−1 + (JiP

A
i−1)+(−λiei − Jiq̇i−1)

q̇ = q̇n + e−µ(t−τ)
(
ė(τ) + Λe(τ)

) (17)

whereτ is the time of the last modification of the stack.



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 5

D. The Gradient Projection Method

The control law computed above ensures the decreasing
of the tasks in the stack, without taking into account the
environment of the robot except the interaction between the
target and the sensor. To integrate sensor-based control into a
complex robotic system, the control law should also make sure
that it avoids undesired configurations, such as for example
for an eye-in-hand robotic arm joint limits, visual occlusion,
obstacles and kinematic singularities. This is done using the
Gradient Projection Method [35], [22], [18]. The experiments
presented in Section VII demonstrates the generality of this
method, applied in this work for joint-limit, visual-occlusion
and obstacle avoidance.

In this approach, the robot moves to satisfy the constraints
imposed by the environment. The constraints are described
by a cost function. The gradient of this cost function can be
considered as an artificial force, pushing the robot away from
the undesirable configurations. At each iteration, an artificial
force g(q) is induced by the cost function at the current
position. Let us consider the problemmin V(q), q ∈ R

k,
wherek is the number of robot joints. The classical solution
is to move the robot according to the gradient of the cost
function, computed in the articular space.

q̇ = κg(q) = −κ∇⊤
q V (18)

where κ is a positive scalar, used as a gain. Therefore, the
cost function is generally expressed in the space of the con-
figuration to avoid (e.g. the cost function of visual-occlusion
constraint is generally expressed in the image space). LetΦ

be a parametrization of this space. The cost function is now
VΦ = V(Φ(q)). The corresponding artificial force is given by
[30]

gΦ(q) = −
(∂Φ

∂q

)+

∇⊤
ΦVΦ (19)

where we can note the use of the Jacobian pseudoinverse.
Classical methods propose generally to use simply the trans-
pose of the Jacobian, the artificial force being thengΦ(q) =

−
(

∂Φ
∂q

)⊤
∇⊤

ΦVΦ. Since the pseudoinverse provides the least-
square solution, the resulting artificial force (19) is the most
efficient one at equivalent norm.

Considering now several minimization problemsV i = V i
Φi

,
where Φi are different parametrizations. The global cost
function can be written

V =
∑

γiV
i
Φi

(20)

where the scale factorsγi are used to adjust the relative
influence of the different forces. The force realizing a trade-off
between these constraints is thus:

g =
∑

i

γi gi
Φi

=
∑

i

γi

(∂Φi

∂q

)+

∇⊤
Φi

V i
Φi

(21)

We will see in Section VI the complete definition of the cost
functionsV for several classical constraints.

E. Final control law

The gradientg defined in (21) is used as the last task of
the stack. It has thus to be projected onto the null space of
each task into the stack. Using (17), the complete control law
is finally

q̇ = q̇n + e−µ(t−τ)
(
ė(τ) + Λe(τ)

)
− κPA

n g (22)

Therefore, the realization of the constraints depends on two
factors. First of all, it depends on the projectorPA

n . When the
stack is almost empty, the rank ofPA

n is high, and the gradient
is not much modified. However when the rank decreases near
zero (that is when the stack is almost full), the gradient is
highly disturbed, especially if the favorite vector direction
of the gradientg does not belong to the range ofPA

n . Of
course, when the stack is full, the projector becomes0. The
gradient is thus not taken into account any more, and nothing
is done to take the constraints into account. The second factor
is the gainκ, which defines the influence of the avoidance in
the global control law. The choice of this parameter is very
important. Indeed, ifκ is too small, the gradient force may be
too small to respect the constraints. Besides, ifκ is too high,
some overshoot can occur in the computed velocity. Methods
that set this parameter automatically exist (for example [6] for
joint-limit avoidance). However it is difficult to generalize to
an arbitrary number of additional constraints simultaneously.
Moreover, these methods do not provide any solution to the
problem due to the rank ofPA

n .
Instead, when the gradient projection method cannot be

applied efficiently, we propose to select the subtask of the
stack which prevents the control to respect the constraints,
and to remove it from the stack. This solution is detailed in
the next section.

IV. U SING A STACK CONTROLLER

In this section, a controller that removes a subtask from
the stack when necessary is proposed. As already explained,
a subtask has to be removed from the stack when the current
control law is violating one of the constraint to be respected
(for example the robot nearly reaches a joint limit). Two
criteria have to be built, the first one to decide when a subtask
should be removed, the second to choose which subtask to
remove.

A. When to remove a subtask ?

The chosen criterion simply consists in determining the ef-
fect of the current control law by performing a prediction step
before sending the computed velocity to the robot. Letq(t)
be the current articular position of the robot. The predicted
position q̂(t + 1) is given by

q̂(t + 1) = q(t) + ∆tq̇ (23)

whereq̇ is the control law, computed using (22) and∆t can
be seen as a gain. A subtask has to be removed from the stack
if V(q̂(t + 1)) is above a fixed threshold, whereV is the cost
function representing the constraints introduced in (20).



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 6

B. Which subtask to remove ?

The idea is to detect which subtask induces the most critical
conflict with the current projected gradient. We propose two
criteria to be computed for each subtask. The subtask to
remove is the one corresponding to the maximum (or the
minimum, in case of the second criterion) of the values
computed. Using both criteria simultaneously gives a more
reliable choice. In the following, we present the two criteria,
for a subtaskei, whose Jacobian isJi, and for an avoidance
gradientg(q).

1) First criterion: The first criterion compares directly the
direction of the velocity induced by the subtask, and the one
induced by the avoidance gradient. The subtask to remove is
the one whose velocity direction corresponds to the opposite
of the gradient direction (see Fig. 2(a)). This is done by
computing the inner product of the two velocities projected
in the same space. The most logical common space seems to
be the space of articular velocities. CriterionC1 is thus

C1 = − < J+
i ei|g > (24)

Another common space can be used, such as the space of the
task, usingC1b =< ei|Jig >. In this case, the common space
depends on each subtask. The experiments have shown that
the behavior using any of these criteria is very similar.

This first criterion depends linearly of the task functionei.
If the subtask is nearly completed (ei is very low), the criterion
is very low. We have experimentally noticed that, using (24),
the task controller always removes the last subtask added. We
thus use a normalized criterion

C1
′ =

1

||ei||
C1 (25)

Using this last definition, the choice is only based on the
velocity direction, and no longer on the velocity norm. There-
fore, when the velocity induced by a subtask is very low, the
normalization is equivalent to a division by a nearly zero value.
That can produce unstable results. The next criterion solvethis
problem.

2) Second criterion:To compute the final control law, the
gradient is projected onto the null space of each subtask. The
second criterion computes the contribution of each subtask
to this projection. The idea is to remove the subtask whose
contribution disrupts the most the constraint (see Fig. 2(b)).
The criterion is defined by:

C2 = ||Pig|| (26)

wherePi = I− J+
i Ji is the projection operator onto the null

space of the subtask. SincePi is a projection operator, for all
vectorx, ||Pix|| ≤ ||x||. The less the gradient is in the null
space of the subtask, the more it is disturbed, the smaller the
value of the criterion. The subtask to be removed is thus the
one corresponding to the minimum ofC2.

3) Another way to compute the second criterion:Another
idea is to check if the gradient vector is in the null space of
the control law due to the subtask. This subspace is given by
(2): it is the range ofJ+

i . Consider a basis(v1 . . .vk) of the

g

C1

C1

C1

J3

J2

J1
e3

e2

e1 g

e3

e2

P1

P3

P2

e1

C2
C2

C2

(a) (b)

Fig. 2. Computation example for the two criteria. Three subtasks are in the
stack. The robot is located at the starting point of the threetask vectors. The
constraint is represented by an obstacle (the hatched line), close to the robot.
The corresponding avoidance gradient isg. Intuitively, the subtask that drives
the robot into the obstacle is the green one.(a) Criterion C1. The maximal
criterion isC1(e3), in green (C1(e1) is negative andC1(e2) is nearly zero).
(b) CriterionC2. ProjectorsP1, P2 andP3 are represented by their vectorial
directions (orthogonal to the task vector). The gradient isprojected onto these
lines. The minimal isC2(e3) as requested. In the case of this criterion, the
sign of the subtask control law is not taken into account. Thecriterion value
for e1 is very close to the value fore3 (e1 nullifies the gradient projection
ase3 does, even if it does not drive directly the robot into the obstacle).

range ofJ+
i (wherer is the rank ofJ+

i ). The criterion is the
norm of the gradient, projected in the range ofJ+

i

C2b = ||

r∑

i=1

(g⊤vi)vi|| (27)

Let us prove thatC2 andC2b are equivalent. The projection
operator does not depend on the basis of its range. LetV be
the basis of SVD ofJi (such that (Ji = USV⊤). The singular
values are ordered such thatV = (V0 V1) where the vectors
of V0 (respectively ofV1) correspond to the null (respectively
to the non null) singular values. The third criterion can be thus
written as

C2b = ||V1V1
⊤g|| (28)

Using the SVD, (26) can be written as

C2 = || Pg || = ||(I − V1V1
⊤)g|| (29)

C2 is minimal whenC2b is maximal. In fact,C2 checks if the
gradient is not in the null space of the Jacobian, whileC2b

checks if the subtask is in the range of the pseudo inverse
of the Jacobian, which is equivalent. The experiments confirm
that the behaviors using the two criteria are the same. We thus
will consider only criterionC1 andC2 to decide which subtask
to remove when it is necessary.

V. PUSH-BACK CONTROLLER AND LOOK-AHEAD

CONTROLLER

The previous controller ensures that the robot is in the free
space and does not violate any constraint. The two remaining
controllers are presented in this section. The first one (push-
back controller) is used to push the removed subtask back in
the stack as soon as possible. When the simple coupleremove-
add is not sufficient to reach the desired position, the last
controller (look-ahead controller) ensures the convergence by
pushing the robot out of any local minimum or dead-lock (see
Section V-B).



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 7

Local minimum
Path−based
Sensor−based

Error decrease

initial

desired

Fig. 3. Reaching the convergence domain. The look-ahead controller starts
and stops several times, until the convergence domain is properly reached.
The top controller is stopped as soon as the robot reaches a new region, but
is reactivated if necessary.

A. Push-back controller

Each subtask outside of the stack has been removed by
the stack controller. The subtask can thus be associated to a
constraint that has caused the removal. The controller should
put the subtask back in the stack as soon as it does not risk to
violate the constraint anymore. This is done by a prediction
phase. The controller predicts the evolution of the constraint
cost-function value with respect to the motion of the robot
driven only by the subtask. Letei be a subtask that is not in the
stack,qt the current articular position, andΦ the parameters
of the space where the constraint that has caused the removal
is defined. The predicted displacement to complete the subtask
is ∆q = −J+

i ei. The controller predicts that it is safe to put
the subtask back in the stack if the intersection between the
segmentΦ([qt,qt +∆q]) and the region where the constraint
is violated is empty. This can be mathematically written as

max
q∈[qt,qt+∆q]

{
VΦ(q)

}
< Vmax (30)

B. Look-ahead controller

1) When to start:This last controller ensures the conver-
gence of the global algorithm by pushing the robot out of any
local minimum or dead-lock. These two situations may occur
due to the approximations involved in Controller 2 and 3 that
only consider linear approximations of the evolution equations.
These linear approximations are equivalent to consider only
the local part of the environment closest to the robot. The
robot is thus unable to any look-ahead computations and can
come to a dead end. This last controller is introduced to give
to the robot some look-ahead capabilities. An overview of
the controller principle is given by a simple 2D example on
Fig. 3. The robot reaches a local minimum when going toward
the desired position. The look-ahead controller is activated to
leave the attractive area of the local minimum. When the robot
leaves the local minimum, the sensor-based control is activated
again. If another local minimum is reached, the controller is
activated once more, then inactivated again when the new local
minimum is left, etc.

2) What to do: When a dead lock or a local minimum is
reached, the controller has to introduce a specific task in the
stack that is able to move the robot out of the dead end. This
kind of problem has already been widely considered in robotic
to enlarge the convergence area of local path planning methods
[18], [2], [21]. Several solutions can be proposed. A first

solution is to compute some open-loop displacement to leave
the dead end (for example by introducing some random term
in the robot displacement [2]). A second more-reliable solution
is to use some additional knowledge about the environment to
compute a path that leaves the local minimum. The task to be
introduced in the stack by the look-ahead controller is thena
sensor-based path following task such as those used in [36],
[17]. Even if this solution requires a lot of knowledge about
the environment, this method is different to the classical path-
planning/execution method since 1) path planning is not used
in the normal algorithm running, 2) no plan is computed but
when a dead end is reached and 3) when needed, path planning
is only used in a very short time period only to leave the local
minimum, and not to reach the desired position. A last solution
is to compute a secondary goal that should be reached before
joining the desired position. The task added in the stack is
then a sensor-based servo control to this secondary goal.

These three solutions are all available and the choice has
to be made depending on the application. Since the task to be
added by the controller is highly dependent on the application
context, it is very uneasy and hardly interesting to generalize it
in a mathematical way. In the experiment presented at the end
of the article, we have used the last solution (see Section VII-
C). A secondary goal is defined in the articular space to escape
a local minimum due to non-convex articular structure of the
robot.

3) When to stop:Finally, the look-ahead controller has also
to decide when to remove the specific task from the stack, and
let the normal execution start again. The specific task should be
stopped as soon as the robot reaches the convergence domain
of the sensor-based main task. It is very difficult to determine
if the robot is into the convergence domain since generally no
analytical description of the domain can be written. We rather
compute if the robot has left the convex sub-area where the
removed sensor-based subtask was unable to converge. This
can be obtained by considering the progress of the sensor-
based subtask. In the example depicted in Fig. 4, the task
error increases when going round the obstacle, since the robot
is leaving a local minimum. When the local minimum is
left, the sensor-based task error starts decreasing. The look-
ahead controller is thus inactivated when the subtask erroris
decreasing, that is to say wheṅei is negative. To prevent any
false detection due to measure noise, the error derivative is
integrated onto several iteration. The controller inactivation
criterion is thus :

C =

∫ t

t−∆t

ė(qt)dt < 0 (31)

where∆t is a parameter that tunes the length of the integration
time interval (this parameter is not very important since itis
just used to prevent the false detection due to velocity peak.
∆t is typically set to five iterations in the experiments). Finally
after integration of the derivative, the inactivation criterion can
be writtenC = e(t) − e(t − ∆t) < 0.

VI. I MPLEMENTATION IN V ISUAL SERVOING

The only hypothesis done to realize the work presented in
the previous sections is that the main task is a task func-



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 8

Fig. 4. Example of the interest of the look-ahead controller for the execution
environment presented in Fig. 3 (a) The trajectory of the robot in the plane
along with the value of the error for each position (b) Evolution of the
error versus time for the same robot execution. The look-aheadcontroller
is activated a first time when a local minimum is reached. The error increases
when leaving the local minimum. The controller is stopped as soon as it is
detected that the sensor error is decreasing. The similar sequence is applied
when a second local minimum is reached .

tion [36]. The proposed control scheme is thus very general
and can be applied in several domains for closed-loop control.
We have implemented our approach using the visual-servoing
framework [11], [15] to control a six-DOF eye-in-hand robot.
The environment constraints we have considered to validate
the proposed architecture are articular joint-limits, occlusion
and obstacles in the Cartesian space. In this section, the
visual servoing framework is first quickly recalled. The visual
features chosen for the servo are image moments [41]. We then
present the cost functions used to represent the constraints we
have considered.

A. Four subtasks to constrain the six DOF

The subtask functionsei used in the remainder of the text
are computed from visual features [11]:

ei = si − s∗i (32)

wheresi is the current value of the visual features for subtask
ei ands∗i their desired value. The interaction matrixLsi related
to si is defined so thaṫsi = Lsiv, wherev is the instantaneous
camera velocity. From (32), it is clear that the interaction
matrix Lsi and the task JacobianJi are linked by the relation:

Ji = LsiMJq (33)

where the matrixJq denotes the robot Jacobian (ṙ = Jqq̇) and
M is the matrix that relates the variation of the camera velocity
v to the variation of the chosen camera pose parametrization
(v = Mṙ).

In order to obtain a better and easier control over the robot
trajectory, approximatively decoupled subtasks are chosen.
As explained in the previous parts, there is no need to
choose them perfectly independent, thanks to the redundancy
formalism. The visual features are derived from the image
discrete moments. The discrete moments are computed from

a set of relevant points of the image target. At each iteration,
let xi = (xi, yi) be the position of the points in the image.
The momentmi,j of the object is defined by

mi,j =

N∑

k=1

xi
kyj

k (34)

The first subtaskeg is based on the position of the center of
gravity. It is defined by:

(xg, yg) = (m10/m00,m01/m00) (35)

The second subtaskeZ uses the areaa of the object in the
image to control the range between the robot and the target
[41]:

an =
√

a∗/a (36)

wherea∗ is the value ofa computed from the desired image.
To decouple the other subtasks, the centered moments are
used. The centered momentµi,j of a set of points is

µi,j =

N∑

k=1

(xk − xg)
i · (yk − yg)

j (37)

The third subtaskeα is used to correctly angle the object in
the image. It uses the orientation of the object in the image,
defined by [41]:

α =
1

2
Arctan

( 2µ11

µ20 − µ02

)
(38)

The last subtaskeR uses third order moments to decoupleυx

from ωy andυy from ωx. The moments choice is less intuitive
than for the three fist tasks. The reader is invited to refer to
[41] for more details.

B. Avoidance control laws

The avoidance laws are computed using (21). We propose
here an implementation for joint-limit, occlusion and obstacle
avoidance. For each constraints, we give the cost function.
When necessary, the Jacobian matrix used to pass from the
space where the constraint is defined to the articular space is
also provided.

1) Joint-limit avoidance:The cost function for joint-limit
avoidance is defined directly in the articular space. It reaches
its maximal value near the joint limits, and it is nearly constant
(so that the gradient is nearly zero) far from the limits.

The robot lower and upper joint limits for each axisi are
denotedq̄min

i and q̄max
i . The robot configurationq is said

acceptable if, for alli, qi ∈ [q̄min
ℓi , q̄max

ℓi ], where q̄min
ℓi =

q̄min
i + ρq̄i, q̄max

ℓi = q̄max
i − ρq̄i, q̄i = q̄max

i − q̄min
i is the

length of the domain of the articulationi, andρ is a tuning
parameter, in[0, 1/2] (typically, ρ = 0.1). q̄min

ℓi and q̄max
ℓi are

activation thresholds. In the acceptable interval, the avoidance
force should be zero. The cost functionV jl is thus given by
[6]:

V jl(q) =
1

2

n∑

i=1

δi
2

∆q̄i

(39)

where

δi =





qi − q̄min
ℓi ,

qi − q̄max
ℓi ,

0,

if qi < q̄min
ℓi

if qi > q̄max
ℓi

else



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 9

2) Occlusion avoidance:Occlusion avoidance depends on
data extracted from the image. An image processing step
detects the occluding object (if any). The avoidance law should
maximize the distanced between the occluding object and the
visual target that is used for the main task. Letdx anddy be
thex andy coordinates of the distance between the target and
the occluding object (d =

√
d2

x + d2
y) andxa be the point

of the occluding object that is the closest to the target.
The cost functionV occ is defined in the image space, so

that it is maximal whend is 0, and nearly 0 whend is high.
Like in [29], we simply choose:

V occ(d) = e−βd2

(40)

The parameterβ is arbitrary and can be used to tune the effect
of the avoidance control law. The gradient in the image space
is obtained by a simple calculation:

∇⊤
x V occ =

(
−2βdxe−βd2

−2βdye−βd2

)
(41)

The artificial force that avoids the occlusions can be now
computed using (19). The transformation from the image space
to the articular space is given by [30]:

gocc = −
(∂x

∂r

∂r

∂q

)+

∇⊤
x V occ = −(LxMJq)+∇⊤

x V occ (42)

whereM and Jq are the transformation matrices defined in
(33), andLx is the well-known interaction matrix related to
the image pointxa.

3) Obstacle avoidance:The obstacles are defined in the
Cartesian 3D space. We propose to use the rotational potential
first proposed in [16] extended from the case of a 2D non-
holonomic robot to the 3D Cartesian space.

Let P0 be the nearest point of the obstacle to the robot.
Let n0 be the normal to the obstacle atP0. To apply the
formalism defined in [16], the 3D Cartesian space should
be restricted to a plane. Letv be the current translational
velocities components of the camera. We consider only the
plane(P0,n0,v). Let t0 be the only tangent to the obstacle
at P0 so that the plane(P0,n0,v) and(P0,n0, t0) are equal.
Let F0 be the orthonormal frame(P0,n0, t0, z0), wherez0

is the unique vector so thatF0 is orthonormal. Figure 5 sums
up all these vector definitions.

The coordinates of a point in frameF0 are notedr0 =
(n, t, z). The potential function inF0 is defined by:

V obs
r0

=

{
1
2k1

(
1
n
− 1

n̄

)2
+ 1

2k2t(n − n̄)2

0

if n < n̄
otherwise

(43)
wherek1 andk2 are tuning parameters (typically,k1 >> k2),
andn̄ is the maximal distance above which the obstacle is not
taken into account.

The gradient is obtained directly from (43). The correspond-
ing Jacobian is

∂r0

∂q
=

∂r0

∂r

∂r

∂q
= 0Rc

(
I3 03

)
Jq (44)

where0Rc is the rotation from frameF0 to the camera frame,
I3 and 03 are the identity and the null matrix in dimension
three andJq is the articular Jacobian.

tangent

plane t0
n0

z0P0
�n

v

Fig. 5. FrameF0. The origin point ofF0 is the nearest point of the obstacle
to the camera, notedP0. Vector n0 is the normal to the obstacle atP0.
Among all the tangent vectors to the obstacle atP0 we chooset0 so that
n0×t0 andn0×v are equal. The last vectorz0 of F0 is chosen so that the
frame is orthonormal. In the planeP0,n0, t0, the cost function is defined
by (43). Its gradient vector field is drawn on the figure.

VII. E XPERIMENTS AND RESULTS

The experiments have been realized using a six DOF eye-
in-hand Gantry robot. The robot has to position with respect
to a visual target. Since the main purpose of these experiments
was the robot control, the image processing part has been
simplified by using a very easy target composed of four white
dots. All the computations have been done on a classical
2.0GHz PC, with a standard IEEE1394 firewire camera. The
control loop is at video rate (that is 25Hz), even if no special
effort has been done in the implementation to optimize this
point.

Three set of experiments are presented in the following,
varying the constraints taken into account in the control
law. Since the positioning task uses all the robot DOF, no
redundancy is available for the additional constraints with the
classical formalism. The robot is thus unable to reach the goal
using classical control laws because of the constraints, but al-
ways manages to complete the task using the proposed method.
In the first experiment, the robot has to avoid occlusions due
to a moving object passing between the camera and the target,
and to deal with its joint limits at the same time. In the second
experiment, some obstacles have been put into the work space
of the robot. The robot has thus to avoid simultaneously the
obstacles themselves and the occlusions they can cause to
complete the positioning. Since obstacles detection by image
processing is a complex problem, this last experiment has been
realized in simulation only. The last experiment takes onlythe
joint limits into account. The robot starts in a non-convex part
of its joint-limit space, so that the look-ahead controlleris
required to complete the positioning.

A. First experiment

In this experiment, the robot starts very close to the desired
position. It is asked to maintain this position. An object then
moves between the target and the camera, inducing a visual
occlusion. The robot has to reactively avoid this occlusion, and
also its joint limits, since the first avoidance motion drives the
robot in it. Finally, when the moving object has passed on,
the robot has to reach the desired position, as required by the
main positioning task.



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 10

0 100 200 300 400 500 600 700
e  g

e  z

e  α

e  R

Iterations

(1) (2) (3) (4) (5)

Fig. 6. Experiment A: Event and activation graph
Each action on the stack (add or remove) is represented by a vertical straight
line on each graph. The relevant actions are regrouped and numbered to be
referenced in the text.
At start all the tasks are in the stack. The task order is[eG, eα, eZ, eR].
Controller 2 predicts an occlusion at Event (1) and TaskeR is removed.
The controller then predicts a collision with the joint limits at Event (2), and
removes successively Taskseα andeZ. Controller 3 puts the three subtasks
back in the stack at Event (3). The stack order is then[eG, eZ, eα, eR].
However since the occluding object has not moved away yet, Controller 2
removes the subtasks from the stack again (one task at each iteration during
three iterations). The occluding object moves away at Event (4). All the
subtasks are then put back (same stack order), and the robot moves to join
its desired position. During the motion, it nearly reaches its joint limits at
Event (5), which causes Controller 2 to remove temporarily Task eZ. After
Event (5), the stack order is[eG, eα, eR, eZ].

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

 

 
eg
eZ
eα
eR

Fig. 7. Experiment A: Tasks criteria for removal
The task corresponding to the maximum of the four criteria is removed by
Controller 2. The criteria are computed only when Controller2 removes a
task (seven times during this execution). Each time the controller removes
a subtask, a clear maximum appears: the selected criteria are properly
discriminatory. In this experiment, the criterion foreg is forced to zero to
always keep the centering task active, since loosing the centering quickly
leads to the object visibility loss.

The experiment is summed up from Fig. 6 to 11. Each
action on the stack (add or remove) is represented by a vertical
straight line on each graph. The events are referenced from (1)
to (5) on Fig. 6.

At Event (1), the controller predicts a visual occlusion,
and removes thus the optimal subtask to take the occlusion
constraint into account (TaskeR, see Fig. 7). The robot then
escapes the visual occlusion by mainly rotating around the
target. As shown on Fig. 8, this motion drives the robot into
its joint limits. Once again, the controller predicts the collision,
and removes successively Taskseα and eZ to deal with the
joint-limits avoidance. At Event (3), the occluding objectstops
its motion but does not move away. An equilibrium is reached.
Controller 3 thus decides to put the removed subtasks back in
the stack (the tasks are put back in the removal order, last out,
first in). Since the occluding object has not moved away, the
subtasks have to be removed once more, until the occluding
object moves away (Event (4)). The subtasks are then put back,
and the robot moves to reach the desired position. During the
motion, it nearly reaches one of its joint limits (see Fig. 9). A
subtask is thus temporarily removed from the subtask during
few iterations (Event (5)): according to the criterion values,
the optimal taskez is removed (see Fig. 7).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.35

0.3

0.25

0.2 

0.15

0.1 

0.05

0    

−0.05

Plot X − Y

s

s*
(1)

(2)
(3)

(4) (5)

Camera
Stack modif.
Joint Limits
Occulting obj

target

Fig. 8. Experiment A: Camera motion in the Cartesian space (plane X-Y)
The robot nearly reaches the joint limits at point (0.54, 0.04). The occlusion
is then avoided by going forward, closer from the visual target.

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1

Iterations

A
rt

ic
u
la

r 
P

o
si

ti
o
n
s

X: 663

Y: 0.5543

Art 1
Art 2
Art 3
Art 4
Art 5
Art 6

Fig. 9. Experiment A: Articular trajectories
The robot comes very close to its third joint limit at Event (2).It then stays
close to the limit since the DOF not used for positioning are used for occlusion
avoidance. During the motion back to the desired position (after Event (4))
the third joint limit is nearly reached (Event (5)). It is avoided by removing
temporarily TaskeZ (as can be seen on Fig. 6).

B. Second experiment

For this experiment, an obstacle is present into the robot
workspace. The robot has to reach a desired position, avoiding
the obstacle, and also the visual occlusion it can produce. This
experiment has been realized in simulation since the obstacle
detection is a difficult part, which is not the subject of this
article.

The events and the corresponding activation of the subtasks
are given in Fig. 12. Figures 13 to 16 show respectively some
screenshots taken from the simulator during the servo, the
Cartesian trajectory of the robot, the criteria evolution and
the error of the subtasks.

The camera has mainly to move backward to reach the
desired position. However this motion drives the robot into
the obstacle. One DOF is freed up by removing TaskeG from
the stack (Event(1)). The camera goes around the obstacle and
Task eG is put back in the stack. The camera then passes
behind the obstacle, which causes an occlusion (Event (3)).
Once more, the centering is chosen and removed from the
stack. The occlusion can thus be avoided and the robot reaches
the position after TaskeG has been put back at the top of the
stack (Event (4)).



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 11

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

Iterations

T
as

k
 e

rr
o
rs

eg
ez
eα
eR

Fig. 10. Experiment A: Tasks error
TaskeR is removed at Event (1). Taskseα andez are removed at Event (2).
Their errors increase from these instants since their corresponding DOF are
used for avoidance. They are definitively put back at Event (4) and then
decrease until 0.

0 100 200 300 400 500 600 700
0

0.5

1

Iterations

C
o
st

 f
u
n
ct

io
n

occlusion
joint limit

Fig. 11. Experiment A: Occlusion and joint-limit cost functions
The occlusion function increases until Event (1). As soon asa task is
removed, the occlusion cost function decreases while the robot is far from
the joint limits. At Event (2), the joint-limit function increases. The DOF
used for occlusion avoidance is not available any more. The occlusion function
increases again until other subtasks are removed, and then decreases. Between
Event (3) and (4), the occlusion disappears. During the motion to the desired
position, the robot comes closer from its joint limit. The joint-limit function
increases until it is avoided (Event (5)).

C. Third experiment

The last experiment presents the interest of the look-ahead
controller. The only constraint considered here is the one
imposed by the joint limits. The required motion is mainly a
Z-rotation of the camera (approximately60 dg). In that case,
the joint limit of the wrist is reached when doing this rotation.
The robot has then the opposite300 dg rotation to realize.

When considering the joint limits, the only local minimum
which may occur comes from the non-convex structure of
the map between articular and Cartesian spaces. When the
robot is stuck near a joint limit in a local minimum, the look-
ahead task consists in reaching an intermediate goal, which
is simply defined as the opposite joint limits. This task is
thus applied without any visual-feedback control (but using
the actuator feedback to close the loop). The task function is
simply written eart =

(
qi − q̄i

)
, where i is the joint which

should be overpassed and̄qi is the joint upper valuēqmax
i if

the robot is stuck near the lower joint limit and̄qmin
i otherwise.

Fig. 17 to 20 sum up the experiment. The wrist joint (Joint 4
in Fig. 18) starts close to the upper joint limit. At the beginning
the robot simply realizes the minimization of all tasks (all
task errors decrease, see Fig. 19). The corresponding motion
on Joint 4 is a wrong way rotation: the robot realizes the
shortest motion on the wrist torus, disregarding the joint limit.
The fourth articular joint value increases, coming closer to the
joint limit and the joint limit is nearly reached at Event (1)
(see Fig. 18). Controller 2 removes the rotation subtask (see
Fig. 20). The robot manages to complete all the other subtasks
(Event (2)). The system is then in a local minimum. The look-
ahead controller is activated. The fourth joint moves without

0 10 20 30 40 50 60 70 80

e   g

e   α

e   Z

e   R

(1) (2) (3) (4)

Fig. 12. Experiment B: Event and activation graph
At the beginning the stack order is[eG, eα, eR, eZ]. Taskeg is removed at
Event (1) to avoid the obstacle according to the criterion values (see Fig. 15).
The obstacle is avoided at Event (2) and Taskeg put back at the top of
the stack. An occlusion is predicted at Event (3), and Taskeg is once more
removed (see Fig. 15). It is lately put back at the top of the stack at Event (4)
to complete the servo.

(a) (b) (c) (d)
Fig. 13. Experiment B: Snapshots of the eye-in-hand camera
(a) At the initial position (b) When occlusion is predicted (Event (3) (c)
When occlusion is avoided (Event (4) (d) At final position. At this position,
the obstacle is in the field of view. The prediction is accurate enough to detect
that it is harmless.

considering the visual features, and Taskeα error increases.
The erroreα starts decreasing at Event (3), which corresponds
to the detection of the limit of the local minimum attraction
domain (31). As soon as the robot leaves this domain, the
look-ahead controller is set off, and Taskeα is put back at
the top of the stack. During the final motion, the robot nearly
reaches another joint limit. This implies to temporarily remove
TaskeR (Event (4)). Finally, this subtask is quickly put back
in the stack (Event (5)).

VIII. C ONCLUSION

In this paper, a general method has been proposed to take
into account the constraints due to a real robotic environment
such as joint limits, occlusion or obstacles while moving the
robot according to a main task with higher priority. The full
constraining global task is divided into several subtasks,which
can be temporarily removed from the execution in order to
free up some DOF for considering the constraints. A complete
system has been built that ensures that enough DOF are always
available to take the constraints into account, and that the
robot completes the full task when it is possible. This system
is thus able to provide a convergence in a large blocked-
up environment, as path planning does, however reactively
and without any global knowledge about the environment.
Several set of experiments have shown that this approach is
able to converge despite various kinds of constraints until
the desired position. Future works will be devoted to the
application of such a method to underactuated robots, such
as non-holonomic robots, or to highly redundant systems such
as mobile manipulators and humanoids.



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 12

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
1

23
4

Plot Z − X

s*

Trajectory
Stack modif.
Obstacle
Joint limits

target

Fig. 14. Experiment B: Camera motion in the Cartesian space (plane X-Z).

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Iterations

C
ri

te
ri

o
n

 

 
eg
ez
eα
eR

Fig. 15. Experiment B: Tasks criteria for removal

0 10 20 30 40 50 60 70 80

0.05

0.1

0.15

eg
eα
eZ
eR

Fig. 16. Experiment B: Tasks error
Only Task eg is relaxed during the servo. The other convergences are
exponential. Between Event (1) and (2), Taskeg decreases while it is not
in the stack. The avoidance motion corresponds to a centering. However, the
decreasing is not exponential (it is faster). It is then not possible to let the
subtask in the stack and to avoid the obstacle simultaneouslytile Event (5).

0 500 1000 1500 2000 2500 3000

e   g

e   z

e   α

e   R

e  art

(1) (2) (3)(4)(5)(6)

Fig. 17. Experiment C: Event and activation graph
The initial stack order is[eG, eα, eR, eZ]. Taskeα is removed at Event (1).
The system then converges into a local minimum and the look-ahead controller
is activated at Event (2) by adding the joint-value-based task at the top of
the stack. This special subtask is then removed from the stackwhile the
subtaskeα is put back at Event (3). The stack order is then[eG, eR, eZ, eα].
Almost simultaneously, TaskeR is removed temporarily a first time and put
back at Event (4), and a second time (Event (5) and (6)). The final task order
is [eG, eZ, eα, eR].

REFERENCES

[1] P. Baerlocher and R. Boulic. An inverse kinematic architecture enforcing
an arbitrary number of strict priority levels.The Visual Computer,
6(20):402–417, Aug. 2004.

[2] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential field
techniques for robot path planning.IEEE Transactions on Systems, Man
and Cybernetics, 22(2):224–241, Mar. 1992.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

A
rt

ic
u

la
r 

P
o

si
ti

o
n

s

Art 1
Art 2
Art 3
Art 4
Art 5
Art 6

Fig. 18. Experiment C: Articular trajectories
Joint 4 is a wrist with a joint limit between angles0 dg and 360 dg

(corresponding respectively to normalized values0 and1). At the beginning,
taking only into account the main vision-based task and disregarding the
joint limits, the robot try to movethrough this limit: the fourth joint value
increases. Since it is not possible to pass through the jointlimit, the look-ahead
controller is activated from Event (2) to Event (3) to go around the limit. The
specific task decreases the joint angular value. The look-ahead controller is
switched off at Event (3) since the visual-servoing convergence domain has
been reached. The robot then reaches the correct position using a classical
vision-based minimization. The fifth joint limit is nearly reached at Events (4)
and (5). The accuracy of the controllers finally enable a positioning very close
to the joint limits.

0 500 1000 1500 2000 2500 3000

0.05

0.1

0.15

0.2

0.25

Iterations

T
as

k
 e

rr
o
rs

eg
eZ
eα
eR

Fig. 19. Experiment C: Tasks error
Task eα decreases at the beginning until the robot reaches its jointlimit
(Event (1)). The subtask error increases then when the robotmoves according
to the specific task introduced by the top controller. When therobot leaves
the local minimum attraction domain (Event (3)), the subtask isput back in
the stack and decreases until 0. TaskeR is also temporarily relaxed to avoid
another limit at Event (4) and (5).

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

 

 

e
g

e
Z

e
α

e
R

Fig. 20. Experiment C: Tasks criteria for removal

[3] O. Brock and O. Khatib. Elastic strips: A framework for motion
generation in human environments.Int. Journal of Robotics Research,
21(12):1031–1052, Dec. 2002.

[4] T. Chang and R. Dubey. A weighted least-norm solution based scheme
for avoiding joints limits for redundant manipulators.IEEE Trans. Robot.
Autom., 11(2):286–292, April 1995.

[5] F. Chaumette. Potential problems of stability and convergence in image-



ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON ROBOTICS 13

based and position-based visual servoing. InThe Confluence of Vision
and Control, pp. 66–78. LNCIS Series, No 237, Springer-Verlag, 1998.

[6] F. Chaumette and E. Marchand. A redundancy-based iterative scheme
for avoiding joint limits: Application to visual servoing.IEEE Trans.
Robot. Autom., 17(5):719–730, October 2001.

[7] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino. A switching
control law for keeping features in the field of view in eye-in-hand visual
servoing. InIEEE Int. Conf. Robot. Autom. (ICRA’03), pp. 3929–3934,
Taipei, Taiwan, Sep. 2003.

[8] S. Chiaverini. Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators.IEEE Trans. Robot.
Autom., 13(3):398–410, June 1997.

[9] N. Cowan, J. Weingarten, and D. Koditschek. Visual servoing via
navigation functions.IEEE Trans. Robot. Autom., 18(4):521–533, Aug.
2002.

[10] A. Deo and I. Walker. Robot subtask performance with singularity
robustness using optimal damped least squares. InIEEE Int. Conf. Robot.
Autom. (ICRA’92), pp. 434–441, Nice, France, May 1992.

[11] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics.IEEE Trans. Robot. Autom., 8(3):313–326, June
1992.

[12] N. R. Gans and S. A. Hutchinson. An experimental study of hybrid
switched approaches to visual servoing. InIEEE Int. Conf. Robot.
Autom. (ICRA’03), pp. 3061–3068, Taipei, Taiwan, Sep. 2003.

[13] G. Hager. Human-machine cooperative manipulation with vision-based
motion constraints. InWorkshop on visual servoing, IEEE/RSJ Int. Conf.
Intelligent Rob. Sys. (IROS’02), Lausane, Switzerland, Oct. 2002.

[14] H. Hanafusa, T. Yoshikawa, and Y. Nakamura. Analysis andcontrol
of articulated robot with redundancy. InIFAC, 8th Triennal World
Congress, volume 4, pp. 1927–1932, Kyoto, Japan, 1981.

[15] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control.
IEEE Trans. Robot. Autom., 12(5):651–670, Oct. 1996.

[16] M. Khatib and R. Chatila. An extended potentiel field approach for
mobile robot sensor-based motions. InIntelligent Autonomous Systems
(IAS’4), pp. 490–496, Karlsruhe, Germany, Mar. 1995.

[17] M. Khatib, H. Jaouni, R. Chatila, and J-P. Laumond. Dynamic path
modification for car-like nonholonomic mobile robots. InIEEE Int.
Conf. Robot. Autom. (ICRA’97), pp. 2920–2925, Albuquerque, USA,
Apr. 1997.

[18] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. Journal of Robotics Research, 5(1):90–98, Spring 1986.

[19] C. Klein and S. Kittivatcharapong. Optimal force distribution for the
legs of a walking machine with friction cone constraints.IEEE Trans.
Robot. Autom., 6(1):73–85, Feb. 1990.

[20] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation
for nonholonomic mobile robots.IEEE Trans. Robot., 7(20):967–977,
Dec. 2004.

[21] S. LaValle and J. Kuffner. Randomized kinodynamic planning. IEEE
Trans. Robot. Autom., 1:473–479, 1999.

[22] A. Liegeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms.IEEE Trans. on Systems, Man and
Cybernetics, 7(12):868–871, December 1977.

[23] A. Maciejewski and C. Klein. Obstacle avoidance for kinematically
redundant manipulators in dynamically varying environments.Int.
Journal of Robotics Research, 4(3):109–117, Fall 1985.

[24] A. Maciejewski and C. Klein. Numerical filtering for the operation
of robotic manipulators through kinematically singular configurations.
Journal of Robotic Systems, 1988.

[25] E. Malis, F. Chaumette, and S. Boudet. 2 1/2 D visual servoing. IEEE
Trans. Robot. Autom., 15(2):238–250, Apr. 1999.

[26] N. Mansard and F. Chaumette. Tasks sequencing for visualservoing.
In IEEE/RSJ Int. Conf. Intelligent Rob. Sys. (IROS’04), pp. 992–997,
Sendai, Japan, Nov. 2004.

[27] N. Mansard and F. Chaumette. Visual servoing sequencingable to avoid
obstacles. InIEEE Int. Conf. Robot. Autom. (ICRA’05), pp. 3154–3159,
Barcelona, Spain, April 2005.

[28] G. Marani, K. Jinhyun, Y. Junku, and K. Wan. A real-time approach
for singularity avoidance in resolved motion rate control ofrobotic
manipulators. InIEEE Int. Conf. Robot. Autom. (ICRA’02), pp. 1973–
1978, Washingtown DC, USA, May 2002.

[29] E. Marchand and G. Hager. Dynamic sensor planning in visual servoing.
In IEEE/RSJ Int. Conf. Intelligent Rob. Sys. (IROS’98), volume 3, pp.
1988–1993, Leuven, Belgium, May 1998.

[30] Y. Mezouar and F. Chaumette. Path planning for robust image-based
control. IEEE Trans. Robot. Autom., 18(4):534–549, Aug. 2002.

[31] B. Nelson and P. Khosla. Strategies for increasing the tracking region
of an eye-in-hand system by singularity and joint limits avoidance.Int.
Journal of Robotics Research, 14(3):255–269, June 1995.

[32] L. Peterson, D. Austin, and D. Kragic. High-level control of a mobile
manipulator for door opening. InIEEE Int. Conf. Robot. Autom.
(ICRA’03), pp. 2333–2338, Taipei, Taiwan, Sep. 2003.

[33] R. Pissard-Gibolet and P. Rives. Applying visual servoing techniques
to control a mobile hand-eye system. InIEEE Int. Conf. Robot. Autom.
(ICRA’96), pp. 166–171, Minneapolis, USA, May 1996.

[34] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and
robot control. InIEEE Int. Conf. Robot. Autom. (ICRA’93), volume 2,
pp. 802–807, Atlanta, USA, May 1993.

[35] J. Rosen. The gradient projection method for nonlinear programmimg,
part i, linear constraints. SIAM Journal of Applied Mathematics,
8(1):181–217, Mar. 1960.

[36] C. Samson, M. Le Borgne, and B. Espiau.Robot Control: the Task
Function Approach. Clarendon Press, Oxford, United Kingdom, 1991.

[37] L. Sentis and O. Khatib. Control of free-floating humanoid robots
through task prioritization. InIEEE Int. Conf. Robot. Autom. (ICRA’05),
pp. 1718–1723, Barcelona, Spain, Apr. 2005.

[38] B. Siciliano and J-J. Slotine. A general framework for managing multiple
tasks in highly redundant robotic systems. InIEEE Int. Conf. on
Advanced Robotics (ICAR’91), pp. 1211–1216, Pisa, Italy, June 1991.

[39] P. Soueres, V. Cadenat, and M. Djeddou. Dynamical sequence of multi-
sensor based tasks for mobile robots navigation. In7th Symp. on Robot
Control (SYROCO’03), pp. 423–428, Wroclaw, Poland, Sep. 2003.

[40] P. Soueres, S. Tarbouriech, and B. Gao. A robust vision-based controller
for mobile robots navigation: application to the task sequencing problem.
In IEEE/RSJ Int. Conf. Intelligent Rob. Sys. (IROS’05), Seville, Spain,
Dec. 2005.

[41] O. Tahri and F. Chaumette. Point-based and region-basedimage
moments for visual servoing of planar objects.IEEE Trans. Robot.,
21(6):1116–1127, Dec. 2005.

[42] E. Yoshida. Humanoid motion planning using multi-level dof exploita-
tion based on randomized method. InIEEE/RSJ Int. Conf. Intelligent
Rob. Sys. (IROS’05), pp. 3378–3383, Edmonton, Canada, Aug. 2005.

Nicolas Mansard Nicolas Mansard graduated from
École Nationale Suṕerieure d’Informatique et de
Mathématiques Appliqúees, Grenoble, France, in
2003, and received the M.S. (DEA) the same year in
Robotics and Image Processing from the University
Joseph Fourier, Grenoble. He received the Ph.D.
degrees in computer science from the University of
Rennes, Rennes, France, in 2006.

He is currently with IRISA/INRIA, Rennes, in the
Lagadic group. His research interests are concerned
with visual servoing, and more specifically the inte-

gration of visual-servoing schemes into real robot applications. This includes
visual servoing for mobile robot and sensor-based control for humanoid
robots.

François Chaumette François Chaumette was
graduated from École Nationale Suṕerieure de
Mécanique, Nantes, France, in 1987. He received the
Ph.D degree in computer science from the University
of Rennes in 1990. Since 1990, he has been with
IRISA/INRIA, Rennes, France, where he is now
“Directeur de Recherches” and head of the Lagadic
group. His research interests include robotics and
computer vision, especially visual servoing and ac-
tive perception.

Dr Chaumette received the AFCET/CNRS Prize
for the best French thesis in automatic control in 1991. He also received
with Ezio Malis the 2002 King-Sun Fu Memorial Best IEEE Transactions on
Robotics and Automation Paper Award. He has been Associate Editor of the
IEEE Transactions on Robotics from 2001 to 2005.


