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Chapter 1

General Introduction

T
he �rst reason to give to a robot a humanoid shape is because it is fun. In other
words, the humanoid corresponds to the shape that people are expecting from a robot,

coming from the mythology of perfect servant machines, from the �rst inventors (Da Vinci
[DaVinci 19] or de Vaucanson) and from the early science-�ction literature. This expectation
of the public gives a large visibility to research in humanoid robotics. It is used for example to
highlight upstream research done by some large companies, by the mean of advertisement or
public di�usion (see Fig. 1.1-(a)). The same e�ect is used to motivate undergraduate students
by practical work around humanoid platforms, and is one of the reasons of the success of the
Nao robot [Taïx 12].

The humanoid robot is generally considered to be an intuitive robot structure in the
context of human-robot interaction. It is expected to provide a better understanding of the
robot motion decision through the humanoid embodiment, in particular to non-expert users
such as elderly: your grandmother is supposed to prefer a human-shaped robot companion
to other functional shapes. Fig. 1.1-(b) gives some illustrations of human-friendly robots. If
a complete �cybernetics� reproduction like Geminoid [Sakamoto 09] or HRP-4C [Kaneko 09]
may not be essential for a good understanding of robot gestures, the reproduction of human
schemes by humanoid robot is indisputably of some help. For example, Kobian uses its
exaggerated face in coordination to the rest of its body to amplify some expression in a
non-verbal communication [Zecca 09]. This aspect is of course debatable, since the interface-
ergonomics progress seldom implies a biomimetic replication [Walters 08].

The humanoid kinematic shape is particularly interesting because it simpli�es the pro-
graming of speci�c movements, o�-line by motion capture or on-line by teleoperation. Fig. 1.1-
(c) gives examples of human-based motion generation. The humanoid shape provides a very
intuitive feedback to the distant teleoperator in [3]. With a very short training period (a few
minutes), the operator is able to drive the robot, explore the room and handle objects, giving
a true telepresence experience. The humanoid shape was selected for teleoperation in the In-
ternational Space Station by the NASA [Diftler 11]. Teleoperation generally implies physical
interactions between the human and a haptic device that displays the robot activity. The free
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Figure 1.1 � Five good reasons to make a robot humanoid.
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human motion can also be recorded by motion capture and used as a basis to generate the
motion of the robot [2], similarly to what has been done in computer animation for a long
time [Ginsberg 83]. Once more, the humanoid structure is not essential to the adaptation
of human motion but it truly helps to improve the intuition of the operator and to ease the
transfer.

The human shape is also an inspiration by its structural organization. Humans reach far
better movement capabilities than humanoid robots. The human body has more power, more
energy, more accuracy and more resistance than actual robots: it can jump, fall, hit a nail
with a hammer or play piano (not even speaking about cognitive capabilities). On the other
hand, robotics has developed some computational motion techniques that are relevant tools
to study the nature of the livings. The common anthropomorphic shape helps to bind both
knowledge �elds [Laumond 13]. The links can be extended to applications like ergonomics
[Yang 04, Fourquet 07], prosthesis [Au 09] and exoskeleton for rehabilitation [Nabeshima 12,
Strickland 12] or for augmentation [Zoss 06, Kazerooni 08].

Behind the anthropomorphic shape, the humanoid robot embeds several representative
problems that can be found in other classes of robots and beyond. Locomotion of bipedal
systems can similarly apply to quadruped [Pratt 06] and other legged systems [Raibert 84] or
wheeled robot with an active control of the wheel position [Siegwart 02, Besseron 08]. Bal-
ance is also important for mobile robots on uneven terrains [Lamon 04] or large-arm mobile
manipulators as soon as the ratio between the arm inertia and the basis surface becomes
large [Stilman 10]. Multi-contact locomotion planning [Hauser 08] is important for outdoor
robotics, both for legged [Hartikainen 92, Pongas 07] and mobile [Hait 02] robots. It has also
many common aspects with dexterous manipulation [Han 98, Bouyarmane 10]. More gener-
ally, motion in contact is an important aspect of manipulator robot for tooling. The redun-
dancy of the humanoid robot [Baerlocher 04] is a very good testbed for �exible cells of several
�xed manipulator arms cooperating together on a same task [Caccavale 08, Basile 12]. The
planning of multi-arm systems induces particular topological structures in the con�guration
space [Gharbi 09]. These structures are explored by algorithms �rst referred as manipulation
planning [Siméon 04] and are typical of the humanoid trajectories [Dalibard 10, Berenson 11].
On the design aspect, the humanoid robot is a mobile robot that should be energy autonomous.
The power limits lead to a reduction of the motor size [Enoch 12], which will �nally bene�t to
human-friendly manipulators [Shin 10]. The humanoid platform also pushes developments in
sensing [Davison 07] or human-robot interaction [MarinUrias 09]. Finally, the methods used
to plan and control humanoid robot movements can be literally applied to generate realistic
motion of virtual avatars [Baerlocher 04, de Lasa 10] and are one of the important classes of
direct applications of our methods today.

Beside the real applicative interest of the humanoid structure, we rather see the humanoid
robot as one of the most advanced robotics platform today, which gathers several issues that
are typical of other robotic structures. In particular, we see the humanoid robot as a dynamic
redundant mobile manipulator whose sensing capabilities and actuation power are limited.
The methodologies that we will develop in this document answer to these problems with a
generic approach and can therefore be applied to various other classes of robots. Typically, the
work presented in the following may apply to humanoid robots and, behind, to quadruped or
multi-legged robots, to redundant or multiple-cooperating manipulators, mobile manipulators,
to virtual avatars with human or non-human shape and to biomechanical studies.
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Chapter 2

Approaches and directions

This chapter presents the context of our work and introduces the contributions of this docu-
ment.

2.1 Challenges

As explained in the general introduction, we see the humanoid robot as an experimental
platform to develop and validate general concepts that may apply to di�erent �elds of robotics.
We present some of these challenges that are linked to the work presented in the remaining
of this document, with an arbitrary organization from bottom to top.

2.1.1 Mechatronics

The easiest solution to build a robot is to assemble series of electric direct-current motors
that shape the kinematic tree [Kato 73]. The direct-current motors produces a high output
velocity with comparatively limited torques. Gears with high ratio, such as harmonic drives,
are used to reduce the speed and increase the output force, thus leading to smaller motors
and smaller energy source. Examples of such humanoid robots are the Wabots [Ogura 06],
Asimo [Hirai 98], the H5, H6, H7 [Nishiwaki 07] or HRP platforms [Kaneko 02, Kaneko 08].
However the reduction ratio similarly divides the external forces applied at the output of the
gears and transmitted to the motor. Added to the friction forces inside the gear, this acts
as a mechanical mask that prevents the motor from feeling the robot environment. Such
setups are very e�cient for position-based control. For all tasks requiring physical interaction
(locomotion, balance, human safety), force control [Inoue 74] is preferable.

Indeed, the motor output torques are directly linked to the input current (for �xed voltage)
and can then be reconstructed. However, the gear masks the joint dynamics from the motor
dynamics and makes it di�cult to reconstruct the joint output torques (gear output) from
the motor output torques (gear input). It is possible to change the design of the mechanical
structure to reduce the need of the high gear ratio. A solution is to reduce the gear ratio
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by increasing the motor power. The motors can be set up higher in the kinematic tree,
while the mechanical power is transmitted from this mechanical power source to the joints.
Cable can be used, but for humanoid robots this does not fundamentally change the problem
encountered with motors close to the joint: one motor has to be set for each joint in series
with a reduction gear. The main advantage is to reduce the weight at the end of the kinematic
chains [Townsend 99] but gears are still needed, with the cost of more complex mechanical
integration. Examples are the legs prototype Sherpa [Olaru 09] and the future humanoid
Romeo [Guizzo 10].

Alternatively, the mechanical power can be driven to the joint using a �uid, hydraulic
like Petman [Buehler 05, Nelson 12] or air cylinders [Bobrow 98]. A single central pump
is used and the �uid is driven to the cylinder attached to each joint. Like electrical motors,
hydraulic actuation o�ers a rigid and high-bandwidth control. The additional power compared
to electrical actuation [BostonDynamics 13] comes at the cost of a more complex integration
[Habibi 00]. On the other hand, pneumatic actuation is elastic since the �uid can compress.
The elastic factor prevents high-bandwidth control but at the same time is desirable for
physical contact [Tassa 13]: any contact leads to a compression of the cylinder, which improves
the contact stability and enables a measure of the contact forces from the internal position of
the cylinder.

More generally, the same principle will be applied to any sti� actuation system: an elastic
component is added in series with the actuation. Contacts will load the spring, smoothing the
interaction and enabling measurement [Pratt 95]. The elasticity is desirable at the contact
but is di�cult to control, especially for fast free-space movements. An example of complete
series-elastic actuation is the Coman robot [Tsagarakis 11].

A possibility is to reduce the elasticity while keeping the capacity of measuring the forces at
the interface. A nearly-sti� and well calibrated material is added in series to the actuator and
force gauge are added to measure the (supposedly in�nitesimal) deformation. The kinematic
structure is not totally rigid and care as to be taken when implementing the low-level controller
to take the �exibility into account [AlbuSchä�er 07b] but the global system can be considered
to be sti�. The desired impedance of the joint may then be tuned by the controller using
the force back fed by the force sensor. The interaction bandwidth is of course limited by
the frequency of the controller [AlbuScha�er 07a], but modern electronics can reach a very
satisfying rate [DeLuca 06]. In addition to this bandwidth limit, the drawback is the added
cost coming from the force sensor. Obtaining an elastic contact is �nally relatively easy,
but the di�culty comes when trying to obtain a sti� behavior from the spring. Reducing
the elasticity while keeping the measurement capabilities is interesting. However it cannot
preserve the main properties of the elastic mechanisms: the possibility to store some energy
at the impact and the inherent safety of the system. This major drawback is maybe in the
initial contradiction: the system is built to be sti� with an important extra cost and �nally
the controller is used to obtain a compliant behavior.

Rather than reducing the �exibility from the conceptual design, another approach (some-
times considered as bio-inspired [Shin 10]) is to add a second motor on the same joint to
tune the �exibility. The variable-sti�ness concept [English 99] is copiously developed in sev-
eral projects, with a very important pushing role of the Italian school [Tonietti 05, Visser 10,
Flacco 12, Sardellitti 12, Jafari 13, Carloni 12].

The challenge to �nd the proper actuation system with enough power, integration and
force-perception capabilities remains open and directly impacts on the following control issue.
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2.1.2 Control

If we consider that the mechanical design is an answered problem, the control of the inte-
grated system does not present a stronger fundamental challenge than the control of each
separated actuator. Position-based control of the motor-plus-gears humanoid robots are
straight-forward. If a force sensor is added to the kinematic chain, impedance-based con-
trol directly enables to take into account the force feedback [Hogan 85]. The challenge set by
the integration of series-elastic or variable-sti�ness robots seems to be similar in complexity
(once more, if we consider that the actuator is integrated and controlled). The problematic
brought by humanoid robots are rather on the size of the problem (number of variables to
control, number of constraint to satisfy), on the consideration of the robot dynamics and the
evolution of the trajectory describing the future of the robot.

The humanoid robot typically have around forty signi�cant degrees of freedom to control
during a movement (without considering �nger, eyes or toe joints � 150 degrees of freedom
to reach the human-body complexity [Nakamura 05]). On the other hand, it is subject to
several constraints: under-actuation of the placement joint, feet on the ground, mobility con-
straint on the center of mass, on the joint limits, etc. Classical constraint resolution, such as
inverse kinematics [Whitney 69, Liégeois 77, Baerlocher 04] directly applies to the humanoid
robot structure. The size of the problem induces an important computation cost, which
can becomes problematical for real-time control: the cost for an inverse-kinematics resolu-
tion is typically quadratic in both the number of parameters and the number of constraints
[Golub 96]. Among the robot constraints, some depends on the dynamic variables, forces,
joint torques or accelerations [Khatib 87, Collette 07]. Taking into account these additional
variables and constraints again increases the size of the numerical problems.

In addition to the di�culties linked to the problem size, the problem solver also has
to always output a realistic solution, since this solution is going to be used immediately
to perform an action in the real world. In particular, when the constraints of the robot
con�ict with the objectives of the motion, the solution has to remain consistent with the
robot capabilities and safe for its environment [Deo 92, Sugihara 11].

To keep a tractable computation cost, the robot evolution equations are often linearized
around the instantaneous evolution (sometimes referred as resolved motion rate [Whitney 69]
or instantaneous Task Speci�cation using Constraints [Decré 09]). The instantaneous lin-
earization cannot encompass the balance of the biped robot [Wieber 08]. For low-speed mo-
tion, the balance is reduced to a constraint keeping the center-of-mass inside the support
polygon [Sugihara 02] but this approximation does not stand as soon as the robot acceler-
ation cannot be neglected. Walking for example is achieved by injecting the robot main
dynamics (i.e. the center-of-mass acceleration inside its horizontal plane) along an optimized
trajectory [Kajita 03]. It is then a simple technological matter to be able to recompute this
optimal trajectory and to use it as optimal control [Herdt 10].

The general idea can be applied in various contexts: we extract the main dynamic compo-
nent of a motion and optimize it into a simpli�ed context before injecting it into the linearized
whole-body solver. Two problems then arise. First, extracting the main dynamics for each
speci�c context might be di�cult and lack of genericity. Second, it might be di�cult to syn-
chronize the decision taken by each simpli�ed dynamics with the global linearized system. For
example, in the walking context, it is di�cult to decide what the next footsteps that satisfy
a manipulation task [Dune 10, Kanoun 11b].



14 Approaches and directions

2.1.3 Trajectories

Alternatively, the future of the whole robot body can be considered inside the motion problem.
Similarly as upper, the objective is written as a cost function depending on the states and
controls of the robot, but this time over a short preview time interval. The cost function is
minimized under constraints on the system dynamics and bounds. Mathematically, optimal
control seems to be the most generic solution to write the problem of selecting a trajectory
satisfying the motion objectives. This �eld is subject to extensive researches [Chevallereau 01,
Arisumi 08, Ratli� 09, Schultz 10, Kalakrishnan 11, Pham 12, El Khoury 13, Lengagne 13].

If the trajectory computation is fast enough, it is possible (like for the center-of-mass
walking pattern [Herdt 10]) to use it as a control, by recomputing the whole trajectory at each
robot control cycle before applying only the corresponding �rst control. This is referred as
model-predictive control [Diehl 09, Wieber 13]. Computationally speaking, model-predictive
control is not as di�cult as trajectory optimization, since at each control cycle, the problem
only changes slightly and most of the computations of the previous control cycle can be reused.

However, this solution is subject to practical problems that for now prevent its applica-
tion. First, the computation cost is yet prohibitive. For a humanoid robot like HRP-2, several
minutes of computation are needed for seconds of trajectory optimization. Generally, the tra-
jectory is sampled along an integration grid. The number of variables due to the dimension of
the robot con�guration space is multiplied by the number of samples along the grid (typically,
hundreds of samples are chosen), which makes the problem di�cult to solve in a short time.
On the opposite, keeping the dimension of the con�guration space is possible if preserving the
functional nature of the trajectory [Claeys 12] but such solutions does not seems tractable
for our typical system dimension. Added to this cost problem, the temporal dimension adds
more degrees of freedom to the system. Instead of having to chose only among the spacial
redundancy, the solver now has also to choose among all the possible trajectories [Pham 12].
This makes the numerical problems even more di�cult. In particular, ensuring always a good
behavior of the solution is very challenging.

A recent work [Tassa 12] gives a totally new view on this complexity problem, by managing
to achieve computation times close to the real-time requirement while keeping a very relevant
robot behavior during long time ranges. The methods is yet limited to virtual avatars, but
with performances that may enable an application on real robots in a close future.

Finally, the trajectory optimization problem generally does not have any speci�c properties
that can be exploited by the solver (exception can be found: the linearized inverse pendulum
is linear [Herdt 10], whole-body trajectory optimization can be rewritten as a linear a�ne-
transformation problem [Pham 12] or as a polynomial problem [Lengagne 13]). Non-linear
solvers are then used, that require a valid initial guess. Finding one feasible trajectory is often
as tricky as searching for the locally optimal one. Sample-based planning techniques are then
used to �nd the initial guess [Barraquand 92, Laumond 98]. The humanoid robot is subject to
constraints (contact stability, balance) that are respected on submanifolds of the con�guration
space. The planner is searching to sample this zero-measure submanifold [Berenson 11]. Since
no explicit parameterization of these submanifolds exists, the whole con�guration space is
generally sampled and then projected onto the given submanifold [Kaiser 12]. Additionally,
the submanifolds create a folded structure of multiple leaves in the con�guration space, while
the robot cannot directly move from one leaf to the other [Siméon 04].



2.1 Challenges 15

2.1.4 The gap of planning

On the �rst hand, there are some complex methodologies to compute at high cost a trajectory
of the robot in the con�guration space. On the other hand, there are mechatronics and control
development that enables the robust execution of dynamic movements. These two classes of
methods seem complementary. However, there are some di�culties to go from the �rst to the
second. On manipulator robots, a small disturbance on the trajectory in the con�guration
space leads to a small disturbance on the �nal position. The drift is possible to correct by
servoing the robot con�guration or a function of it [Samson 91]. The folded structure of the
humanoid con�guration space changes this stability property: an even-slight disturbance of
the trajectory may lead to a change of leaf that makes the trajectory infeasible.

The problem can be seen from the sensory-feedback point of view. Depending on the
modalities, several di�erent sensors are relevant to observe and correct the robot motion.
Consider the example of the robot walking through a door. The position of the landing foot
might be important and can be servoed by vision. At the landing instant, the contact interface
is more relevant and is observed by force sensors. During the �ight, the position of the foot
is less important but induces dynamical e�ects on the robot body that can be perceived by
accelerometers. The swing of the shoulders is not directly observable by lack of sensors, but
can be reconstructed from partial models of the environment to prevent a collision with the
door. The robot thus has to combine multi-modal models of its environment perception, with
di�erent precision scales. Several sensor loops have to run simultaneously and sequentially.
This means that a lot of information has to be added to the classical con�guration trajectory
output by upstream motion planners. The questions are even more complex when considering
a model-predictive controller as the basic controller, since predictive sensor models have to
be added [Allibert 10].

It seems that no e�ective purely-automatics solution has emerged yet to bind planning
and control in humanoid robotics, while many works are trying to bridge the gap. Explicit
decoration is added to the most evident part of the trajectories, enforcing for example a vi-
sual servoing of the robot hand to grasp an object [Morales 06, Vahrenkamp 09], or correcting
the trajectory during the walk based on central vision-based localization [Moulard 12d]. In
[Baudouin 11], the footstep planner is used during the robot control cycles to modify the tra-
jectory based on sensor localization. Control from symbolic plans with geometrical reasoning
is explored in [Gravot 06, Rusu 09].

In summary, the humanoid robot is a complex structure due to the number of various
modalities of action that it is able to consider. Each modality can be handled separately by
planning and control algorithms (one for manipulation, one for navigation, one for locomotion
on rough terrain, etc). Searching for integrated algorithms able to handle several modalities
with a same model is more complex.

2.1.5 Applications

Robotics, the robot companion: In the quest for robot autonomy, research and develop-
ment in robotics are dominated by the stimulating competition between computer science and
control theory, between abstract symbol manipulation and numerical signal processing. The
humanoid robotics pushes one step further this quest, by emphasizing the importance of the
numerical aspects. By the ambivalence of the mathematical folded structure of the contacts
and the links between the locomotion and the manipulation modalities, the humanoid robot
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proposes a renewal of the classical robotics challenges. The most representative application
in this direction is the robot home companion [Dautenhahn 05], friend, assistant or butler. It
is for example the avowed target of the future French humanoid Romeo.

Similarly, companion worker can be imagined [3]. The humanoid robot is then represen-
tative of the universal worker robot, able to accomplish a wide range of automatic tasks. Hu-
manoid or not, those robots may composed the future �exible manufacturing cells [Basile 12],
whose production modi�cation only implies software but no hardware reprogramming. Work
companion doubtlessly implies less cognitive loads than the home companion, working in
known or dedicated environment with quali�ed surrounding humans.

Like for all mankind creativity process, universal grunt-soldier robots are of course another
expected outcomes. The latest results of the United States of America, the Atlas humanoid
robot, demonstrates impressive movement capabilities in its chemical suit [Nelson 12]. The
quadruped Alpha Dog robot, is now training with the America military forces, while the
most advanced humanoid robotics challenge is organized by the American defense advanced
research projects agency, DARPA.

Telerobotics: Before the challenge of an autonomous humanoid robots, humanoid robotics
can make a �rst coming-out with teleoperated semi-autonomous robots. As explained in the
introduction, the humanoid shape greatly eases the transfer of motion from the human op-
erator to the robot. The importance of the dynamics di�erences between the robot and the
operator creates another challenge for motion replication. There is in fact a large and contin-
uous range of applicative situations, from the basic automaton to the cognitive companion,
emphasized by the DARPA humanoid challenge [Guizzo 12] and the challenges open with
the disaster of Fukushima, in particular to visit then repair, clean and destroy the damaged
plant [Guizzo 11].

Computer animation: Providing virtual humans with autonomy of motion is a long prob-
lem in computer animation [Pettré 08]. For long, in such problems, animation techniques were
motion-capture based. The key idea of such techniques is rather simple: sequences of motion
captures describe the ability of motion for digital creature. Motion planning is performed
by assembling various portions of motion capture in order to reach a desired state (position,
posture). Motion capture edition techniques (warping, blending or concatenation) are used
to enable composed motions with smooth transitions and to adapt to the environment.

More recently, dynamic simulation has been used to control virtual humans. It overcomes
the limitations imposed by motion capture based techniques. The problem has bene�ted
from research in robotics. Seminal work from Koga and colleagues coupled motion planning
techniques and animation techniques to enable autonomous motions [Koga 94]. This get
animation problems very close to robotics one, even if constraints di�er (natural aspect of
motion is a preeminent target, and violating the law of Physics is doable). This work is taking
much inspiration from publication in the computer animation �eld [Boulic 92, Baerlocher 04,
de Lasa 10, Mordatch 12, Al Borno 13].

Biomechanics and neuroscience: The human body is another robot model that can be
animated by just the same robotics methods. From the mechanical point of view, it is a very
redundant kinematic tree with redundant actuators (each joint being actuated by several
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muscles) and subject to kinematic or empirical constraints. The challenge is now to generate
natural motions, for example for virtual ergonomics studies: the body model is positioned in
a digital mock-up and the arti�cial movements are used to evaluate the potential occurrence
of functional disorders [Fourquet 07].

Some aspects of the motion can be explained (and thus generated) by the kinematics of the
body. Re�ning the motion is expected to improve the realism, by adding the inertia, the muscle
positioning, the muscle activation and co-activation models, etc. These questions concern
various sensorimotor aspects from biomechanics to neurosciences: how are disctributed the
internal forces, what are the sensori-feedback loops, how is encoded the fusion of several
sensing modalities (e.g. vestibular, vision and tactile) or of several simultaneous motor actions
(e.g. reaching and balance, walking for reaching, etc.). In that challenge, robotics is bringing
some modeling tools. The dialog between the two scienti�c corpus can also give an original
enlightenment of robot decision process.

2.2 Original approach

Our work is based on local sensorimotor loops that enable the robot to robustly handle its
environment. The task function approach, introduced at the end of the 80's, gives an unifying
framework to control the motions of a robot in the real world, uncertain and changing. But at
the same time, the task function approach provides a way to describe and then reason about
the motion. The task is then a lexeme describing the movement and, at the same time, an
e�ective controller.

The project presented in this document is built upon this observation and aims at devel-
oping e�ective motion-generation methods for various kinds of robots, and more particularly
robots with a large number of degrees of freedom. The ambition of the approach is to provide
computational solutions that, on the one hand, are not a�ected by the combinatorial explosion
of the planning algorithms due to the large number of degrees of freedom and, on the other
hand, are not a�ected during the execution by the underlying uncertainties of the interaction
with the physical world.

This approach requires two complementary phases. We �rst establish the basic vocabulary
of action, which will then be used to construct complex motions. The objective is to build
an exhaustive control layer, covering all the working modalities of the robot, while providing
a higher level with quasi symbolic control and diagnostic access. The core of this �rst phase
is the de�nition of a stack-of-tasks structure. Based on this action vocabulary, the second
phase of our research is to provide semantics of the movement, to ease all the aspects of the
de�nition of a complex movement, i.e. motion programming, planning or learning.

We designed this approach in two phases, �rst with the construction of a motion vocabu-
lary and second with the exploration of the corresponding semantics, by the generic term of
motion semiotics.

2.3 Outline

The document is organized in two parts, following the bottom-up approach.
The �rst part tries to build a task-based controller that covers all the modalities of the

robots. In Chapter 3, we recall the basis of the task-function approach and the limitations
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that we are then trying to overpass. Chapter 4 proposes two solutions to take into account
inequality-written objectives in a hierarchy of tasks. Chapter 5 describes the problem of the
continuity during a sequence of tasks and proposes two preliminary solutions to this problem.
Chapter 6 then addresses the control of the dynamics of the humanoid robots. Chapter 7
�nishes the �rst part by relating the overall experimental works and in particular the need of
sensory feedback.

The second part then uses the task-control paradigm built in the �rst part to assemble
complex robot behavior. Three possibilities to build complex behaviors are explored: by
programing in Chapter 9, by planning in Chapter 10 and by learning from observation in
Chapter 11. This last chapter opens to the study of natural human movements.

Finally, the conclusive Chapter 13 opens to our perspectives and a more personal view
of future humanoid robotics developments.
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COD Complete Orthogonal Decomposition

COM Center of Mass

CRBA Composite Rigid-Body Algorithm

CWE Collaborative Working Environment

DOF Degree of Freedom

FOV Field of View

HCOD Hierarchical Complete Orthogonal Decomposition

HQP Hierarchic Quadratic Program

HPP Humanoid Path Planner

HRP Humanoid Robot Prototype

IMU Inertial Measurement Unit

MPC Model Predictive Control

PLM Product Life-cycle Management

QP Quadratic Program

RNEA Recursive Newton Euler Algorithm

RRT Rapidly-exploring Random Tree

SLAM Simultaneous Localization and Mapping

SQP Sequential Quadratic Program

SVD Singular Value Decomposition

ZMP Zero Moment Point

Table 2.1 � List of abbreviations
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Chapter 3

Task function

T
his chapter is built as a tutorial of existing solutions to implement the task-function
approach for inverse kinematics. The robot con�guration vector is denoted by q, and

its temporal derivative q̇.

3.1 Inverse geometry

3.1.1 Problem de�nition

A motion executed by a robot can be driven by a goal con�guration q∗. However, the con�g-
uration space does not have in general a very intuitive structure. It is not expected that q∗ is
directly given by a human operator.

Direct and inverse geometry: Instead, the objective can be de�ned by means of a func-
tion of task h(q), that should reach a given value h∗. The objective is not given in the
con�guration space by q∗ but in the task space (the image space of the task function) by h∗.
The function h is given as a direct map of the robot geometry and is here referred to as the
direct geometry function. A typical example is to de�ne h to be the robot end-e�ector trans-
lation, orientation or placement1. In that case, h is often referred to as the direct kinematics
of the robot2.

Analytical inversion: We �rst search one con�guration q∗ that satis�es the task h∗, i.e.
such that h(q∗) = h∗. If h is invertible, the problem corresponds to �nding the inverse map
h−1. Early works for six degree-of-freedom (DOF) manipulators use an analytical inversion

1The position of a body in space is de�ned by three translation and three rotation parameters. The
placement refers to the concatenation of these two functions. It is typically de�ned by six parameters.

2The map that gives the position of the end e�ector with respect to the robot con�guration is often called
direct kinematics. The kinematics being the branch of mechanics that studies the motion (κινηµα, motion in
Greek) of sets of points, i.e. velocity, acceleration, we rather use direct geometry for the function h.
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of the h map [Pieper 68]. A good overview of analytical methods is given in [Tolani 00] and
[Waldron 08]. Analytical methods require a speci�c study for each function h, i.e. for each
robot and task. The problem has been widely studied for speci�c shape of manipulator arms
[Primrose 86, Lee 88] with �nally some e�cient methods proposed [Manocha 94]. However,
the same study has to be realized for each new function h. For example, inverting the
function that links the position of the robot to the position of some visual feature on the
camera projection plane would require to do all the computation again. Moreover, h is not
always invertible: the analytic inversion then does not systematically apply. In particular,
when the robot is redundant with respect to the task, h is not injective, i.e. many solutions
q gives a same h∗.

3.1.2 Numerical resolution

Instead, the problem of �nding a con�guration q where h∗ is reached can be solved numerically.
The problem is written as a least-square non-linear problem:

min
q

||h(q)− h∗|| (3.1)

We denote by f : q → f(q) = 1
2 ||h(q)−h∗|| the underlying scalar positive function. If h∗ is in

the range space of h, the minimum of f will be a root. Most of the time in robotics, h has a
nice local behavior (local convexity, di�erentiability) coming from its geometrical structure.
Di�erentiable iterative algorithms with descent directions are then well suited to solve it.
Basically, these algorithms start with an initial guess q0 (that should be such that h(q0) is
not too far from h∗) and build a sequence of q1, q2, ... that converges toward an optimum.

Gradient descent: At each iteration, the step is chosen to be in the opposite direction to
the gradient of f at the current position:

qn+1 = qn − λ∇f |q=qn = qn − λJ(qn)
T (h(qn)− h∗) (3.2)

where J(q) = ∂h
∂q is the Jacobian of h computed in q and λ is the step length. This second

solution is named linear search and is costly, but speeds up the descent. Gradient descents
are known to be have a very slow convergence: the residual at step n is typically bounded by
O(1/n).

Newton descent3: The function f to minimize is approximated by a �rst-order Taylor
development:

f(qn +∆qn) = f(qn) + ∆qn
∂f

∂q

∣

∣

∣

∣

qn

(3.3)

The next step ∆qn is chosen to nullify the approximation. Since ∂f
∂q = J(q)T (h(q) − h∗), we

have:
qn+1 = qn +∆qn = qn + λ(q)J(q)T (h(q)− h∗) (3.4)

where λ(q) = ||h(q)−h∗||2

||J(q)T (h(q)−h∗)||2
. This is just the gradient descent (3.2) with a varying λ descent

length. The descent will stop at the zero of the function, or in the �rst encountered local
minimum.

3or Newton-Raphson, cf. wikipedia for the complete story of the two men.
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Gauss-Newton descent: To really search for the minimum of the function, the descent
can search for the zero of its derivative. The Taylor development is then extended to the
second order. The Hessian then appears. Gauss-Newton descent applies the above scheme
but neglect the second order variations of the sum of squares. The descent step is then:

qn+1 = qn − λJ(q)T (J(q)J(q)T )−1(h(q)− h∗) (3.5)

when J(q)J(q)T is invertible. In that case, the matrix product is equal to the pseudoinverse
of J(q) [BenIsrael 03] detailed below.

The convergence rate of the Gauss-Newton is much better than the gradient descent
(residue bounded by O(1/n2)). As previously, the step length λ can be chosen a priori or
optimized by searching along the descent direction to improve the convergence speed.

Step length: Descent algorithms imply two steps at each iteration: �rst, choose the direc-
tion of the descent and, second, choose the length of the step along this direction. The length
is given by λ in the above presentation. It can be constant or computed a priori from the
cost residue. However, to diminish the number of step to convergence, a search along the line
de�ned by the descent direction is generally performed, for example using a dichotomy search
with an initial point de�ned by the (given) problem scaling factor. This search can be costly
but signi�cantly reduces the number of descent steps. Optimization algorithms typically take
very large steps, while, in robotics, we are often interested by keeping quasi in�nitesimal steps
to obtain a good approximation of the continuous underlying trajectory.

3.2 Inverse kinematics

The iterative descent methods do not produce only one optimal con�guration but also a
sequence of con�gurations from the initial guess and leading to the goal h∗. A continuous
trajectory is obtained by integrating with respect to the abscissa s the following di�erential
equation:

∂q

∂s
= −λJ(q(s))+(h(q(s))− h∗) (3.6)

starting from the initial con�guration q(0) = q0.
The Jacobian gives the direct (forward) kinematics of the task4:

∂h

∂s
= J(q(s))

∂q

∂s
(3.7)

The direct kinematics is linear with respect to the motion ∂q
∂s in the con�guration space. At

each con�guration q = q(s) of the path, (3.6) implies the inversion of J . This problem is called
the inverse kinematics and is formally written by the following quadratic problem (QP):

min
∂q

∂s

||J(q)∂q
∂s

− ∂h

∂s

∗

|| (3.8)

4Equation (3.7) is often referred to as the forward di�erential kinematics.
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with ∂h
∂s

∗
= −λ(h(q) − h∗). The Newton algorithm is then a sequence of QP and is referred

to as sequential quadratic programming (SQP).
Physically, the abscissa s is most of the time variable t. Equation (3.6) is then the robot

velocity in the con�guration space:

q̇ = −λJ+(h(q)− h∗) (3.9)

The velocity q̇ will be considered as the control input in the following.

3.3 The task-function formalism

The integration of the previous di�erential equation gives a motion q(t) from q0 to the target.
The corresponding motion h(t) in the task space is the solution of the di�erential equation:

ḣ = −λ(h(t)− h∗) (3.10)

This corresponds to an exponential convergence of h toward h∗ with a rate λ.
The task function approach [Samson 91] was introduced to formalize the system behavior

in the neighborhood of the task completion h∗. Consider �rst a full-rank task function h, i.e.
the map is di�erentiable and invertible in the neighborhood of any relevant points (J then
exists and is also invertible). Given some properties of the function h around the target h∗,
the task is said to be admissible, which ensures a good behavior of the robot [Samson 91].
The size of the neighborhood is di�cult to determine in practice. The task-function approach
then builds a trajectory h∗(t) that leads to the ultimate goal h∗ [Mezouar 02]. The admis-
sibility property implicitly de�nes a tube in the con�guration space around this trajectory,
into which the robot control is straightforward. In practice, the neighborhood is very often
empirically considered to be large enough and the tube is then reduced to its trivial �nal
section [Espiau 92].

More generally, the task function approach ensures that any stability property of the
reference vector �eld ḣ∗ in the task space will be locally kept when transforming it into the
con�guration space:

q̇ = J+ḣ∗ (3.11)

The task is then de�ned by the task function h : q → h(q) and the reference vector �eld ḣ∗

in the task space. If the vector �eld converges to a �xed point h∗, then the control law (3.11)
converges to a �xed con�guration q∗ such that h(q∗) = h∗. The iterative inverse-kinematics
problem then solves the geometric problem to �nd h(q) = h∗.

Several vector �elds can be considered. The most classical one is the proportional (3.10)
tuned by the proportional gain λ. Constant gains lead to slow convergence. An adaptive gain
λ typically grows with respect to the task residue:

ḣ = −λ(||h||)(h− h∗) (3.12)

with λ(x) = (λ0 − λ∞)e
−x
β + λ∞ de�ned by three parameters. Force impedance [Hogan 84]

can be achieved by integrating once the following second-order di�erential equation

Mḧ∗ = −Bḣ−Kh+ φ (3.13)
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whereM , B andK are the inertia, damping and sti�ness set to the system and φ is a measured
external disturbance (typically, a force measured by a sensor).

A target can be reached in �nal time by imposing the system to follow a given parame-
terized time function [de Lasa 10]. For example, in order to follow a second order polynomial
reaching 0 at time T , the vector �eld explicitly depends on the time variable and is de�ned
by:

ḣ∗ = (1− 2
∆T

T
)ḣ0 − 2

∆T

T 2
h0 (3.14)

where h0 and ḣ0 are the measured position and velocity in the task space and ∆T is the
integration time step.

The task function itself can also depend on time through changes of the environment.
Denoting by Ω the external universe (all the variables that are not the robot con�guration)
and Ω̇ its changing rate through time, the task function is h(q,Ω) and its evolution is:

ḣ = Jq̇ +
∂h

∂Ω
Ω̇ (3.15)

where ∂h
∂Ω Ω̇ is a inherent task drift that should be at best estimated and compensated:

q̇ = J+(ḣ∗ − ∂h

∂Ω
Ω̇) (3.16)

3.4 Redundancy

The task function h de�nes completely the con�guration corresponding to h∗ if it is invertible.
If it is not invertible, it might be not surjective: in that case the task is not feasible (there
is a con�ict between the task objectives that cannot all be met at the same time) or it has
redundant output (some part of the task are automatically achieved as soon as the other part is
achieved). If it is not injective, it has a redundancy of con�gurations (several con�gurations
correspond to the achievement of the task). In robotics, redundancy usually refers to this
second case.

The task-function approach primarily requires the invertible task function to be also a
local di�eomorphism around the regulation point (i.e. J exists and is invertible) in order
to keep the stability of ḣ∗ in the con�guration space. One of the big interest of the task-
function approach is to reduce the task study, which is non linear, to the study of the spaces
tangent to the con�guration space (space of q̇) and to the task space (space of ḣ) that have a
linear structure and are linked by J (which carries all the local non linearity of the problem).
Consider then from now the linear problem to �nd q̇ that satis�es ḣ∗ at best:

min
q̇

||Jq̇ − ḣ∗|| (3.17)

Null space: When J is not invertible, its null-space (kernel) is denoted by Z. A variation
of the con�guration q̇ in Z will not have any e�ect in the task space. If Z is integrable,
the intuition is very easy to catch: the position of the robot in the corresponding space is
not controlled, can drift or exponentially diverge. In any case, when J is not injective, the
stability of the system cannot be ensured, even if the ḣ∗ vector �eld is stable.
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In order to preserve the stability, a secondary task can be employed and projected in the
null-space of J [Liégeois 77]. The set of all solutions to the problem (3.17) is given by:

q̇ = J+ḣ∗ + P q̇2 (3.18)

where P is any projector into the null space of J (i.e. PP = P and JP = 0, for example
P = ZZT where Z abusively denotes a basis of the null space) and q̇2 is any vector that
generates the solution set when varying.

The parameter q̇2 can be used as a secondary input to achieve another objective without
disturbing the �rst task. In [Samson 91], this is used to ensure the stability of the whole
system. The input q̇2 is chosen as the gradient of a potential �eld h2 function of q:

q̇ = J+ḣ∗ + P∇h2 (3.19)

This scheme has been widely used to take into account the robot constraints when per-
forming the task. For example, in [Liégeois 77], the potential �eld is a bowl-shaped function
that pushes the robot away from the joint limits.

Weighted inverse: The set of solutions can also be described by choosing a di�erent norm
on q̇ when inverting J (see Appendix A.3):

q̇ = J#W ḣ∗ (3.20)

where W is a weight (positive de�nite) matrix that generates the solution set when varying.
The relation with the null space is less intuitive than in (3.18). Weighted inverse have also
been used to take into account the robot constraints (e.g. joint limits [Chang 95]). It was
used in [Zanchettin 12] to enforce a cycle of con�guration-space trajectories when performing
a redundant cyclic task. Cyclicity will of course ensure the stability of the robot despite the
redundancy of the task.

Worst to be noted: when the task is fully constraining (no redundancy, J is full column
rank), then P is of course null and W has no e�ect in (3.20).

Secondary task: To avoid confusion, the main task is now explicitly indexed by e1. The
potential h2 in (3.19) is directly written as a function of the con�guration. As for the main
task, it might be desirable to write the �eld in a dedicated task space. Given a secondary
task function e2 and its reference behavior ė∗2 (which can be the gradient of a potential �eld
in the task space of e2), the development of (3.19) leads to:

q̇ = J+
1 ė∗1 + P1J

+
2 ė∗2 (3.21)

This form was emphasized in [Chiaverini 97]. It ensures that the �rst task is perfectly
accomplished. The second task is in general not full performed (except in particular cases).
However, this is enough to ensure the stabilization of the system if both ė∗1 and ė∗2 are stable
and the matrix obtained by stacking J1 and J2 is full column rank. Moreover, even though
ė∗2 is not perfectly accomplished, this scheme asymptotically converges toward the attractor
of ė∗2 if the tasks are compatible, i.e. if the rank of the stack (J1, J2) is the sum of the ranks
of J1 and J2.
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3.5 Hierarchy

3.5.1 Two tasks

The second task is not perfectly accomplished because the DOF used by e1 are not taken into
account when inverting J2: the scheme does not compensate for the motion realized by e1
when solving e2. Instead, it is possible to search for the optimal q̇ that solves the second task
while preserving the �rst one. This is written by a QP:

min
q̇

||J2q̇ − ė∗2|| (3.22)

subject to q̇ = J+
1 ė∗1 + P1q̇2

This problem is trivially reformulated as the following unconstrained QP:

min
q̇2

||J2P1q̇2 − ė∗2 + J2J
+
1 ė∗1|| (3.23)

The set of solutions is obtained by taking the pseudoinverse of J2P1 [Siciliano 91]:

q̇2 = (J2P1)
+(ė∗2 − J2J

+
1 ė∗1) + P̃2q̇3 (3.24)

where P̃2 is the projector into the null space of J2P1 and q̇3 is any vector that generates the
solution set when varying. The complete control for the two tasks is obtained by replacing q̇2
in (3.18):

q̇ = J+
1 ė∗1 + (J2P1)

+(ė∗2 − J2J
+
1 ė∗1) + P2q̇3 (3.25)

where P2 = P1P̃2 can be shown to be the projector into the null space of

[

J1
J2

]

[Baerlocher 04].

3.5.2 Multiple tasks

The same scheme can be extended recursively to take into account any number of tasks:

q̇i = q̇i−1 + (JiPi−1)
+ (ė∗i − Jiq̇i−1) (3.26)

with q̇0 = 0 and Pi the projector into the stack of the i �rst levels.

3.5.3 Discussion

Singularities: A singularity happens when the rank of the task Jacobian decreases com-
pared to its nominal rank. Consider two tasks e1 and e2: a singularity arises when the rank of
the Jacobian of (e1, e2) decreases, i.e. when e1 or e2 is singular by themselves, or when each one
is non singular but both together con�ict and become singular. The �rst case is often called
kinematic singularity while the second case is called algorithmic singularity [Chiaverini 97].
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Robustness: The two schemes (3.21) and (3.25) are compared in [Chiaverini 97]. Basically,
(3.21) is less e�cient (e2 is not totally accomplished) but is also stable and is robust to
algorithmic singularities. In fact, (3.21) does not take into account the coupling between
the two tasks. Taking into account this coupling increases the e�ciency of the solution, but
simultaneously lead to algorithmic singularities. The robust (3.21) is also cheaper to compute.
In a sense, applying (3.21) for realizing two tasks is similar to applying the Jacobian transpose
for realizing one task: it is robust and cheaper, but is less e�cient since the coupling (between
each task or between each component of the task) is not taken into account.

Weighted sum: However, both singularities are similar in the sense that the combined
task (e1, e2) is singular. Moreover, outside of algorithmic singular region (when both tasks
are compatible), (3.25) is equal to the solution obtained with the two tasks combined in
only one. The combination can also be done while imposing di�erent weights on each task:
ew = (w1e1, w2e2). The resolution of the QP associated to ew is given by the left-weighted
inverse of J = (J1, J2):

q̇ = JW#

[

ė∗1
ė∗2

]

(3.27)

with W = diag(w1, w2) the weight matrix.
It can be shown that the hierarchy (3.25) is obtained when the ratio between the weights

reaches the limit [VanLoan 85]: a strict hierarchy is obtained when the importance given to a
task is in�nite. Like the hierarchy, the weights are meaningless when the tasks are compatible.

The hierarchy can then be numerically obtained by using a single weighted QP with 103

weight ratios. This solution is often used for example on humanoid setups when using o�-
the-shelf solvers. However, the conditioning of the problem is then very poor. The usual
solvers are often robust to such scaling problems, but, when possible, the use of a dedicated
hierarchical solver avoids these arti�cial conditioning problems.

3.6 Challenges and objectives

The task function is a very good approach to drive a system toward the realization of a
geometric objective. It is a local method, so it is not possible to expect a global solution.
Moreover, it is only a constructive framework and the overall system behavior will depend on
the choice of the selected task functions and of the reference vector �elds in the chosen task
spaces.

The task-function approach or similar (operational space control [Khatib 87], inverse kine-
matics and di�erential kinematics [Whitney 69], impedance control [Hogan 84], hierarchy of
tasks [Baerlocher 04, 14], visual servoing [Espiau 92, Chaumette 06]) are widely used by the
community and for real projects. Several aspects are still not properly treated and wait for a
�nal solution.

Regularization: The inversion process inherently su�ers from the sensibility to the system
conditioning close to singular points. This aspect is well understood and proper solutions
exist to avoid the singular region [Yoshikawa 84, Nelson 95, Marani 02] or to smooth the
robot behavior when it is entering the region [Wampler 86, Deo 92, Sugihara 11]. However,
the classical solution decreases the performances of the control by adding a damper. The
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regularization is then invasive and strongly relies on a tradeo� between performance and
safety. Of course, the parameter tuning is then context dependent and no good solution
other than empiricism exists to choose it. More generally, there exists no generic solution to
automatically regularize the motion problem while preserving the performances away from
the singular region.

Task Composition: Among the generic regularization problems, two speci�c problems can
be isolated: How to execute simultaneously several tasks (algorithmic singularity problem)?
And how to sequence a set of tasks (task sequencing problem)?

As discussed above, the �rst problem would be directly solved if a complete regularization
was available. Since it is not, the complexity is reduced by considering that all the tasks are
non singular by themselves but that the problem is coming from the con�icts when composing
them in a single motion [Chiaverini 97]. In that sense, imposing a strict hierarchy is a way
to circumvent the composition problem: indeed, each task being decoupled from the others,
the con�ict will only produce an e�ect on one task. The consequences are then clearer to
measure, analyze, and hopefully treat. Yet it could be hopped to treat the con�ict for several
tasks only at the level of one task, which would reduce the complexity. However, hierarchy
is not yet a solution by itself, but just a way to isolate the problem and help to correct it.
A complete solution to compose a set of valid tasks while avoiding the problems due to the
con�icts is still missing.

When sequencing two tasks, or in a hierarchy when adding or removing a task from
a running set, a discontinuity of q̇ typically arises. This problem will be reduced to the
regularization problem [Salini 09, 8] in Chapter 4. Indeed, a classical solution to smooth
the transition between two sets of tasks is to use the damped inverse. Another solution to
smooth the velocity is to move the whole system to the second order [Siciliano 90]. However
the acceleration are then discontinuous, which is less problematic but should be avoided if
possible. Two problematic cases have to be considered. If the robot behavior or structure
is optimized by a solver [34], the discontinuity of the control may typically break the solver
convergence. And if the sequence is triggered by an event rather than by a time sequence,
the discontinuity may trigger another sequence and cause the system to loop around the
discontinuity [11].

Inequalities: All the work above deals with equality objectives, typically trying to bring
an error to 0 and the geometric map h to a desired point h∗. Many robotics objectives
would rather be written in terms of inequalities: joint limits [Liégeois 77], �eld of view
(FOV) [Marchand 98], obstacle avoidance [Khatib 86], actuator (velocity or torque) limits,
safety region [Cheah 07], center of mass (COM) inside the support polygon [Sugihara 02],
etc. Two classical solutions are used to handle inequalities. If the robot is redundant with re-
spect to the task, the inequality can be embedded into a potential function (e.g. a log-barrier
function [Nemirovski 94]), whose gradient is projected in the remaining null space. The in-
equality is never taken into account as an objective having priority [Liégeois 77, Marchand 98,
Chaumette 01, Sian 05]; or a switching control law can be built, which sequentially moves from
the inequality criteria when close to the saturation, to the driving task otherwise. Several
ad-hoc developments have been tried in this second direction [Peinado 05, Raunhardt 07,
Sentis 07, 14, 12] with problems of genericity; continuity during the sequencing; stability of
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the switch [Gans 07]; and locking of the constraint [Sentis 07]. None of these two sets of
methods are completely satisfactory.

And the robot? The computed q̇ can be integrated to generate a motion, for animation
[Boulic 92, de Lasa 10], virtual prototyping in product life-cycle management (PLM) [Weyrich 99,
Laumond 06] or to be replayed in open loop by a robot. However, q̇ can also be seen as a
control law to be applied in real time on a real robot. In that case, some problems of com-
putation time and of linkage with the measured state of the robot can arise and should be
considered. In particular, the inverse kinematics only considers (by de�nition) the geometry
of the robot and not the dynamics. The extension to inverse dynamics [Khatib 87] is possible,
but there is no good solution yet to execute it with a robot [Whitney 76, Hogan 88]. Several
solutions are currently explored: estimation of the whole dynamic model (with friction model
in the actuators) [Khatib 08] ; a force sensor can be added to close the loop at the torque
levels [AlbuScha�er 07a] ; or spring mechanisms can be added to mechanically transform the
torque control problem to a position control problem [Pratt 95, Kaneko 94]. Once more, due
to calibration, price or control problems, none of these solutions are completely satisfactory.

The objective of this �rst part of the document (i.e. Chapters 4, 5, 6 and 7) is to set up a
methodology to execute any set of tasks on a physical robot. The complete motion generator
should tackle objectives written as equalities or inequalities function of the robot dynamics,
and be able to compose any set of tasks, both hierarchically or sequentially, in a safe way.
Hierarchy of both equalities and inequalities are proposed in Chapter 4. The problem of the
continuous sequencing is properly de�ned in Chapter 5, and a �rst solution is proposed. Some
�rst steps toward the application of hierarchy of tasks to inverse dynamics is then proposed
in Chapter 6. Finally, the work done to close the loop with the sensors on the real robot is
presented in Chapter 7.



Chapter 4

Inequality

T
he goal of this chapter is to de�ne a way to handle inequality objectives into a hierarchy
of tasks. Consider a main task driving the robot and an inequality constraint written

in a second task space. Three main approaches to realize these two objectives can be found
in the literature.

Potential �eld: The inequality can be embedded in a potential function [Liégeois 77,
Khatib 86], like a log-barrier [Nemirovski 94] (see [Mezouar 02] for an example). The po-
tential �eld can be directly taken into account in the task-function approach by projecting
its gradient in the null-space of the other tasks. The gradient is a well-de�ned (stable) vector
�eld in the task space. It acts as a virtual force [Khatib 86] that pushes the robot away from
the forbidden areas.

The task enforcing the inequality constraints corresponds to some DOF of the system.
These DOF are devoted to the inequality constraint even when the corresponding gradient
is null. It is not possible to use them to ful�ll an objective of lower priority. For example,
when the inequality constraint represents the joint range of the robot, the corresponding task
space is the con�guration space whose null space reduced to zero: no other task can be added
in lower priority and the joint limits cannot be considered as a top-priority objective. The
gradient is generally taken into account as the least-priority objective [Marchand 98]. It is
then only applicable if the robot is redundant with respect to the main task (and if possible
if there is many degrees of redundancy).

Typically, if a seven-DOF manipulator robot is executing a translation task (three DOF),
the remaining four DOF can be used to stay away from the joint limits. However, even in
this case, no guarantee can be given on the avoidance. For example, on an anthropomorphic
arm, if a limit prevents the elbow from completely stretching and the task objective is outside
of the reachable region, the limit will be violated despite the potential �eld. Some other
variations have been proposed, like [Nelson 95] that uses a trade-o� between the task and the
constraints, with no guarantee of avoidance.

In [Chang 95], the potential �eld is used to weight the pseudoinverse rather than to project
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a virtual force. The weight tends toward in�nity close to the constraint limit (joint limits in
the paper), which forbid further motion. However, when several joints are hit, the solution
reaches a kind of singularity with the inversion becoming invariant to the weight. Here also,
avoidance cannot be ensured. This solution is interesting because it is an intermediate stage
between clamping and switching control: the method pushes the weight toward the limit, but
never reaches it. When the limit is reached, it clamps the robot motion in the constraint
direction.

Switching control: The potential �eld cannot be set at the top priority because all the
components of the inequality task are always active: even far from the inequality border,
when the gradient is null, the DOF is constrained and no other command can act on it. A
solution is then to arti�cially deactivate the constraint when far enough from the obstacle.
Clamping was proposed to apply such an activation to enforce the joint limits [Raunhardt 07].
Clamping is easy: it is only a test over the robot preview window. If the constraint is violated,
the controller clamps the direction to prevent any further motion. However, relaxing the
constraint is more di�cult. An attempt is proposed in [Sentis 07] (Chapter 5). It is possible
to �nd some observers that properly indicate when to remove one constraint. However, when
several constraints are active at the same time and are coupled together, such observers are
much trickier to build. Moreover, the stability of the system does not arise immediately from
the task-function approach, but the switching state machine should also be considered in the
stability loop. The inability to prove the stability of such a system can lead to very serious
problem during the robot execution. Typical examples of oscillations are shown in detail
in [11].

During my PhD, we proposed a controller to guarantee that the potential �eld (set as
a least-priority objective) is always taken into account during the realization of the main
task [14]. For that purpose, a switching controller was in charge to deactivate parts of the
main task if the robot was approaching to close to the limit. This can be seen as a clamping
controller. However, instead of activating a part of the constraint, the controller deactivates
the corresponding part of the main task so that the potential �eld carrying the constraint can
be properly taken into account. This approach reduces the complexity to decide which part of
the constraint was not necessary any more. However, several aspects of this development were
dedicated to the considered tasks, constraints and robot structures and would need speci�c
development to extend to other situations.

QP-based control: It was shown in the previous chapter that the pseudoinverse control is
the result of a unconstrained QP minimizing the distance to the reference task vector. QP
can also be de�ned with inequality or equality constraints [Nenchev 89, Sung 96, Decré 09].
In that case, the inequality can be handled at the top priority level by setting it in the
constraint of the QP. It is also possible to take into account inequalities at the second level by
introducing a slack variable [Boyd 04], as it was done in [Hofmann 09] to control the balance
of an anthropomorphic avatar. Similarly to the case of unconstrained QP that was linked to
unconstrained SQP, inequality-constrained QP can be linked to inequality-constrained SQP.

A QP solver is composed of a constraint and a cost, which can be seen as two levels of
constraint having di�erent priorities. The approaches cited above are unable to take into
account a hierarchy of more than two objectives. A hierarchy-like behaviors is achieved
by using some proper weights to set up the relative importance of the various objectives
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[Collette 07, Liu 11]. However, as explained before, the conditioning of the weighted task is
poor and can lead to arti�cial numerical during the problem resolution.

Two main approaches have been tried. First, it was tried to extend the work of [Chang 95]
and to actually clamped the problematic constraint directions when coming to close to the
limit. This was done by rede�ning an inversion operator whose behavior is close to the
weighted inverse in the good cases, but that ensures a smooth behavior when crossing the
singularity due to the non-de�niteness of the weight matrix. The resulting behavior of the
system is very good, but the cost of the operator is too high to apply to realistic cases with
a humanoid robot.

Concurrently, the QP-based approach was extended to take into account a hierarchy of
objectives. The behavior is more intuitive and the resolution is much cheaper. However, there
is no good solution yet to damp the problem and ensures a safe robot behavior close to the
singular regions.

These two approaches will be detailed in the next two sections.

4.1 Multi-Dimensional Homotopy

Reference paper [12] (see also [11, 40, 37, 57])

4.1.1 Considering one task

The starting idea is to enable at the top-priority level the activation and deactivation of parts
of the task, that are used to clamp or relax the DOF approaching to the constraint limit. We
consider a task function (e, J, ė∗), each of whose component is parameterized by an activation
factor h continuously varying from 0 (fully inactive) to 1 (fully active). A common solution
to take into account such a task is to consider the task eH = He, where H = diag(h) is the
activation matrix. Neglecting the variation of H, the Jacobian of eH is HJ and the resulting
control law is

q̇ = (HJ)+Hė∗ (4.1)

The shape can be found e.g. in [Cheah 05, Comport 06, GarciaAracil 05, Chang 95].
We can recognize here the left-weighted inverse of J : q̇ = JH#e. As recalled in Ap-

pendix A.3, the weighted inverse is only properly de�ned when the weight matrix is positive
de�nite and is invariant to the weight when the Jacobian is full-row rank. Consequently, the
control law (4.1) behaves improperly when one component of H becomes null (H becomes
non de�nite) and when subparts of J are full row rank and decoupled from the rest of the
Jacobian. The problems come from a singularity due to the matrix shapes that arises from
the computation of JH#. Consequently, discontinuities happen when a component of e be-
comes fully inactive. The control law (4.1) that seems to be continuous in fact behaves like a
switching control law and can be put in oscillatory modes with very simple setups [57].

To avoid these singular behaviors, a new inversion operator .H⊕ is de�ned that behaves
similarly to .H# far from the singular regions but ensures the continuity during the transition.
The operator is obtained by inverting all the row submatrices of J (matrices composed of some
rows of J) and summing them with weights depending on the corresponding components of
H. When a single task is considered, the control is:
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q̇ = JH⊕ė∗ (4.2)

It is proved continuous and stable in [11]. It can be seen as a homotopy from the uncon-
strained control law to the control law clamped by the constraint. When several constraints
are considered simultaneously, it is a multiple homotopy that gives more relative importance
to the closer constraints.

4.1.2 Considering two tasks

When a second task is considered, it can be simply projected into the corresponding pseudo
null space obtained with P⊕ = I − JH⊕J , following the scheme (3.21):

q̇ = JH⊕ė∗ + P⊕q̇2 (4.3)

with for example q̇2 = J+
2 e2 realized a second task is (e2, J2, ė

∗
2). Similarly to (3.21), the

secondary task is not optimally executed since P⊕ is not taken into account in the inversion
of J2. Again by analogy with (3.25), the pseudo projector can be handle in the inverse by:

q̇ = JH⊕ė∗ + P⊕(J2P⊕)
+ė∗2 (4.4)

As before, the second matrix can be identi�ed as the right weighted inverse J#P⊕

2 . As be-
fore, the inversion behaves improperly when P⊕ loses its de�niteness, i.e. when one component
of e becomes fully inactive. As before, the operator .⊕ is extended to handle right-weighting
while keeping a behavior similar to the weighted inverse. The control law for two tasks can
be written:

q̇ = JH⊕ė∗ + J
⊕P⊕

2 ė∗2 (4.5)

The same method can be extended to a hierarchy of several tasks. See [12] for details.

4.1.3 Implementation for avoidance

An inequality constraint e > 0 can be implemented by setting for ė∗ a vector �eld that
asymmetrically pushes the robot:

ė∗ =

{

−λe if e < 0
0 otherwise

(4.6)

The activation matrixH is 1 when the constraint is violated, 0 far from the constraint limit
and continuously evolves from 1 to 0 in an activation bu�er de�ned on the right neighborhood
of the constraint. The components of H can typically be linear (C0 continuity), polynomials
or chosen to ensure a C∞ continuity (see [11]).

The control (4.5) has then two e�ects: on the one hand, it pushes the robot away from
the constraint limit. On the other hand, it progressively clamps the motion toward the limit
when close enough. In that sense, it combines the e�ects of both the projected gradient
[Liégeois 77] and of the clamping [Raunhardt 07] and therefore prevent the constraint from
being violated while automatically relaxing the constraint when possible. The system stops
the robot motion before the exact limit, while performing a tradeo� between the clamping
e�ect tuned by the slope of H and the pushing e�ect tuned by the gain λ.
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In [12], the same approach is applied to the inverse dynamics in the operational space. It
corresponds to a simple extension to another quadratic problem. The links between inverse
kinematics and dynamics is the subject of Chapter 6.

4.1.4 Results

The need for a continuous behavior at the transition clearly appears in the toy example
summarized in Fig. 4.1. The control law was then applied to the control of the visibility
during a visual-servoing task [40, 11] and to avoid the joint limits while positioning the eye-
in-hand robot arm in front of a target [37] as shown in Fig. 4.2. A more complex hierarchy is
also used to control the hand of a humanoid avatar while preserving a natural posture [12].

4.1.5 Conclusion and future work

The scheme provides a very good robot behavior: there are few parameters to tune and the
control is not very sensitive to improper tuning. The robot behavior is smooth and predictable.
It is easy to damp ill-conditioned situations using the classical damped inverse instead of the
pseudoinverse in all the computations.

There are two limitations that prevent the use of this scheme as a �nal solution. First,
the activation-deactivation H is function of the robot con�guration1. It is not possible to
set it as a function of the control: for example, it is not possible to impose velocity limits in
inverse kinematics, or torque limits in dynamics. Second, the continuous inverse .⊕ requires
to compute the inverse for all possible sub systems. The cost is then exponentially growing
with the problem dimension. For animating a robot arm, the cost is acceptable. However,
for a humanoid, it is quickly too expensive for a real application. It does not seem possible
to lower this cost with the same operator. Preliminary works have been done in [8] to try to
approximate .⊕ and break the exponential complexity. This will be discussed in Chapter 5.

4.2 Hierarchical Quadratic Programing

Reference paper [4] (see also [28])

4.2.1 Cascade of QP

We have seen in Chapter 3 that the inverse kinematics problem can be written as a uncon-
strained QP. Similarly, the hierarchy of task can be written using a cascade of QP [Kanoun 11a].
Using generic notations2, consider a variable x and a hierarchy of p levels de�ned each by a
matrix Ai and a target vector bi (typically in inverse kinematics, x = q̇, Ai = Ji and bi = ė∗i ).
At the �rst level i = 1, the QP to solve is simply:

min
x

||A1x− b1|| (4.7)

An inequality objective can also be considered by introducing a slack variable [Boyd 04,
Hofmann 09, Kanoun 11a]:

1If moving to the second order (dynamics), it can also be function of the velocity
2The generic solver will then be used to compute the inverse kinematics (x = q̇) and the inverse dynamics

(x = (q̈, τ, f), see Chapter 6).
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Figure 4.1 � Positioning a toy 2D robot arm while avoiding the joint limits. The robot has
to reach the star, while a limit prevents the elbow from bending. On the left, the control is
discontinuous. When the gain λ of the avoidance is null (top �gure), the discontinuity is not
critic. It leads to an oscillatory behavior on the activation border as soon as λ is not null
(bottom behavior). On the right column, the continuous control law is used: the control is
smooth and no oscillation appears even when λ is not null. The robot does not exactly stops
on the limit but a little bit ahead. The smoothed switching behavior at t = 1s clearly appears
on the velocity plot.
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(1) (2)

Figure 4.2 � Reaching an object behind the limit of the accessibility domain. The joint-limit
task has priority over the grasping task. The control prevents the violation of the limit by
stopping the positioning task when the target is too far from the robot. When the robot moves
to a second target, the constraint is properly relaxed.

min
x,w1

||w1|| (4.8)

subject to A1x ≤ b1 + w1

The optimal slack w∗
1 will correspond to the least-square residue. If possible, it will be

set to 0 by the solver. A second level of constraints can now be introduced. To enforce the
hierarchy, the slack of the �rst level is set constant to the optimum w∗

1 while the slack of the
second level can vary. Iteratively, the QP of level i is de�ned by:

min
x,wi

||wi|| (4.9)

subject to Ai−1x ≤ bi−1 + w∗
i−1

Aix ≤ bi + wi

with the generic notation Xi =







X1
...
Xi






.

The w1 ... wp and each x1 ... xp−1 are internal variables. We are only interested by
the computation of x∗p which is the optimum for the whole hierarchy. The cascade de�nes a
hierarchical quadratic program (HQP), denoted by:
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A uni�ed approach to integrate unilateral constraints
in the stack of tasks

N. Mansard, O. Khatib, A. Khedar

Initial pose

Lower pose

Final pose

Desired pose

end−effector

Robot basis

IEEE Trans. on Robotics, 2009 [12]

Context:
This paper was written during my post-doctoral stay in Stanford, at O. Khatib's Labo-
ratory. It is the generalization for multiple tasks of the work started with F. Chaumette
and A. Remazeilles at INRIA during my PhD and published in [11].

Motivations:
Consider e.g. the joint limits. Far from a limit, the constraint should not be taken into
account to keep as many DOF as possible for the other tasks. When approaching to
the limit, the constraint has to be considered at the top priority to prevent the collision.
One solution is to consider the limit constraint as a control feature that can be active
or inactive. A discontinuity appears at the activation, which is often smoothed by using
an approximation of the control, for example a damped inverse. The paper proposes a
solution with better properties to handle such varying-set features in a hierarchy of tasks.

Approach:
With one task, the solution consists in making a weighted sum between the control laws
with and without the active constraint. The weight modi�cation drives a homotopy from
the active to the inactive states. The solution can be summarized into a matrix form, by
introducing a continuous-inverse operator, that is the homotopy of the pseudo-inverses of
the various considered activation states. The continuous operator is then generalized to
handle the redundancy projector and �nally the hierarchy of tasks in inverse dynamics.

Results and contributions:
A stack of dynamic tasks considering various constraints has been built and applied to
several setups (manipulator robots, anthropomorphic manikins). The obtained control
law is very smooth and easy to implement and apply.

Limitations and perspectives:
When many activations occur at the same time, the complexity grows exponentially. It
does not seem possible to �nd any alternative formulations to handle this problem. The
approach is very satisfying in terms of control behavior, but is limited to simple cases.
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lsprox
x

(4.10#1) ≺ (4.10#2) ≺ · · · ≺ (4.10#p) (4.10)

subject to A1x ≤ b1 (4.10#1)

A2x ≤ b2 (4.10#2)
...

Apx ≤ bp (4.10#p)

where lsprox is a shortcut for least-square approximation and ≺ refers to the lexicographic
order that imposes a hierarchy in the summation of the cost between the p levels.

A naive solution to solve the hierarchy is to execute each of the p QP. This is expensive
for two reasons. The level i is �rst solved in the ith QP but also in each QP of the following
levels. For example, level 1 is solved p times, with the inverse of A1 being computed each
time. Additionally, each QP typically involves an iterative process used to solve the inequality
constraints. As it will be detailed in Section 4.2.3, this iterative process badly interferes with
the iteration along the cascade of QP and arti�cially slow down the resolution.

In the following, we will quickly summarize the work done to construct a dedicated HQP
solver based on a primal active-search algorithm. If the developments are speci�c to quadratic
problems, the approach is generic and could be applied to other class of optimization problems
(conic, non-linear SQP) to make them hierarchic.

4.2.2 Equality-only hierarchical quadratic program

Decomposition of one level: When only equality constraints are considered, the HQP
solution is nothing more than the classical robotics null-space hierarchy (3.26) recalled here:

xi = xi−1 + (AiPi−1)
+ (bi −Aixi−1) (4.11)

with Pi the projector into the null space of Ai. Most of the time, each pseudoinverse is
computed using a complete decomposition of the Jacobian matrices, typically a singular-
value decomposition (SVD) [BenIsrael 03] or, a little bit more e�cient, a complete orthogonal
decomposition (COD) [Golub 96]:

A =
[

V U
]

[

0 0
L 0

]

[

Y Z
]T

(4.12)

where
[

Y Z
]

and
[

U V
]

are two bases of respectively the input and the output space and
L is a square invertible matrix that carries all the information of A. It is easily deduced that
Z is a basis of the null space of A while U is a basis of the range space. A SVD will produce
a diagonal L (whose components are the singular values) while a COD produces a triangular
L. The pseudoinverse of A is then:

A+ =
[

Y Z
]

[

0 0
L−1 0

]

[

V U
]T

= Y L−1UT (4.13)
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Decomposition of several levels: We have de�ned a decomposition associated to the
hierarchical structure of the problem, named hierarchical complete orthogonal decomposition
(HCOD). It is de�ned by:
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[

Y1 . . . Yp Zp

]T
(4.14)

where each Wi =
[

Vi Ui

]

is a basis of the output space of each Ai, Y =
[

Y1 . . . Yp Zp

]

is a basis of the input space such that
[

Yi+1 . . . Yp Zp

]

is a basis of the null space of Ai

(and then Zp is a basis of the remaining null space of the hierarchy) and each Li is triangular
invertible.

Intuition: Each Yi describes the DOF that can be used to satisfy level i. Zp are the
remaining DOF that are not used by any level.

The terms

[

Ni

Mi

]

represents the couplings between the level i and all the previous lev-

els. More speci�cally, the row Ni, which corresponds to a null component on the column
corresponding to Yi, is the part of the task that cannot be accomplished. If Ni is null, this
singularity is not coupled to any other task: it is a kinematic singularity [Chiaverini 97], i.e.
a singularity that is due to the intrinsic structure of the task. If Ni is not null, there is a
coupling with upper-priority tasks that explains the singularity: the singularity is algorithmic
[Chiaverini 97], i.e. is due to a con�ict with the hierarchy.

For each level, Wi partitioned the output space in two: Ui is a basis of the range space, i.e.
the accessible space. Vi is a basis of the space that cannot be reached, and the corresponding
part of the task V T

i bi will not be performed.

Inversion: The HCOD emphasizes the hierarchical structure of the problem. Solving the
hierarchy is now simply a matter of inverting the Li. The solution to the HQP is given by:

x∗ =
[

Y1 . . . Yp
]

y∗
p

(4.15)

where y∗
p
is recursively de�ned:

y∗
i
=

[

y∗
i−1

L−1
i (UT

i bi −Miy
∗
i−1

)

]

(4.16)

with y
0
the empty vector.

Comparing (4.16) to (4.11), L−1
i UT

i stands for (AiPi−1)
+ while Miyi−1

stands for Jixi−1.
The combination was done using a sum in (4.11) while each level is stacked in (4.16) (the sum
then comes from the multiplication with the Y basis).
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The HCOD is a decomposition that arises naturally when considering the iterative de-
compositions to compute the optimum of a HQP. The optimum is then simply computed by
inverting the core of the decomposition. The optimum is �nally computed using a scheme
that, behind the appearances, is very similar to the classical one.

The improved performances are achieved by avoiding to explicitly compute the projec-
tors at each level and by keeping the same basis Y to execute all the computations of the
inverse (4.16).

Moreover, the structure of both the HCOD and the optimum (4.16) are interesting by the
fact that they emphasize the internal structure of the problem. For example, the Ni reveal
the internal couplings, the Ui, Vi separation gives an understanding of the infeasible part of
the task, while the y∗i indicate which level is asking for some high value of the optimum. This
structure can be used to understand a particular HQP and to make some automatic diagnostic
on the system.

4.2.3 Inequality hierarchical quadratic program

Active-search algorithm is a class of algorithms to solve a QP subject to inequality constraints.
It tries to guess which subset of the inequality constraints hold as equalities at the optimum.
This subset is called the active set. The algorithm starts with an initial guess of the active
set. At each iteration, it solves the equality-only QP obtained by considering only the active
constraints as equalities. From the solution obtained from this sub QP, a modi�cation is done
on the active set. The algorithm then iterates until the optimal active search is found, for
which the associated equality QP gives the optimum of the inequality QP. Proof of convergence
of the active-search loop can be given [Boyd 04].

We have adapted the classical active-search algorithm to solve the HQP (4.10). The
algorithm works similarly, by computing at each iteration the optimum of the associated
equality-only HQP using (4.15). The Lagrange multipliers, which correspond to the optimum
of the dual problem, also have to be computed at each iteration. A proof of convergence
of the active-search loop is given by construction. An alternative proof was proposed by P-
B. Wieber using the lexicographic inherent structure of the hierarchy, based on the work of
[Isermann 82] for hierarchical linear programs.

4.2.4 Properties and results

The cost of the equality-only HQP resolution is about n3 with n the dimension of the variable
x, that is to say similar to the cost of a QP of the same size. The HQP resolution can also be
shown to be continuous with respect to the evolution of problem de�nition Ai, bi, outside of
the singular regions. Finally, the resulting control scheme in inverse kinematics can be shown
stable despite the activation of constraints and asymptotically stable when enough DOF are
available (no surprise indeed).

Comparison between the equality-only HQP solver (4.15) and the classical (4.11) have
been done. A rough summary is given in Fig. 4.3. More details are available in [4]. As
expected, the classical (4.11) is slower. More surprising, for problems of similar size, the cost
increases when few levels are set. This can be understood when looking at the structure of
the HCOD: to obtain a full COD (or when one single level is set), the Ni should be converted
to 0 using additional transformations in Y , which increases the cost.
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Figure 4.3 � Comparison of the cost using a SVD and (4.11) (left) and a HCOD (right)
to invert an equality-only HQP. The measures are done on a random set of HQP problems,
where the size (number of rows, columns and total rank) are constant but where the number
p of levels di�ers. The cost is plotted with respect to p. In red is the total cost, while blue is
the cost spent in the decomposition computation and in yellow (behind the blue dots in the left
plot) is the inversion. The HCOD is up to �ve times faster. Moreover, for both methods, the
cost increases for small p.

A similar comparison in the case of inequalities has been done between cascades of QP
and HQP in Fig. 4.4. The cascade structure disturbs the active-search loop, that has to acti-
vate and inactivate several times the same constraint before converging, while the hierarchical
active search is not disturb. The small overhead when p increases might be due to implemen-
tation problems or increased cost due to the computation of the Lagrange multipliers.

The HQP solver has been widely used to generate motions on the HRP-2 robot in various
contexts. A very typical example of inverse kinematics using both equalities and inequalities
is summarized by Fig. 4.5. The considered tasks are (in hierarchical order) the joint limits
(≤), the COM inside the support polygon (≤), the feet on the ground (=), the reaching (=),
the FOV (≤) and �nally, a task keeping the COM on a small area in the center of the feet
(≤). The �nal con�gurations for various ball positions are given in Fig. 4.5. Other examples
in inverse dynamics are discussed in Chapter 6.

The typical computation cost for the robot HRP-2 (36 DOF) is about 0.1ms when only
equalities are considered and 2ms for a complete active search of 100 constraints.

4.3 Damping

The obtained HQP solver is very satisfying in term of performances and expressivity. However,
the solver is also very accurate, which means that for highly ill-conditioned problems, it will
doubtlessly answer with very high-value control. This is not acceptable in robotics (!), where
we generally do not want to apply a 1015rad/s velocity on the robot joints because the target
to grasp is 1cm too far from the robot. In fact, a proper description of a hierarchical solver
would be:
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Figure 4.4 � Comparison of the cost for solving inequality HQP using a cascade of QP or
a HQP with hierarchical active search. The cost in milliseconds is plotted on the left, and in
number of iteration in the active-search loop on the right. As in Fig. 4.3, a random set of
HQP has been built with similar size but varying number of levels p. The cost increases with
p when using cascade while it remains nearly constant using the HQP.

(t=2s) Ball in front (t=5s) Far left (t=7s) Front (t=10.4s) Far right

Figure 4.5 � Snapshots of the robot motion and corresponding COM projection (blue point)
in the support polygon. Each snapshot is captured at the end of a motion sequence. The FOV
is displayed by the 4 lines passing by the center of the image projection. When the ball is in
front, the robot reaches it while keeping it inside the FOV and keeping the COM in the central
support area. On the far left, the FOV is kept but the COM has to leave the center of the
support. On the far right, both the centering of the COM and the FOV are lost.
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Hierarchical quadratic programming

A. Escande, N. Mansard, P-B. Wieber

Submitted to International Journal of Robotics Research in Oct. 2012 [4]

Context:
This paper was written in close collaboration with A. Escande and P-B. Wieber. The
original idea, proposed in the ANR JCJC R-Blink project, is to open the quadratic
solver black-box and adapt the machinery to multi-objective programing. The journal
submission follows an IEEE ICRA paper [28].

Motivations:
The pseudo-inverse, used in most of the task-function-based works, gives the solution of
an implicit least-square quadratic program. When considering only one task, it is then
straight-forward to take into account some inequality constraints, such as an obstacle or
joint position and velocity limits. The extension to a hierarchy of tasks is not immediate
and was proposed in [Kanoun 09b], by using a set of quadratic program in cascade. This
formally de�nes the hierarchical quadratic problem and gives a naive resolution scheme
that is very slow. This paper proposed to �nd an e�cient resolution scheme to the
cascade of quadratic problems.

Approach:
The study �rst focuses on equality-only quadratic program and proposes an e�cient
resolution method based on a dedicated extension of the matrix complete decomposition
classically used to compute the pseudo inverse. The method is �ve times faster than the
classical concurrent solution to solve a hierarchical quadratic program.
An active search dedicated to the hierarchical structure is then proposed to take into
account a hierarchy of both equality and inequality. The solution avoids the problem of
multiple activation and deactivation generally encountered with cascade of solvers. It is
also much faster and straightforward to adapt to real-time constraints.
Incidental results are also given to prove the complexity, the continuity and the stability.

Results and contributions:
The dedicated solver is �ve times faster than the classical methods when considering
only equalities. The inequality active search implies three times more computations than
the equality solver, which keeps a computation cost admissible for closed-loop control.
Experimentally, we also shown that considering a hierarchy simpli�es the equality prob-
lem resolution and implies a very light extra cost when considering inequalities. Several
example of use with the HRP-2 models are also given.

Limitations and perspectives:
It is di�cult to damp the obtained solver: the classical Tikhonov regularization does not
seems to be compatible with the active-search loop.
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• apply at best the top priority objectives

• except if they are stupid, in that case do not consider them.

Of course, this notion of stupid has to be written as mathematical property to be handle by
the solver. A classical solution for one task is to consider stupid to be equivalent to very
high values of the optimum. In that case, a damping term is added to penalize high values.
Problem (4.7) becomes:

min
x

||A1x− b1||2 + η||x||2 (4.17)

However, we are not able yet to propose an extension of this regularization to a inequality
HQP. In particular, we did not �nd yet a good solution to take into account the regularization
in the active-search loop. The damping can always be applied at the least-priority level. A
practical solution is then to put all the tasks that might come to singularity in the least-priority
level, and damp them to prevent any numerical problem during the inversion.

The problem of damping is closely related to the problem of continuously sequencing two
set of tasks, and will be discussed in the next chapter.

4.4 Conclusion

In this chapter, we have proposed two solutions to handle inequalities inside a hierarchy
of tasks. The �rst solution can only consider con�guration-based inequalities (joint limits,
obstacle but not actuator limits) and is computationally very expensive. However, it produces
a very smooth behavior and is very easy to implement. It could be an interesting solution for
simple systems or for smoothing a sequence of tasks (see next chapter). The second solution
is based on active-search algorithms. It is very e�cient (1kHz whole-body control is possible
with HRP-2, which has never been done anywhere before). However, we did not �nd yet a
good solution to use the classical damping term in this context. Therefore, it is sensible to the
proximity of singularity and might not be safe to apply to control the physical robot. In the
particular case where the singular task is at the least-priority level, a proper regularization is
still possible.

No complete method is available yet, but the second approach is very close to come to
a complete method and has already been applied in various contexts (see Chapter 12 for
example). Many exciting perspectives arise from the results obtained here. Perspectives
coming from direct applications are developed in the next two chapters. In particular, we
had only the opportunity to validate the solver on humanoid robots and avatar, while it
seems very suitable for example for team of �xed manipulators cooperating to assemble an
object. Concerning the hierarchical problem formulation and resolution, the extension to
more complex classes of numerical problems is very appealing. In particular, the extension to
conic problems is very interesting for robotics modeling [Boyd 07, Wensing 13].

Inverse kinematics (and similarly, inverse dynamics) implies a linear approximation of the
system dynamics, which is introduced to reduce the computation cost and to reach compu-
tation rate needed to control in real-time a complex robot. The instantaneous linearization
also hides an important complexity carried by the future robot trajectory. However, in many
setups, it is not possible to hide this complexity and the optimal control problem has to be
considered at some point. In particular, to stabilize the humanoid balance, the conditions have
to be written over the future trajectory of the system and does not survive to the linearization.
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For walking, the robot typically follow a trajectory in the COM space, which is computed
by solving an optimal control problem on a reduced-dynamics system, using model-predictive
control (MPC). The two problems (inverse kinematics handling the spatial dimension of the
system and walking pattern generation handling the temporal dimension of the system) are
yet arti�cially decoupled for computational reasons. The insertion of the balance MPC within
the whole body solver will be mandatory in the future.



Chapter 5

Continuity

D
uring the execution of a given set of tasks, the inverse-based control schemes presented in
the previous chapter are continuous with respect to time. However, the continuity is not

ensured when the set of tasks is changed, when a task is added, removed or when the priority
between two tasks is swapped. This chapter proposes some solutions to enforce the continuity
of the control law at the transitions of a task sequence. We �rst give the foundations of the
problem in Section 5.1 and give a �rst complete theoretical solution in Section 5.2. However,
this solution is not compatible with the damping and cannot be applied in practice. Two
practical solutions are then proposed in Section 5.3.

5.1 Bases

The control laws presented before, (3.26) for example, are discretized during the integration
by the robot, the simulator or the motion planner. The continuity of the discrete sequence of
q̇ is not a relevant property. Two properties can be used to properly characterize the control.
The continuity of the support function t → q̇(t) can be discussed; or the rate of change
between two samples of the sequence can be considered.

Continuous support function

The continuity of the support function does not ensure by itself any property on the rate of
change between two samples. The Lipschitz continuity should rather be considered. However,
when considering the continuity at a �nite set of transition points, the frequency of the
inherent task variations is generally considered negligible compared to the transition frequency.
Therefore, if the function used to smooth the transition is su�ciently continuous, it is generally
considered that the resulting properties on the discrete rate of change are satisfying. Moreover,
a small discrete rate of change does not ensure a good behavior. When the continuity of the
supporting function is not ensured, I often empirically notice that even a small rate of change
can lead to oscillations around the transition border (see e.g. Fig. 4.1).
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Bounded rate of change

The rate of change can be limited by adding an inequality to the QP, typically:

min
q̇

||Jq̇ − ė∗|| (5.1)

subject to δt q̈ ≤ q̇ − q̇t−δt ≤ δt q̈

where q̇t−δt is the measured velocity at the previous cycle, δt is the sampling interval and q̈, q̈
are the bounds on the rate of change.

The bounds are imposed on each component of q̇. The constraint is thus a small box
(scale factor δt) around the previous control. If the unconstrained optimum suddenly jumps
due to a transition, the small box will slowly move from the control before the transition to
the control after the transition. By tuning the size of the box, the rate of change and the
duration of the transition is controlled.

The constraint is a bound on the QP variables. A similar bound is imposed to enforce the
joint limits, but with a 1

δt factor rather than a δt factor. A bound on the velocity (factor 1)
can also be added to enforce the maximal velocity. Together with the bounds on the position
and on the acceleration, it can also be seen as a dual way to damp the system [Maes 10].

A problem can be expected during the resolution: due to the size of the box in which
the optimum is constrained, the solution would likely occurs at one corner of the box. The
active search would then have to search for the proper corner of the box. Poor performances
are expected since the active search is not well �tted for such a discrete search. Moreover,
small changes of the unconstrained optimum would make the solution jump from one corner
to the other, increasing the cost on several iterations. Moreover, the numerical behavior of
the algorithm would also be problematic if such jumps frequently occur.

Instead of a box, the solution can be constrained into a ball:

||q̇ − q̇t−δt|| ≤ δt q̈ (5.2)

The constraint is not linear anymore but quadratic. It can be solved by a quadratic-
constrained quadratic-problem solver [Anjos 12]. It would typically be written under a conic
shape and solved by a conic-problem solver. The extension of the work presented in this thesis
to conic formulation is one of the interesting technical perspectives. Conic problems are a
simple generalization of linear problems. A very informative constructive formulation is given
in [Nemirovski 94]. See [Boyd 07, Wensing 13] for application in robotics. However, if the
problem structures are similar, active-search algorithm cannot be applied to conic problems.
The solvers rather use interior-point methods. Extension to hierarchical problems should be
feasible, using the HQP as the internal linear solver of the interior-point algorithm. However,
it is still a long development to do.

In this chapter, we only consider the continuity of the support function and use smooth
slowly-varying transition functions. Bounding the rate of change is de�nitely an appealing
solution, for which we already see some problems but that deserves a try. This will be let as
a perspective.
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Figure 5.1 � Removal as a swap operation. (a) Any hierarchy e1 .. ep is implicitly accounting
for an implicit least-norm task after the last level. (b) The least-priority level ep is swapped
with the implicit least-norm task. This is equivalent to remove ep. (c) The task ep with a
priority lower than the least-norm task has no in�uence on the optimum. The task ep is
actually removed from the hierarchy and the stack (c) is equivalent to the stack containing the
p− 1 �rst tasks.

5.2 Theory

Reference paper [22] (see also [8, 14, 34, 45, 61])

Three operations can lead to discontinuities: introducing a task, removing a task and
swapping the priority between two tasks. Examples of discontinuities in each case are given
in [8].

Discontinuity intuitions: The discontinuity at the insertion of a task (e, J, ė∗) is the
easiest one to explain: the velocity in the task space e before the insertion is Jq̇ and after
the insertion is ė∗. It is also the easiest one to smooth [45]: a transition is added in the task
space between the velocity before the insertion and the velocity after the insertion, using for
example a second-order di�erential equation on ë∗ [Soueres 03]. If the task is inserted with
a higher priority than an incompatible task, a discontinuity also appears in the con�icting
spaces.

Similarly, the discontinuity at the removal is easy to understand. It is more di�cult
to smooth since the velocity after the removal is not computed and is varying during the
transition due to the non linearities (variations of J) and the evolutions of the other tasks.

The discontinuities of the swap are due to the reallocation of the con�icting DOF from
the task having priority before the swap to the task having priority after the swap.

Swap as the common factor: Rather than trying to �nd a solution to smooth each cases,
it was proposed in [22] to take the three operations back to the swap. Indeed, among the
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possible optima of a given HQP, the least-norm one is always chosen1. This is equivalent to
consider that at the least-priority level, a task tries to bring the velocity to zero. This implicit
last level is called the least-norm task. Consider a hierarchy of p tasks (the least-norm task
is at level p + 1). Swapping task p with the least-norm task is equivalent to remove it (see
Fig. 5.1). Inserting a new task ep+1 after the least-norm task and then swapping the priority
between these two tasks is equivalent to inserting ep+1. Then inserting or removing a task at
any level of priority can be achieved by several swaps.

Therefore, if the swap operation can be achieved in a continuous manner, the continuous
insertion and removal can be achieved by combining smooth swaps. We can now consider a
reduced problem where the hierarchy is composed of only two tasks to be swapped.

Smooth swaps: The hierarchy is known to be obtained when the weight ratio of a weighted
sum reaches the limit. Consider the least-square optimum of the following weight-sum QP:

q̇∗ρ(ρA, ρB) = min
q̇

ρa||JAq̇ − ė∗A||2 + ρb||JB q̇ − ė∗B||2 (5.3)

The hierarchy eA ≺ eB (denoted q̇∗A|B) is obtained when ρA is in�nitely higher than ρB
and reciprocally:

q̇∗A|B = lim
ρB/ρA→0

q̇∗ρ(ρA, ρB) (5.4)

q̇∗B|A = lim
ρB/ρA→+∞

q̇∗ρ(ρA, ρB) (5.5)

The continuous swap can then be achieved by continuously varying the weight ratio. For
example, the function h → q̇∗ρ(−log(h),−log(1 − h)) continuously varies from q̇A|B when h
tends toward 0 to q̇B|A when h tends toward 1. The transition is then performed by moving
h from 0 to 1.

When both tasks are compatible, q̇∗A|B = q̇∗B|A, the weights have no in�uence and the
transition can be instantaneous without discontinuity.

5.3 Practice

Reference papers [8, 22] (see also [25, 34, 12])

5.3.1 Damping

In practice, a damping factor is always added to regularize the QP close to singular regions.
The QP during the transition is then written:

min
q̇

ρa||JAq̇ − ė∗A||2 + ρb||JB q̇ − ė∗B||2 + η||q̇||2 (5.6)

where η is the damping parameter (typically η = 10−2).
The optimum of this QP does not tends toward the optimum of a hierarchy containing eA

and eB. Indeed, when ρA is much smaller than η, the term A is numerically removed from

1This is due to the use of the pseudo-inverse, also called least-square inverse and clearly appears when
considering the HCOD in (4.14)
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Analysis of the discontinuities in prioritized tasks-space control
under discreet task scheduling operations

F. Keith, P-B. Wieber, N. Mansard, A. Kheddar
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IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS'11) [22]

Context:
This paper was written during the PhD of F. Keith in collaboration with P-B. Wieber.

Motivations:
Smoothing the control law at the transitions of a task sequence is a classical problem.
However, few strong solutions have been proposed because, in practice, the physical
motors of the robot are acting as a low-pass �lter that is doing most of the smoothing.
The limitation of the previous approaches was revealed while using a numerical solver to
optimize the parameters of a task sequence. Discontinuities in the control law correspond
to irregular points that reduces the convergence rate of the solver. The following method
was proposed as a generic solution to the task-sequence smoothing problem, and more
speci�cally validated in the context of optimizing a sequence of tasks.

Approach:
The problem of insertion and removal of one element from a stack of tasks is �rst reduced
to the problem of swapping the priorities. Insertion is then equivalent to swapping the
new task with the least-square objectives that implicitly occupy the lowest priority of the
stack. The continuity can then be studied on a two-levels stack.
The hierarchy between the two levels is known to be equivalent to the limit of a weighted
sum of the two tasks where the ratio between the weights are going to zero or to in�nity.
Inverting the priority is then obtained by smoothly inverting the weight ratio.

Results and contributions:
The method is a clean formulation of the task-sequence smoothing problem. It clearly de-
�nes the process in terms of optimization objectives and gives properties on the behavior
during the transition.

Limitations and perspectives:
The method is not compatible with the classical damping solutions used to regularize a
hierarchical problem close to singular regions. In that case, another solution is proposed,
but it is not properly formalized as an optimization problem and cannot ensure any
theoretical property (apart from the continuity) during the transition. Moreover, it then
would not be possible to adapt it to a proper HQP solver. Hierarchical programming
with damping and continuity at transition is still an open topic.
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the sum and eA is not taken into account any more. Experimental evidences of this e�ect are
given in [22].

Once more, we have a solution that is properly written and ensures all the required prop-
erties, but that we cannot regularize in the neighborhood of singularities.

In fact, the damping process is very closely related to the continuity. First, removing a
task by swapping it with the implicit least-norm task is equivalent to increasing the damping
factor of this task to the in�nity. On the dual hand, the damping can be seen as a way to
smooth the transition through the singularity border.

Moreover, we have considered with P-B. Wieber the possibility to damp a task not by
the classical η||q̇||2 but using the next task through a term η||J2q̇ − e2||2. This takes the
hierarchy back to a weighted sum without the numerical problems due to large weight ratios.
If this solution does solve totally the problem of automatic regularization (in particular, two
decoupled tasks cannot be used to regularize each other), it would correspond exactly to the
formalization of the continuity problem presented above.

In conclusion, we have a solution to enforce the continuity at task transitions if and only
if we have a solution to ensure the continuity when coming across a singularity. This solution
is not completely functional yet. Two practical alternatives have then be proposed.

5.3.2 First practical method

In [22], it was proposed to enforce the transition during a swap by using an explicit homotopy
between the optimum computed for the two hierarchical orders:

q̇(h) = f(h)q̇∗A|B + f(1− h)q̇∗B|A (5.7)

with h the transition parameter varying from 0 to 1 and f : h → f(h) any continuous strictly
monotonic function from f(0) = 0 to f(1) = 1 (e.g. x → x).

The swap (5.7) is for a two-tasks hierarchy. The insertion of a task at a given priority
level is realized by successive swaps: the task goes down to its rank (following the bubble-sort
principle). Two tasks can be successively inserted but their swaps cannot overlap: a delay (of
the duration of one swap) after the beginning of an insertion is enforced. For the same reason,
a task cannot be removed while a task is inserted to avoid that two bubbles cross each other.

The continuity is enforced with a very low computation overhead. Experimental results
can be found in [22].

5.3.3 Second practical method

We simultaneously worked with J. Park to apply the generic solution proposed in [12] and
described in Chapter 4 to the speci�c continuity problem. The idea is to perform an homotopy
between the stack with and without the task to be inserted, or between the two orders before
and after the swap. Of course, the homotopy can be extended to handle several simultaneous
operations.

A comparison between the two methods is summarized in Fig. 5.2. During simultaneous
operations, the �rst method composes several local homotopies while the second method
uses one large homotopy handling all the cases. The second method is thus more expensive.
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Figure 5.2 � Comparison between the two practical methods for two simultaneous swaps.
(left) First method: the homotopy is performed between each order of the two levels B/C
and E/F. (right) Second method: the homotopy is performed between every possible orders of
B/C/E/F. For several simultaneous swaps, the �rst method is more e�cient, but the second
method can be used to directly introduce a task at any priority level.

However, it is able to handle directly insertion at and removal from any level, and does not
introduce any delay between two operations. Moreover, an approximation called one-path
approach was proposed to lower the cost if too many operations occur at the same time.

5.4 Conclusion

The continuity problem is well de�ned using a continuous variation of weight to a ratio limit.
However, due to the lack of a good solution to automatically regularize the numerical problem
close to singular regions, we are not able to propose a solution that handles the continuity
during task transitions and provides a good robustness to singularities. We have some elements
to believe that the proposed solution will be su�cient if a proper damping is established. In
the meantime, two practical methods have been proposed that can be applied to actually
smooth any transitions.

A complete solution to the continuity problem �nally relies on the problem of �nding
a proper automatic regularization of the numerical problems encountered in robotics, the
so-called damping problem described in the previous chapter.
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Intermediate desired value approach for task transition of robots
in kinematic control

J. Lee, J. Park, N. Mansard

Controlled point

Desired position

Joint limit

IEEE Transaction on Robotics, 2012 [8]

Context:
The paper comes from the work about the continuity realized at Stanford [12]. The initial
formulation immediately interested J. Park (post-doc in O. Khatib's team at that time)
for smoothing the control law at the beginning of a task. The work was then completed
during the Master Thesis of J. Lee, in Korea.

Motivations:
The smoothing of varying-dimension tasks, proposed �rst for activation and deactivation
of inequality constraints, can be directly adapted for activation and deactivation during
a task sequence. The trigger is then parametrized by the time instead of the robot
con�guration.

Approach:
The paper �rst proposes to use directly the results of [12]. To reduce the computation
cost, an approximation called �one-path approach� is then proposed. A strong experi-
mental study in various contexts concludes the paper.

Results and contributions:
The paper gives a complete solution of the problem of the continuity at task insertion.
The solution is easy to apply. The complexity in extreme cases is reduced by the approx-
imation.

Limitations and perspectives:
The method is not compatible with the work about quadratic programming [4] and cannot
comprehend inequality constraints.



Chapter 6

Dynamics

T
he motion-generation formulations proposed in the previous chapters only consider the
geometry of the robot. The dynamics is now added. For humanoid robots, this is critical,

since the robot balance is depending on its dynamics. Inverse dynamics increases a lot the
size of the numerical problems to consider. A �rst part of our work, discussed in Section 6.1
focuses on the formulation of the problem, in order to take into account all the modalities of
the humanoid robots while keeping a reasonable computation cost. In particular, a reduction
of the hierarchical problem is proposed in Section 6.2 to enable 200Hz computations. The
main objective is to apply it as a closed-loop control scheme on the real robot. This is still
an open work, as it will be discussed in Section 6.3.

6.1 Problem formulation

Reference papers [6, 24] (see also [18, 19, 21, 47])

6.1.1 Simple manipulator

For a fully-actuated manipulator robot, the dynamics of the system can be written:

A(q)q̈ + b(q, q̇) = τ (6.1)

where A is the generalized inertia matrix of the system, b is the dynamic drift composed of
Coriolis forces and gravity and τ is the vector of the joint torques that have to be produced by
the motors. A is positive de�nite thus invertible. The equation can also be written the other
way around i.e. computing q̈ with respect to τ . This way is called the inverse dynamics. τ is
generally considered as the control input to be provided to the motor for low-level regulation.
In that case, q̈ is a reference acceleration. It can be computed by (second order) inverse
kinematics, starting from the derivative of the direct kinematics:

Jq̈ = ë− J̇ q̇ (6.2)
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This equation has the same structure as (3.15): v = Gu+ µ with v the task evolution, u
the system input, G the di�erential map between v and u and µ an intrinsic drift that has to
be estimated and compensated. The inversion has the same shape as (3.16):

q̈ = J+(ë∗ − J̇ q̇) (6.3)

from which τ can be deduced.
Both q̈ and τ are variables of the system that are coupled by (6.1). They are computed

above by a cascade of two steps that are decoupled thanks to A being invertible. However, if
some constraints are imposed on τ (actuation limits or underactuation), they will also indi-
rectly constrain q̈. It is thus more interesting to consider the inversion of both the kinematics
and dynamics in a same problem:

min
q̈,τ

||Jq̈ − ë∗ + J̇ q̇|| (6.4)

subject to Aq̈ + b = τ

When J is not full-column rank, redundancy on q̈ and τ can be exploited. Rather than
imposing a least norm on one or both variables, it is often proposed to comply with Gauss's
principle that states that the system is the closest to the evolution of the unconstrained
system, i.e. that

q̈ = −A−1b (6.5)

[Bruyninckx 00]. This is equivalent to impose a least pseudo energy q̈TAq̈ = τTA−1τ [Park 06a].
When no additional constraints are considered, the solution of the system is obtained by:

τ∗ = (JA−1)#A(ë∗ − J̇ q̇) + b = JT f∗ + b (6.6)

q̈∗ = J#A−1

(ë∗ − J̇ q̇) (6.7)

with f∗ = Λ(ë∗ − J̇ q̇) and Λ = (JA−1JT )+ is the equivalent inertia in the task space. The
�rst equation is interesting because of its similitude with the action of a force f acting on
the robot body: both f and the equivalent inertia times acceleration Λẍ produce the same
torques, for the task function being the application point position e = x. This is called
dynamical consistency [Khatib 87]. The second equality is interesting because it is evidently
the optimum of (6.4), with a particular choice of the weighting of J . Both optima are coupled
since AJ#A−1

= (JA−1)#A.

6.1.2 Humanoid robot

The dynamics of the humanoid robot generally considers two additional terms. First, the
robot is underactuated. Rather than imposing a part of the torque vector to be zero, the
torques are often reduced to ST τ (where S = [0 I] is the selection matrix of the actuated
DOF). Second, the robot is in contact with the environment. The contact forces have also
to be accounted as variables of the system, like the torques and the acceleration. Indeed,
due to Newton reaction law, the robot decides which are the environment forces at the same
time it decides what are the joint torques. Of course, the relation depends on the interaction
model (whether the robot is contacting a rigid surface or a damper). Force sensors measure
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the application of the chosen forces at the previous control cycle and can be used to update
the interaction model [Park 06b].

The dynamics of the humanoid robot subject to rigid contacts is �nally:

A(q)q̈ + b(q, q̇) = ST τ + JT
c fc (6.8)

Jcq̈ + J̇cq̇ = 0 (6.9)

with
fc ∈ Cf (6.10)

The forces fc are applied by the environment on the robot contact points xc, whose Jaco-
bians with respect to the robot con�guration are denoted by Jc. The forces are constrained
to be inside the contact cones Cf while the contact points are not moving due to the rigid
contact hypothesis. When several contact points arise, the Jc and fc are stacked and keep
the same shape in the equation.

Due to the cones, the equations are not linear but conic. The cones can be linearized by
considering a polyhedron approximation with a �nite set of facets [Bouyarmane 11b]; or more
roughly, the cone can be approximated to the half space:

f⊥
c ≥ 0 (6.11)

This second hypothesis is used below for two reasons. First, HRP-2 is experimentally
rarely sliding. We only consider enough friction to prevent any slides in open loop. Second,
the linearized cones are very expensive to consider, while this cost is very arti�cial. Indeed,
the original conic constraint is very simple, cheap to check and to enforce inside a conic solver.
We prefer yet to keep a low computation cost with half-space approximation, and to use a
real conic solver if the cones become an issue.

6.1.3 Problem resolution

We �nally consider the resolution of a set of tasks e1, ... , ep and of c1 ... ck contact points.
The HQP problem is written:

lsprox
q̈,τ,fc

(6.12#dyn) ≺ (6.12#f) ≺ (6.12#c) ≺ (6.12#e1) ≺ · · · ≺ (6.12#ep) ≺ (6.12#v)

(6.12)

subject to q̈ = −Kv q̇ (6.12#v)

Jpq̈ = ë∗p − J̇pq̇ (6.12#ep)

...

J1q̈ = ë∗1 − J̇1q̇ (6.12#e1)

Jcq̈ = −J̇cq̇ (6.12#c)

f⊥
c ≥ 0 (6.12#f)

Aq̈ + b = ST τ +
k

∑

c=1

Jcfc (6.12#dyn)
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Only τ is needed for the control. However, this explicit formulation computes the value of
q̈ and fc as well. The last level is a friction term. It is required by the task-function approach
to ensure that the control law is stable [Samson 91]. When the system is intrinsically stable
(for example, when intrinsic joint friction stabilizes the control), this last level can be replaced
by the Gauss's criteria (6.5).

In [6], we have reduced the number of force variables by considering the sum of all forces
and torques on each body in contact rather than the contact forces individually. The criteria
(6.12#f) can also be brought back to the classical (zero-moment point) ZMP constraint when
all the contact points are on a same horizontal plane.

6.2 Condensation

Reference paper [17]

The system (6.12) is very large: for HRP-2 with two feet on the ground, it is typically
90 variables, 90 equality constraints, 10 inequality and 20 to 40 task constraints. Moreover,
the constraints (6.12#c) and (6.12#f) due to the dynamics might be ill conditioned. A
typical example of the chimney climber is given on Fig. 6.1. Such a conditioning problem is
typical of robotics: they represent a real physical e�ect that is impossible to achieve with the
characteristics of our systems. They can be simply isolated by cutting the too small singular
values. However, it is not so easy to do inside the HQP solver, that imposes its own threshold.

To both reduce the size of the system and avoid the side e�ects of the small singular values,
the HQP (6.12) is condensed beforehand in a dynamically-consistent manner. Basically, the
idea is to change the variables q̈, τ, fc into two new decoupled variables u the free motion
and φ the free actuation. The motion u is free of any constraint while the actuation φ is
only subject to the bound limitations (positive forces and limited torques). If no joint torque
limitations have to be considered (the robot is a priori powerful enough for a given motion),
this constraint and the corresponding variables could be reduced once more by projecting all
the cones (or half spaces) at a central point [Bretl 08]. The details of the condensation are
given in [17].

A typical example of use is the motion standing lotus, performed from motion capture
data. The considered tasks are the position of the hands, the orientation of the head, the
posture and, during single support phases, the position and orientation of the �ying foot.
The measured computation times are summarized on Fig. 6.2. Basically, the time spent in
the solver is reduced from 25ms to 5ms by using the condensation. The �nally obtained
computation times are smaller than the classical methods for example using the formulation
given in [Sentis 07]. In total, the cost of the inverse dynamics for HRP-2 is around 5ms thus
nearly fast enough for application in real time on the robot. This is much faster than our
implementation of [Sentis 07]. In [de Lasa 10], times below 1ms were achieved on a very strong
computer (typically used in graphical animation but not possible to embed on a humanoid
with a realistic setup). We did not yet experimentally compare the two schemes. A �rst
comparison was performed in inverse kinematics (see Chapter 4 and [4] for details) that gives
close computation times with a small advantage for our approach and a much better numeric
behavior. The condensation should increase the advantage but should be measured.
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Dynamic whole-body motion generation
under rigid contacts and other unilateral constraints

L. Saab, O. Ramos, F. Keith, N.Mansard, P. Souères, J-Y. Fourquet

IEEE Transactions on Robotics [6]

Context:
This is one of the two papers written during L. Saab thesis, who worked on the generation
of motion of anthropomorphic systems for ergonomics and virtual prototyping.

Motivations:
Task-based motion generation enables fast development of whole-body movements. When
accounting only for the geometry of the system, the movements are very rough. This is
especially true when generating human-plausible motions. The inverse-dynamics solver
was developed to generate dynamically-consistent movement from a hierarchy of tasks.

Approach:
The motion generator is based on the HQP solver [4]. The variables are the contact forces
and joint torques and accelerations. These variables must ful�ll the dynamics equation
and satisfy the given contact model (only rigid contact was tested yet). When all the
contact points are included in a horizontal plane, the contact constraint is equivalent to
the classical ZMP constraint. The tasks are �nally introduced in the solver by imposing
the acceleration in the operational space to be equal to a speci�ed value.

Results and contributions:
The solver was used to generate fast motions with HRP-2, large upper-body motion
during the walk and multi-contact motion (like using the armrests to sit in a chair). It
was also broadly used to generate the Novela dance show from motion-capture data [2].
The motions produced with this solver are much easier to apply on the physical robot
(since they comply with the true dynamics). Some preliminary results were also obtained
for human-plausible movements [7].

Limitations and perspectives:
The major perspective is the real-time application to control the physical robot. The
dynamics solver is slow and subject to numerical ill conditioning. These problems should
be addressed before applying it in closed loop on the real robot and a �rst proposition
was done in [17], which in turn revealed some other perspectives.
Taking into account the dynamics means that the solver also takes into account the
intrinsic instability of the biped robot. The ZMP-like constraint is not su�cient to avoid
the unstable mode since it does not apprehend the future. Preview control must be linked
with the whole-body computations to handle it.
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Figure 6.1 � The chimney climber ill-conditioning: when both feet have a very small respective
orientation angle, a force opposition e�ect appears that can be strongly used to maintain the
balance. The same numerical e�ect exists with very large angles, but is not relevant on a
mechanical point of view. However, the solver will equivalently use this e�ect in both cases,
leading to very high (typically 108N) internal forces.
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Figure 6.2 � Experiment B: formulation time (bold) and solver time (non-bold). Three
solvers are compared. [RED] the reduced HQP-based inverse dynamics proposed in [17]; [HQP]
the extensive HQP-based inverse dynamics proposed in [6]; [PINV] a more classical pseudo-
inverse-based dynamics inverse similar to [Sentis 07] (that does not handle the unilateral force
constraint. [HQP] is the more expensive with a very constant cost. [PINV] cost is shared be-
tween the formulation (contact projector computation) and the inversion itself. The repartition
of the cost varies with the number of contacts. [RED] is the more e�cient, with around 4ms
per control cycle. The variation of the HQP resolution comes from the active search.
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A dedicated solver
for fast operational-space inverse dynamics

N. Mansard

IEEE Int. Conf. on Robotics and Automation (ICRA'12) [17]

Context:
This communication was written during the preparation of the HRP-2 dance, to solve
a problem of numerical conditioning that was perturbing the active-search loop conver-
gence. The resulting solver was intensively used by O. Ramos to realize the robot dance
and by L. Saab for her PhD experiments.

Motivations:
In the possible values of the force, torque and acceleration variables, some create a motion,
some create an internal force and the others are forbidden. The selection between these
three possibilities is de�ned by a threshold on the singular values of the system. If the
constraints are directly solved by the QP solver, the threshold is imposed by the active
search and is very low, which leads to singular behavior. Simultaneously, the dimension
of the complete problem is high with sparse matrices.

Approach:
The problem is condensed before sending it to the QP solver. Based on the work of
O. Khatib, the condensation is done in a dynamically-consistent manner. The variables
are reduced to the motion and actuation variables, which are decoupled and of minimal
size. The dynamics and contact constraint matrices are reduced and dense. The task
constraints are rewritten to depend on the motion variable instead of the acceleration
variable.

Results and contributions:
The condensation removes the problem of conditioning in multiple-support phases. The
computation cost is reduced by a factor of �ve, from 20ms to 4ms for the HRP-2 model.

Limitations and perspectives:
The condensation has been chosen to be dynamically consistent. It might be more e�cient
to search for a condensation that optimally uses the sparsity properties of the problem.
In particular, the reduction of the torque and force variables might be improved.
The computation times are still too important to use the inverse-dynamics scheme in
closed loop onboard the robot at the nominal frequency of 1kHz.
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Figure 6.3 � The inverse dynamics as a robust controller: Walking on a non-�at ground.

6.3 Toward the robot

Reference paper [16]

The objective of the work described in this chapter is to build a method to control the
robot dynamics. For that purpose, the computation cost is not the only aspect to solve. We
should also demonstrate the interest of taking into account the whole dynamic model in the
control and search for solutions to apply it on the robot.

In [16], we have proposed a �rst use of the inverse-dynamics scheme as a robust controller
in simulation, to control the walk of HRP-2 on an unknown non-�at terrain. The hypotheses
of the simulation are the following. The simulated robot is tracking the given reference
torques (and accelerations). It also perfectly �perceives� the collision points that are used
in the force part of the dynamics equation. The �oor is a random distribution of small
objects (2cm) on a horizontal plane (see Fig. 6.3). However, the model of the �oor is not
known from the controller, which uses the approximation that the �oor is horizontal. The
COM trajectory is computed at each control cycle by MPC using a classical inverse-pendulum
linearization [Herdt 10]. The hierarchy of tasks (6.12) is composed of the COM task, one task
to track the �ying-foot placement (using the second order formulation of (3.14) as proposed
in [de Lasa 10]) and one task to emphasize the robot posture and avoid drifts of the chest
attitude. Contact points are added in (6.12) when a collision occurs between the �ying foot
and the ground during the foot landing. When three contact points are added, the foot landing
ends because the foot movements are completely constrained. The contacts are relaxed when
the walking pattern generator decides to take o�.

The controller is then able to absorb the unknown rough terrain: the COM tracks the MPC
trajectory even if the contact surfaces are not exactly those used by the inverse-pendulum
model. The rough horizontal approximation is su�cient to ensure the proper regulation by
the inverse-dynamics controller.

However, the simulation is only a �rst step toward the robot. HRP-2 (like most of other hu-
manoids) is not able to track a reference joint-torque. Using the joint accelerations as control
input is equivalent in the free space, but not in contact: in that second case, an acceleration-
based control is not passive as it supposes a perfect answer of the contact model. In particular,
for the walk proposed above, the contact points are needed. They could be measured using
tactile sensors on the robot sole (a skin) [Mittendorfer 11, Takahashi 05] or partially recon-
structed using several measurements of the force sensor in the robot ankle [Petrovskaya 07].
If these solutions are not enough, future generations of humanoid robots might bring some
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more powerful tools. The DLR/Kuka LWR technology [AlbuScha�er 07a] already applied to
a biped robot [Ott 10] and a biped+torso robot o�ers a low-level joint-torque regulation by a
3kHz controller that might o�er a su�cient bandwidth for the classical situations encountered
with a humanoid. A major limit of this technology is its price. Moreover, despite their torque-
sensing capabilities, these robots are still used with a high-gain low-level position controller.
Alternatively, transparent actuators such as those waited in Aldebaran Romeo [Guizzo 10]
might enable to reconstruct the joint torques from the motor current for a cheaper cost, and
passively apply a reference torque with a larger bandwidth than the active LWR. On the
other hand, adding springs into the actuation chain [Pratt 95, Tsagarakis 11, Grebenstein 11]
enables to better absorb the impacts. However it raises other challenges on the control side
[Sardellitti 12, Li 12]. The applied torques are reconstructed by measuring the deformation
of the spring included in the actuators, which also enables to regulate the joint torques and
to passively stabilize the robot at the impact. This is typically the approach used by Boston
Dynamics [Raibert 08, Nelson 12]. In a sense, such an approach is already used in HRP-2
since spring-dampers are placed between the last motor and the sole to reduce the impact.
This passivity is stabilized by an external control loop based on a simpli�cation of the robot
dynamics [Kajita 10a].

The inverse dynamics is a key tool for each of these three technologies, sensor-based
torque control, transparent actuation or elastic actuation. In the three cases, the key is to
add in the kinematic chain a machinery to measure the forces coming from the robot and
environment interaction and to �nd the proper way to introduce these measurements in the
inverse-dynamics control loop.

In conclusion, the work reported in this chapter enables to obtain the �rst real-time
inverse-dynamics whole-body controller that now should be linked with the physical robot
control loop. In particular, the connection with the sensors is the topic of the next chapter.
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Chapter 7

Sensors

T
he methods presented in the three last chapters apply on a robot but also on avatars
evolving in virtual worlds or in simulation to plan the robot motions. Most of the

presented motions have been obtained with this last solution, to simplify the experimental
process: the motion is generated o�-line in simulation and is replicated by the physical robot
using the joint encoders as the only loop closure.

In this chapter, we report the work realized to actually execute the motion on the physical
robot in realistic conditions. This is mostly preliminary works: we are still trying to use the
data extracted from the sensors in complex sensor-based control loops.

7.1 Force

Reference paper [33]

The force sensor is a relatively simple though expensive mechanism: a very rigid six-
dimension spring is attached between two robot parts (typically the last motor of the robot
kinematic chain and the e�ector), whose very small deformations due to applied forces are
measured by strain gauge. The sensor is fast (1kHz on HRP-2), easy to unbiased and slightly
noisy. It measures the three force components and three torque components applied to the
spring, that is to say in the case of a sensor attached to the end e�ector, the sum of the
forces applied by both the robot and the environment. If the forces applied by the robot
are known (in inverse dynamics for example), the sensor can be used to evaluate the contact
interaction model (elasticity of the contact surface [Park 06b] or force applied on the robot
[Kaneko 12]). Or it can be used to regulate the force applied by the robot on a supposedly
known environment.

Typically, a force sensor is used if moving in contact with a inverse-kinematics control
scheme. An impedance �lter [Hogan 84, Maeda 01] is used to transform the force information
to a velocity reference. The motion of the end e�ector is modeled by a damped mass moving
due to the forces recorded by the sensor:
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(a) (b) (c) (d)

Figure 7.1 � Four examples of force control. (a) Inverse dynamics: a force sensor is not
necessary to move the robot in the null-space of the task (here a 3-DOF visual servo). (b)
Impedance control to enforce a zero torque while moving the fridge door. (c) Impedance control
to follow the human partner while walking. The footsteps are chosen to keep a reference
position of the arm, leading the robot to dance with its human partner. (d) carrying a table
while walking. The impedance control is once more used to follow the human operator.

Mr̈ −Bṙ = φ̂− φ∗ (7.1)

where r is the placement (six dimensions) of the mass, M its generalized inertia, B the
damping factor, φ̂ is the force wrench (spatial force [Featherstone 08]) measured by the force
sensor and φ∗ is the reference force to apply. This di�erential equation is integrated once (e.g.
using an Euler integrator) to obtain the reference velocity ṙ∗ tracked by the inverse-kinematics
control scheme.

In [33], the inertia and damping matrices of the impedance �lters are automatically ad-
justed to correspond to the robot inertia and friction. This avoids inertia shaping [Ott 08],
enhances the robot behavior and makes the �lling of the human collaborator more intuitive
with respect to the robot reaction.

This control scheme was used in the stack of tasks as one of the basic tasks for building
various behavior (walking while carrying a table, opening a door), see Fig. 7.1.

7.2 Vision

Reference paper [20] (see also [46, 13, 23, 38, 53])

The humanoid robot is de�nitely not the easiest platform to develop vision-based schemes.
Actually, it is a very nice experimental platform to challenge a working scheme. The robot is
at the same time a eye-in-hand (for localization) and eye-to-hand (for manipulation) system.
Like other mobile robots, all the DOF are not measured by an encoder and the odometry
is poor since the feet are slipping [Moulard 12d]. The camera is shaking due to the impacts
during the walk. Eye-in-hand movements are not directly controllable since the head (following
the COM) is oscillating around the main commanded direction [Davison 07, Dune 10]. At the
same time, the vision greatly improves the behavior of the system, for obstacle detection
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(a) (b) (c) (d)

Figure 7.2 � Three example of the use of the camera. (a) Vision-guided grasping while
walking. (b) Bi-manual vision-guided manipulation using the upper body. (c) Tracking of
SLAM landmarks. (d) Motion generation on a dense reconstruction of an uneven �oor [46].

[Michel 05], �oor reconstruction [46] (or similarly with proxi sensor [Chestnutt 09]) or to
observe missing informations of the other sensors [Martinelli 12].

Visual servoing: During my stay at Tsukuba at the end of my PhD, we have worked with
O. Stasse to demonstrate the capabilities of the humanoid robot to grasp an object while
walking. This demonstration was realized like the force-based demonstrations presented in
the previous section: the visual servoing is one of the basic tasks available in the action
library, and we have combined it with a walking pattern generator and some posture tasks
[38]. The complete scheme is �nally obtained with a 2D eye-in-hand visual servoing to control
the gaze, a 3D eye-to-hand visual servoing using the stereo camera pair to reconstruct the
3D information to grasp the ball, a Riccati-based pattern generator [Kajita 03] to walk and
a posture task to prevent any rotation of the chest. Similarly, the same bricks where used
(Master thesis of J-C. Renaud, LASMEA [70]) to perform bimanual manipulation using the
upper part of HRP-2 (the feet were �xed on the ground) [53]. Fig. 7.2-(a) and -(b) give some
typical executions with HRP-2.

Vision-based �ne localization: One important issue for controlling the robot dynamics
is to have an accurate estimation of the robot body orientation with respect to the gravity
(vertical), the positions of the contact body (feet) and the model of the contacting surface.
When the robot is walking on a perfect non-slippery horizontal rigid �oor and if the �exibilities
of the robot legs are neglected, all these information can be estimated from the joint encoders.
However, for going on non-�at ground with elastic or slippery contacts, it is interesting to
have proper measurement of all these e�ects.

The camera in the head can be used to accurately measure the position of the robot with
respect to its initial position. Since the robot starts from a known vertical, this can be used to
estimate its orientation with respect to the gravity. However, we need the measurement to be
fast. For that reason, we have developed a real-time simultaneous-localization-and-mapping
(SLAM) algorithm able to track the robot position at 60kHz [20]. See the project homepage
[60] for details.

In a second time, the localization can be used to reconstruct a dense map of the envi-
ronment. This map is then used to plan a �rst trajectory of the robot. It is used in [46]
to validate the robustness of dynamics-based walking controller on rough terrain. The same
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approach will be extended to plan the next footstep while avoiding the major holes of the
ground.

7.3 Balance

The camera is able to reconstruct the robot position with respect to previous positions. The
map helps to consolidate the accuracy. However, the orientation is subject to drifts and the
camera is not able to accurately track alone the robot vertical. Moreover, it is not the proper
sensor to estimate the contact model (surface orientation and sti�ness).

Two other sensors can be used to bring the missing data. The inertial measurement unit
(IMU) measures the angular velocity on one hand and the linear accelerations and gravita-
tional forces on the other hand of the body it is attached to. When the linear acceleration
are perfectly known (for example, when the robot does not move), the weight force gives
the gravity orientation. When the acceleration is not known, the six measurements are not
su�cient to make the gravity orientation observable.

A classical association is to use the camera to observe the missing information. The cou-
pling IMU/Camera is very interesting [Martinelli 12]: the camera is slow (<100Hz) whereas
the IMU is fast (>1kHz); the IMU quickly drifts whereas the camera does not drift while
it stays in already-visited places. Moreover, the system camera+IMU is observable. A �rst
fusion was performed in RT-SLAM.

We now tries to fuse the data coming from the force sensors in the ankles to estimate the
elasticity in the robot feet and the ground characteristic. In parallel, F. Lamiraux is working
on the stabilization of the feet elasticity and O. Stasse is working on the rough estimation of
the �oor slope using vision. Coupled with the developments of fast dynamics-based control
law, all these works are going toward safe outdoor walking on unknown grounds.



Chapter 8

Partial conclusion

T
he objective of this �rst part was to construct a control structure to compose several
simultaneous tasks, fast enough to be used as a robot controller, while ensuring a good

behavior of the system in case of con�icts and taking into account all the robot modalities, in
particular the dynamic e�ects and inequality-written objectives. As explained in Chapter 3,
we have chosen to rely on a hierarchy to compose several tasks simultaneously. Among the
objectives listed above, most of them are reached. In particular:

• For combining several tasks simultaneously, a very e�cient hierarchical solver taking
into account both equalities and inequalities have been proposed in Chapter 4.

• For combining several tasks sequentially, a �rst solution was proposed in Chapter 5,
with some defects but that gives the directions of a complete solution.

• In Chapter 6, the dynamics of the robot was added in the problem.

• Combining the fast solver and the inverse dynamics, nearly real-time computations (4ms
per control cycle) were achieved, that now enables us to study the application onto
the real robot.

However, if we now have a working solution, two points remain to explored: the damping
and the application on the real robot. Some perspectives are recorded below.

Damping: the goal is to ensure that, whatever the active tasks, the behavior of the system
remains safe. Damping might seem a relatively minor aspects. Actually, it is very di�cult
explain its practical interest to theoreticians of numerical mathematics: we are deliberately
searching to diminish the accuracy of our solver when the problem is too hard to solve for
the robot capabilities. However, damping is very important if we want our solutions to be
really used as the basic controller of the robot: if the activation of the tasks are decided by a
non-expert human operator or by an automatic decision process, a good behavior has to be
ensured.
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The organization into a hierarchy is only one of the possible way to achieve this goal. When
all the constraints are written as equalities, a solution that the whole robotics community is
using is the so-called damping of the matrix inversion. The solution has poor theoretical
properties but is very e�cient in practice. We are not able yet to provide an equivalent
solution when inequalities are considered. It might be possible to formulate the safe property
of the robot behavior in the problem formulation (like bounding the norm of the solution or
the variation of the control). Or it has to go with a rewriting of the solver operating model,
to disable a given task when it is too di�cult to be achieved. An alternative might be to rely
on an external decision process, which would look at the problem conditioning number and
remove the misbehaving tasks when the conditioning is too low.

Application to the real robot: In a sense or another, the application of inverse-dynamics
control loops on the physical robot is one of the big challenges of the community today. At the
mechatronics level, it is the purpose of the joint torque sensors of the DLR/Kuka LWR robot
and the springs of the series-elastic or variable-sti�ness actuators. We are trying to address
this problem from the control point of view. This is interesting because the main e�orts have
yet been set on the hardware design rather than on the software control. Hardware solutions
have now been proposed and software is the missing key. Our approach tries to speed up
the computation in order to take into account the whole robot model and is therefore an
interesting candidate for any hardware solution. In that direction, our experimental platform
HRP-2 is equipped with both force sensors and springs. Both are located only in the end
e�ector, which is limiting for many setups (e.g. hammering or throwing) but also by far
su�cient in many other cases. Typically, the stabilization of the balance and the walk on a
non-�at surface are challenging objectives on which we have started to work.

The execution on the real robot requires three aspects: we need to acquire the proper data,
to extract the proper information from these data and to answer with a control modi�cation
as fast as possible. We have targeted most of our e�orts on the last point, with some work
on the second one. The �rst point requires to work more closely with the hardware design,
to select the proper sensors and their connection with the actuators. In that direction, the
recent work on the arti�cial skin (at Tsukuba [Mittendorfer 13] or in the Factory-in-a-Day
FP7 project) and on variable-impedance actuators (with B. Tondu and O. Stasse) is very
promising.

In addition to this medium-term perspectives, two other directions deserve to be men-
tioned.

Conic problems: We have only worked with quadratic cost functions, i.e. linear con-
straints. For example, it is not possible to impose a bound on the norm of the parameter,
which would be written as a conic constraints. For the humanoid robot, it is not possible to
take into account the exact friction cones, that are, namely, conic constraints. The extension
to the presented work for other types of constraints will be necessary at some point. The
same questions of hierarchy, continuity or damping are still relevant for more-generic classes
of numerical problems. Conic problem is the �rst to consider, because of its similarity to
quadratic problem. However, conic solvers do not rely on active-search algorithms, which is
the solution that we have used as the basis of all our work in Chapter 4. The HQP solver
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might still be exploited, as most of the other resolution schemes rely on an internal linear
solver.

Preview capabilities: By construction, the task-function approach realizes an instanta-
neous linearization of the task function and therefore brings back the problem to a linear
formulation. However, this kills the view on the future. Typically, on the humanoid robot,
a view on the future is necessary to consider the robot balance. This cannot be simply done
with the instantaneous linearization. We then rely on a trajectory over the next few instants,
that is computed by another system called the walking pattern generator and that ensure
that the behavior computed locally lead to a relevant behavior in the next future.

Walking is only the most exemplary case where a preview window is necessary. We have
yet no good solution to systematically integrate the preview in the considered framework. A
solution would be to discard the instantaneous linearization and to consider the whole system
over the preview window. However, this leads to some strong non-linearities, which are �rst
computationally expensive but are also very sensitive from a numerical point of view. Further
elements about this topic are given in Chapter 10. With today knowledge, the arti�cial
decoupling between on the �rst hand a preview walking generator to handle the future and
on the other hand an instantaneous linearization to handle the whole-body execution is much
more e�cient (even if less optimal in term of movement) that the resolution of both coupled.
A systematically way to generalize this approach to other case study is still a perspective.

From Part I to Part II. The task-function approach de�nes basic bricks that characterize
elementary motions of the system, robot or avatar. Part I gave some solutions to combine
this bricks into a more complex motion. We did not discuss yet how to select the proper
bricks and in which order to assemble them. The next part will focus on this topic. The
�rst solution is to select them �by hand �, using the knowledge of a robotics expert to design
the motion. By providing the basic sensory-motor loops, the framework presented here is a
very powerful tool for such a robotics engineer to program the robot motion. Another
solution is to use planning techniques, combined with a model of the world, to decide which
sequence of tasks to use. Finally, the tasks can be sequenced following a model extracted by
observation. This last direction directly leads to learning. Each of these three approaches
will be described in the next part.
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Emergence of a motion semiotics
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Chapter 9

A programming language

T
he task-function framework built in the previous part o�ers some basic bricks of motion.
It can be seen as a motion vocabulary with a rough-and-ready composition syntax.

This part will show how this vocabulary can help to create some complex behavior. Each
of the three chapters of Part II focuses on a di�erent approach: composition by explicit
programming, by automatic planning or by imitation. The last chapter, number 12, will
present two demonstrations using the proposed concepts.

First of all, the task function is a very expressive tool to help an engineer to design a
speci�c motion on the robot. We have built a software called StackOfTasks. It implements
the mathematical components introduced in the previous part (some classic task functions,
a hierarchical solver, inverse dynamics, continuity, etc) along with a scripting encapsulation
that eases the construction of complex motions. This chapter describes the originality in the
software architecture and quickly lists the available features. Throughout the chapter, a basic
example, described in Section 9.1, is used to illustrate the concepts.

9.1 Overview

Reference paper [30]

The objectives of the software are the following. First, in order to reach real-time control,
we need to embed some e�cient piece of software (typically, C++, Matlab would not be
enough). On the other hand, we would like to be able to prototype robotics application
quickly. Finally, we want to reduce the amount of know-how required to create a robotics
application.

To reach these objectives, the software is architectured around a computation graph, which
can be accessed by an versatile scripting language and whose nodes are e�ciency implemented.
Each node of the graph is called an entity. The links between entities are called signals and
represent the data produced by an entity and consumed by one or several other entities. The
signals de�ne a dependency graph, which is a partial order of the nodes. One of the maximum
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Figure 9.1 � Typical example of computation graph. Here is implemented a simple behavior
of visual-guided grasping with COM regulation to ensure the balance.

of the graph is typically the control law, whose computation triggers the recomputation of all
the lower computation nodes.

An example of graph of computation is given in Fig. 9.1. This graph codes a vision-guided
grasping motion on a humanoid robot. Two tasks are de�ned to control the COM and the
right hand. The COM is simply regulated to a �xed position with a constant gain. The
right-hand is servoed to a 3D position measured by a camera (e.g. the position of a ball).
The gain is varying depending on the norm of the error. To improve the tracking accuracy,
a Kalman �lter is used to correct the data coming from the camera using the known robot
control. The direct model functions (COM and hand positions, Jacobians) are computed by a
dedicated entity called model. The solver �nally uses the references de�ned by the two tasks
to compute the control law, which is fed to the robot.

In the following sections, we give the keys to understand this graph and extend it. The
computation graph is �rst explained in Section 9.2. The basic task-function features are then
shortly described in Section 9.3. Finally, the available packages of the software suite are listed
in Section 9.4 and some examples of use are given in Section 9.5.

9.2 Dynamic computation graph

The boxes of the diagram presented in Fig. 9.1 are called the entities. Each entity has two
kinds of interfaces: the signals and the commands.

The signals are synchronous interfaces that de�ne the computation graph. Producer slots
are called output signals. Consumer slots are called input signals. An output signal can be
plugged to one or several input signals. Input signals can also be set to a constant value (e.g.
the controlgain of the COM task is constant).

Output signals can be recomputed by a function callback or triggered by an external
event. Recomputation by a callback is the most classical case. In the given example, all but
the robot state and the camera data would be of that kind. Callback signals are associated
to a function and are given a list of input signals of the same entity they are depending on.
These dependencies are not made explicit on the �gure to keep it readable. For example,
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the estim output signal of the kalman entity depends on both the measure and the command
input signals. On the other hand, event-triggered signals are changed by an external system
(for example, data coming from the sensor or user-driven modi�cation).

Any signal is tagged with the control-cycle number of the last recomputation and keeps a
copy of the recomputation result. When an output signal is accessed, it is recomputed under
the following inductive conditions:

• If the current control cycle number is higher than the recorded one.

• And if at least one of the signal it is depending on is ready to be recomputed (following
the same recursive rule) or is tagged with an earlier control-cycle reference.

The control graph is a loop by de�nition of the closed-loop control. It should be dis-
played on a cylinder rather than on a plane. However, it is not recomputed continuously
but discreetly. To represent it and to discretize the computation, the loop is broken at an
arbitrary point. We have chosen here to break it at the robot level. At each control cycle,
the robot operating system modi�es the state from the encoders measurements and access
to the control signal. The dependency evaluation �ows down to the state signal, which
is ready for an update. This triggers an upward cascade of recomputation until the control
if �nally recomputed. Interestingly, the part of the graph corresponding to the right-hand
task is not recomputed if no new data has arrived from the camera. This spares some useless
recomputations.

Desirably, all the computation dependencies should be expressed through signals. How-
ever, for historical or simpli�cation reasons, some dependencies are implicit. Typically, an
entity can have a pointer on another entity and directly use its signals. For example, the
solver entity maintains a list of the active tasks and uses the task and jacobian output
signals of these tasks to recompute the control law. These hidden dependencies are denoted
by dotted lines on the graph.

The commands are asynchronous interfaces that are typically used to build the graph
structure and to parameterize the entities. For example, a task is added to or removed from
the solver by a command. The parameters of the adaptive gain of the right-hand task are
de�ned by a command. The �les de�ning the robot model are set by a command.

Scripting and abstraction: The architecture is build around two con�icting goals: being
real-time and being able to prototype quickly. To achieve both, a classical software engineering
pattern is used, by splitting the design into two levels: the computation part in C++, which
needs to be e�cient; and the graph in python because this is what is �application dependent�
(it involves a lot of disposable code we do not want to spend time writing). This is a very com-
mon approach used by other software (like the 3D modeling software Blender with Python)
and some languages are even designed explicitly for this (Lua [Ierusalimschy 96], which en-
countered a large success for game scripting). Other robotics middleware even incorporates
this at a very low-level (like the robotics language Urbi [Baillie 04])

All the graph (entities, signals and bound functions) are de�ned in C++, which is com-
piled but computationally e�cient. The objects are available through the entity, command
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and signal abstraction. They can then be manipulated by the mean of an external script-
ing language. A python interface has been developed that gives access to the creation and
destruction of entities, signal plug, recomputation and command calls.

To ease the extension of the language, any new entities can be developed in an external
library and introduced during the execution by mean of a dynamic plug-in. A typical execution
is then set in three phases:

• The needed functionalities, embedded in the corresponding plug-ins, are loaded.

• The entities are created, parameterized by mean of commands and their signals are
plugged.

• The execution is triggered by externally calling one of the entities (typically, the robot
entity).

The execution can be modi�ed by changing the signal graph (unplug or replug some signals)
or the entities con�guration (call of a command). Typically, task sequencing is achieved by
calling the push, remove and swap functions of the hierarchical solver.

The graph functionalities are implemented in the package dynamic-graph (see Table 9.1).
The links with the python language are implemented in dynamic-graph-python.

9.3 Motion implementation

The computation graph described above is generic and, even if originally designed for con-
trol, could be used for various frameworks. The task function is speci�cally implemented
in the sot-core package. It is based on the implementation proposed in the ViSP library
[Marchand 05]. The task implementation is decomposed in two parts: the function itself,
called feature on the one hand; and the computation of the reference vector ė∗, called task,
on the other hand.

The feature is an abstraction that provides two output signals: error (which is the function
of the robot current con�guration and other environment parameters) and jacobian (which is
the derivative of this function with respect to the robot con�guration). The error is most of
the time computed as a di�erence between a measurement and a reference value. Most of the
time, the measurement is an input signal of the feature entity itself, while the reference is an
input signal of a joint feature entity called the desired feature. For example, in the illustrative
graph of Fig. 9.1, the com feature comes with a comdes feature that speci�es the reference
COM position. Similarly the right-hand feature rhand comes with a rhanddes, whose input
is coming from the camera.

The basic feature proposed in the sot-core package is called FeaturePoint6D and char-
acterizes the distance between two body placements. It is typically used to bring the robot
end e�ector to a desired placement (i.e. position and orientation). It is typically used to im-
plement the right-hand task in the example. Variations are also proposed (distance between
two robot bodies, distance of a point to a line, distance between two vectors of the space).
Finally, a so-called generic task function is implemented, typically used by the COM task
(whose Jacobian is directly computed from the robot model).
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Package Git repository Description

dynamic-graph jrl-umi3218/
dynamic-graph

De�ne the entity and signal abstraction, im-
plement the dependency graph and the dy-
namic loading functionalities

dynamic-graph-
python

jrl-umi3218/
dynamic-graph-python

Bind the dynamic-graph abstractions with
the python scripting language.

sot-core jrl-umi3218/
sot-core

Implement the basic task-function func-
tionalities: control feature, tasks, inverse-
kinematics solver, simple-integrator robot,
etc.

sot-dynamics jrl-umi3218/
sot-dynamics

Implements the StackOfTasks bindings
with the model computation library
jrl-dynamics.

sot-pattern-
generator

jrl-umi3218/
sot-pattern-generator

Implement the StackOfTasks bindings with
the walking pattern generator jrl-walkgen.

soth laas/ soth Implement the HQP presented in Chapter 4
and [4].

sot-dyninv laas/ sot-dyninv Implement the hierarchical operational-
space inverse dynamics solver.

Table 9.1 � List of the StackOfTasks packages. The Git Hub repositories are available on the
cloud on the server github.com (access to the http interface of each repository by adding the
pre�x https://github.com/). The whole project, supported jointly by LAAS and JRL-Japan,
will soon move to the dedicated GitHub repository https://github.com/stack-of-tasks .

The task is an abstraction that provides three output signals error, task and jacobian.
A list of features are internally maintained (managed by an add and a remove commands).
The error and jacobian are simply computed by stacking the errors and the Jacobians of
the features of the list. The task signal computes ė∗ from e.

The default implementation of ė∗ is the proportional ė∗ = −λe. The gain is an input
signal and can then be synchronously recomputed, which gives a simple solution to obtain an
adaptive gain. Other vector �elds are also provided.

Basic mathematical toolkit: A simple hierarchical solver (3.26) is implemented (no in-
equalities). A simple integrator robot (the input q̇ is integrated using an Euler integrator to
obtain the con�guration q) is provided. A logger is implemented to record the signal data �ow.
Many other minor tools (such as simple binary operators, rotation algebra, a Kalman �lter,
etc) are also implemented to fasten the development of experimental graphs. The ultimate
goal is to provide all the tools to build your control law by just reusing basic building blocks,
without having to write entities anymore.
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9.4 A whole humanoid-robot framework

The StackOfTasks is part of the humanoid path planner (HPP) software suite. Several ex-
tensions are proposed and are quickly listed below.

Model direct functions (sot-dynamics): This package provides the direct functions of
the robot model: direct geometry (computation of the robot-e�ector positions and orien-
tations, position of the COM), direct kinematics (Jacobian of the robot-e�ector positions
and orientations, velocity of the e�ectors), and dynamics (recursive Newton-Euler Algorithm
(RNEA) to compute the joint torques, composite-rigid-body algorithm (CRBA) to compute
the generalized inertia matrix, ZMP).

The input signals of these entities are the robot joint positions, velocities and accelera-
tions. The position and orientation of the robot in the space (free-�oating placement) and
corresponding velocity and acceleration can be independently provided. The position infor-
mation alone is used by the geometric computations. Velocity is additionally needed by the
kinematic computation. Acceleration is only needed by the dynamics computations.

The output signals are the COM, its Jacobian, the ZMP, joint torques, dynamic drift
(sum of gravity and Coriolis forces) and generalized inertia matrix. A command triggers
the creation of a pair of signals outputting the position and Jacobian corresponding to any
robot-body central point. We cannot yet compute the Hessian of the geometric quantities
nor the square root (Cholesky decomposition) of the inertia matrix (both quantities might be
computed from the model and are needed for inverse dynamics).

All the algorithms are implemented in the package jrl-dynamics. They mainly corre-
spond to the formulation proposed by Featherstone [Featherstone 08]. Alternatively, automa-
tically-generated optimized code can be used. The algorithms are executed in dedicated
symbolic computer software (such as Mapple), which unroll the algorithm computation trees
and produce an automatic code dedicated to one speci�c robot model. This approach is
satisfying in terms of performances but is more di�cult to maintain and distribute on a soft-
ware point of view. In [67], a very important e�ort of advanced programming techniques,
led by O. Stasse, was done to perform quasi-symbolic code optimization using meta-template
programming (in C++). The performances are close to the execution times obtained with
dedicated automatically-generated code but all the optimization are done only at the compi-
lation of the object code, while no dedicated source code is generated.

Generation of walking patterns (sot-pattern-generator) Several pattern-generation
methods are proposed in the package jrl-walkgen by O. Stasse. It is wrapped in the Stack
OfTasks framework. The main entity produces COM trajectory giving footprint positions
[Kajita 03], enables modi�cation of the footprint stack [Morisawa 07], or automatically com-
putes the next footprint positions during the COM-trajectory optimization [Herdt 10]. Other
entities compute the �ying-foot trajectory and synchronize the task sequence with the foot-
steps.

Hierarchical solver (soth) A generic implementation of the hierarchical solver [4] is pro-
posed in this package. The implementation is done outside of the StackOfTasks framework,
based on the Eigen numerical software [Guennebaud 10].
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E�cient inverse kinematics and dynamics (sot-dyninv) An inverse-kinematics solver
and an e�cient (condensed) inverse dynamics solver are built based on the soth solver and
the StackOfTasks framework. A inequality-based kinematic task is also proposed, along with
a proportional-derivative dynamic task and an inequality-based dynamic task.

Many python scripts are also given, as examples of robot behaviors that can be imple-
mented with the StackOfTasks.

Simple 3D rendering interface (robot-viewer) Robot-viewer is a simple visualization
interface implemented by D. Dang. Robot models and 3D objects can be loaded from VRML
model �les and moved from another application or computer by a simple XML-RPC or
CORBA interface. Robot-viewer is not a simulator. It can be used to picture the state of a
simulator and the state of the physical robot during a real execution. A simple XML-RPC
and CORBA client is also proposed in python.

Inclusion in the ROS framework ROS (Robot Operating System) is a development
and distribution framework dedicated to robotics led by the USA company Willow Garage
[Quigley 09]. It provides the basic facilities for inclusion of algorithms on real robot platforms
(communication middleware, data log plots, camera drivers, simulator, etc.) along with many
various algorithms (SLAM, object recognition, planning, etc.).

The StackOfTasks software was added as a package of ROS by T. Moulard, who also wrote
the ROS drivers for the HRP-2 robot. In particular, ROS is used to provide the communi-
cation interface with other computers (for example on the HRP-2 to communicate with the
computer that acquires the camera images). In cooperation with G. Manfredi (RIS/LAAS-
CNRS), a parser was integrated to read robot models using the URDF format and the PR-2
[Wyrobek 08] robot model was included in the StackOfTasks.

9.5 Examples of use

The StackOfTasks software has been used in the last four years in four major robotics French
laboratories (LAAS, LIRMM, JRL-Japan and INRIA Grenoble). It was mainly used with the
HRP-2 robot. Some of the demonstrations built upon this software suite are quickly presented
below. A visual summary is given in Fig. 9.2.

• Robot@CWE [3] (JRL-Japan): Complete integration setup, detailed in Chap-
ter 12.1. This is the �nal demonstrator of the FP7 IP Robot@CWE project.

• Grasping while walking [38] (JRL-Japan): Grasping a ball with visual guidance
while walking. First demonstration with the presented framework during the end of my
PhD.

• Open the fridge [34] (JRL-Japan): The robot open a fridge to grasp a can. The
motion results from an optimized task sequence, as detailed in Chapter 10.2. The motion
was implemented by F. Keith during his PhD thesis.

• Haptic communication [Bussy 12] (JRL-Japan): Study about the haptic (non
verbal) communication between two human partners during a task implying physical
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[3] [38] [34] [Bussy 12] [Gergondet 12]

[Foissotte 10] [Perrin 10] [Dune 10] [36] [Mittendorfer 13]

[Hayet 12] [53] [Baudouin 11] [Moulard 12d] [2]

[6] [9] [Duong 12] [Dalibard 11] [Moulard 12c]

[19] Balance stabilization [Mizumoto 09] [Moulard 12b] [Keith 11]

Figure 9.2 � Some of the demonstrations performed over the last four years with the StackOf
Tasks software, mainly on HRP-2, by four major robotics French laboratories (LAAS, LIRMM,
JRL-Japan and INRIA Grenoble).
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collaboration. The resulting strategies are applied to drive the humanoid robot decisions.
The motion was programmed by A. Bussy during his PhD thesis.

• Brain computer interface [Gergondet 12] (JRL-Japan): The robot is driven
by symbolic orders that are selected by a brain-computer interface. The orders are
converted into tasks that are applied by the robot. The demonstration was developped
by P. Gergondet during his PhD thesis. It is one of the main demonstrators of the FP7
IP VERE project.

• Active vision [Foissotte 10] (JRL-Japan): The robot autonomously selects the
most relevant poses to improve the 3D reconstruction of an object. The built model is
then used for the �Treasure hunting� project, led by O. Stasse [Saidi 07]. The active-
search movements have been developed by T. Foissote during his PhD thesis.

• Joystick-controlled walk [Perrin 10] (JRL-Japan and INRIA): First application
of the �joystick-drive� walking pattern generator: the COM trajectory is the closest to
the velocity input given by the joystick [Herdt 10]. The footprints are computed during
the COM trajectory optimization and bounded to stay inside a security zone computed
during a learning process [Stasse 09].

• Visual servoing of the walk [Dune 10] (JRL-Japan): Similarly to the previous
item, the robot COM and footprints are computed by model-predictive control. This
time, the robot velocity is input by the camera feedback, following a visual-servoing
scheme.

• Obstacle avoidance [36] (JRL-Japan): The obstacles are locally taken into account
in the control scheme. The task used to prevent the collision is based on a smooth body
envelop [Escande 07].

• Skin for humanoid robots [Mittendorfer 13] (JRL-Japan with TUM): Several
tactile and proximetric sensor cells are attached to the HRP-2 robot cover. They are
used to guide the robot and teach by showing how to grasp various classes of object
using whole-body grasps.

• Pursuit-evasion planning [Hayet 12] (JRL-Japan with CIMAT): A navigation
trajectory is computed while taking into account the robot visibility constraints. The
plan is then executed using the walking pattern generator and the proposed whole-body
resolution scheme.

• Bi-manual visual servoing [53] (LAAS with LASMEA): The head and both arms
are controlled following a 2D visual feedback.

• Fast footstep replanning [Baudouin 11] (LAAS and JRL-Japan): Using fast
feasibility tests, the footsteps leading to a goal position are recomputed on the �ight to
track modi�cations of the environment. The footstep plan is then executed by inverse
kinematics.

• Careful steps through a kidroom [Moulard 12d] (LAAS): A footstep plan is
computed into a very constrained environment. The �ying-foot position is servoed
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during the execution based on visual feedback. The demonstration was realized by
T. Moulard during his PhD thesis.

• Yoga dance [2] (LAAS): The robot motion is computed from motion-capture dynamic
motion of a human dancer. Most of the work has been done by O. Ramos during his
Master thesis. The demonstration is detailed in Chapter 12.2.

• Sitting into an armchair [6] (LAAS): The motion illustrates multi-contact capabil-
ities of the generation algorithm. It is executed in open loop by the robot. This motion
was developed by L. Saab during her PhD thesis.

• Motion recognition [9] (LAAS and JRL-Japan): The task-function approach is
used to describe an observed motion. The approach is detailed in Chapter 11. It was
developed by S. Hak during his PhD thesis.

• Visual footstep planning and control [Duong 12] (LAAS): The framework is
used to execute a footstep plan computed by homotopy [Kanoun 11b]. The footstep
trajectory is computed at the medium rate of 3Hz. The footsteps and robot posture is
then sent to the control and performed in real time. Both algorithm loops are closed on
the camera feedback. This motion was developed by D. Dang during his PhD thesis.

• Small-step controllability [Dalibard 11] (LAAS): A trajectory of the humanoid
robot sliding on the �oor is computed by a sampling-based motion planner. It is then
shown that this trajectory can be executed with no other condition by a walking robot.
The complete trajectory is �nally applied by controlling the walk using the StackOf
Tasks. This motion has been developed by S. Dalibard during his PhD thesis.

• SLAM-based robot control [Moulard 12c] (LAAS): The robot localizes itself
using a visual sparse map. The localization error is back fed to the control that corrects
the position with respect to an input plan. The robot �nally grasps a ball after several
steps. The demonstration was developed by T. Moulard during his PhD thesis.

• Climbing a ladder [19] (LAAS): Application of the multi-contact inverse-dynamics
motion generation to the humanoid robot Romeo model.

• Balance control (LAAS): Developments toward outdoor walking, by F. Lamiraux.

• Audio-based control [Mizumoto 09] (LAAS with SIPG Okuno Lab)): Devel-
opments for the standing HRP-2 of an audio-based control, originally developed for a
sitting HRP-2. The hand position is servoed to adjust the sound of the Theremin music
instrument. The tempo is then adjusted by a conductor using the motion capture to
track the baton.

• ROS bridge [Moulard 12b] (LAAS): The framework is bridged to the middleware
ROS [Quigley 09]. The middleware is used to import data coming from other processes
or other computers (vision data, user commands, etc). The PR-2 model is included in
the framework.

• Navigation planning and execution [Keith 11] (INRIA): The robot Romeo nav-
igates into a virtual home environment and �nally performs a manipulation task. Final
demonstrator of WP7 of the FUI Romeo project.
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A versatile generalized inverted kinematics implementation
for collaborative working humanoid robots: the Stack Of Tasks

N. Mansard, O. Stasse, P. Evrard, A. Kheddar

IEEE International Conference on Advanced Robotics (ICAR'09) [30]

Context:
This paper was written after my post-doc in JRL to present the open-source software
Stack Of Tasks written in collaboration with O. Stasse, P. Evrard and A. Kheddar.

Motivations:
A inverse-kinematics based movement on the robot contains many basic routines that are
reusable but have to be written on a very e�cient manners, and topical implementations
that does not require a high computational e�ciency but is more di�cult to reuse from
an application to the other. The software is proposed to maximize the e�ciency of the
kernel routines and allow an easy integration of these routines to produce an actual robot
movement.

Approach:
The software is built as a mixed between C++ e�cient routines, and a scripting lan-
guage to construct the robotics scenarios. The control scheme is assembled using a graph
structure (using a design pattern similar to MATLAB/SIMULINK) that links together
the C++ routines. The basic features are then proposed to realize an inverse kinematics
scheme: robot model computation (direct geometry and kinematics, Jacobians, general-
ized inertia matrix, etc), classical task functions (end-e�ector positioning, COM, gaze,
etc) and a hierarchical inverse kinematics solver.
The software is then distributed with a LGPL license.

Results and contributions:
The software was used to build several demonstrations with HRP-2. It is the basic
software for most of the robot experiments at JRL-Japan and in the Gepetto group. It
was also used at INRIA, LASMEA and LIRMM.

Limitations and perspectives:
A second version of the software has now been proposed. Python is used as the scripting
interface and CORBA was replaced by ROS for computer networking.
The control graph is supposed to be run on a real-time operating systems and does not
provide synchronization mechanisms in itself. The SIMULINK-like design pattern might
be limiting for reuse of code pieces to other contexts. Even if generic, the software was
only used for humanoid robots and was not validated e.g. for �xed or mobile manipula-
tors.
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Chapter 10

Task sequencing

T
he previous chapter gave a solution to program a robot motion by a sequence of tasks.
We now look at a solution to automatically decide the data that are needed to specify

the motion. When reasoning about a motion (for planning for example), the whole spatio-
temporal trajectory should be considered1. The motion planning (both for searching for an
initial solution [Barraquand 92] or to optimize a given trajectory [Diehl 09]) is a very complex
problem, subject to the question of the existence of a solution and of many local minima. This
is the �good� mathematical way to build a motion. However, the computational cost is yet
much too expensive to hope to use it inside the robot control loop. Moreover, if it is used as a
planner (i.e. to guide the controller by computing the desired motion as a much slower rate), it
provides a trajectory in the con�guration space, that is straight-forward to track with a �xed
manipulator robot but can be more complex to follow with a mobile robot. The question
behind this chapter is to know how to execute with a closed-loop controller a trajectory
computed by a motion planner, or more generally how to bridge the gap between planning
and control. In this objective, the task sequence can be used as a trajectory representation
that makes the link between these two components: we show in this chapter that the task
sequence can be used for planning, while the �rst part of the document has shown that it is
a very e�cient way to control the execution.

In order to introduce this chapter, a quick summary of the work on optimal control is �rst
presented in Section 10.1. Most of the chapter is then condensed in Section 10.2, where we
propose a solution to optimize a trajectory represented by a sequence of task. Contrary to
the previous chapter, this chapter does not propose a complete method answering to a given
problem. It is rather a �rst step toward the prospective, as discussed in Section 10.3.

1In humanoid robotics, the complexity is very often broken by decoupling the spatial dimension (dealt with
the instantaneous linearization of the stack of tasks) from the temporal dimension (dealt with the inverse-
pendulum based pattern generator).
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Figure 10.1 � Stepping over a large obstacle using optimal control. Results from K. Koch [15].

10.1 Optimal trajectories

Reference paper [15]

This section quickly reports an on-going collaboration with K. Mombaur and K-H. Koch
from IWR Heidelberg to implement whole-body optimal trajectory on the HRP-2 for walk-
ing or other movements. The problem is modeled by an in�nite non-linear problem (in�nite
number of variables, in�nite number of constraints), where the variables are the robot con�g-
urations and derivatives during a time interval and the input control function on that interval.
The control is typically reduced to a �nite-dimension generating family de�ned by a given
basis of functions (e.g. splines or step function on one element of a sampling grid), while the
con�guration is obtained after integration of the robot dynamics. The integration is subject
to contacts with the environment. For walking, multiple contact phases with impact and/or
continuity constraints are set up. Here, the contact phases are given at the problem de�nition.
The typical robotics constraints are then added (obstacles, joint limits). Finally, the cost to
be optimized is selected among a set of possible function (minimum torque, maximum forward
velocity, minimum impact, etc.) or composed as a weighted sum of them.

Since the integration of a given control on a humanoid model is unstable (the robot is
very likely to fall), a multiple-shooting numerical solver is used [Bock 83, Stoer 02]. Such
solvers are typically designed to work with unstable systems such as rockets. Basically, the
problem considering the whole trajectory is transformed into several independent problems
on pieces of the whole time interval. These pieces are linked one to each other by continuity
constraints. The gradient matrices corresponding to the multiple-shooting formulation are
much larger than with a single-shooting formulation but are sparse, typically with a strong
diagonal. A condensation phase can bring the large sparse problem to a dense problem
whose size is equivalent to the single-shoot formulation but has a much better stability. An
implementation (not free) of such a solver is described in [Leineweber 03]. It was used for
manikin animation, for example for running in [Schultz 10]. A very complete description of
the method summarized in this paragraph is available in this last paper. An example of use
to step over the largest possible obstacle is given in Fig. 10.1: the height of the obstacle is
the optimized objective assigned to the solver.

There are two directions that can come from this approach. A �rst one is to see the non-
linear trajectory optimization as the future of the work described in the �rst part, in particular
in Chapter 6: up to now, we have instantaneously linearized the system, approximating the
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robot future by a constant. Of course, from the studies e.g. about walking, we know that this
simpli�cation cannot handle all the modalities of the robot. Optimal control with the whole
robot dynamics is a Graal that is not close to be reached. Three di�culties have to be solved
before applying it to actually control the movement of humanoid robots:

• If considering the trajectory, the linearity is lost even if approximations can be found
to keep it [Pham 12].

• The number of variables drastically increases: it is multiplied by the number of timesteps
to be considered, typically more than 100. Some works show that this complexity could
be handle by a meticulous and dedicated implementation [Tassa 12].

• A last stumbling block is the relevance of the output trajectories: we have experimentally
observed with the work on HRP-2 that this additional redundancy o�ered to the solver
(temporal redundancy, in addition to the already understood motion and actuation
redundancy) might be di�cult to handle.

A second direction is to see the optimization phase as a planner that selects one motion,
during an o�-line phase (or on a lower update rate). This motion has to be followed by
the robot. There is then some re�ection to do to obtain a trajectory that is described in
a way that eases the work of the controller. The next section can be seen as a trajectory
optimization, where the task control approach is used instead of dummy piecewise constant
controller. From such a trajectory representation, we can hope to obtain a trajectory with a
rich semantic to be more easily applied by the control.

10.2 Optimization of sequences

Reference paper [34] (see also [62])

The previous section gives a very nice example of the typical result of a robot planner:
the output is a joint trajectory which can be directly replayed by the robot using only the
joint encoder feedback. If the motion replay fails for any reason (change in the environment,
imperfect robot motion, imperfect map, etc.), the plan generally has to be recomputed again.
It is indeed a di�cult problem to �nd how to generically follow in closed loop a joint trajectory
computed by a planner [Moulard 12a].

For example, consider grasping a ball while maintaining the robot balance in an obstacle
�eld. If the ball moves, what compensation should be applied on the COM? What is the
cause of the knee joint motion, and consequently what is the sensor information that should
be used to correct it if a deviation appears in the plan: the proximeters (obstacle), the camera
(ball) or the gyro (balance)? Or is this perturbation meaningless and caused by a random
numerical e�ect inside the planner?

The trajectory computed by the motion planner is often given in the con�guration space
and has a very poor semantics. In particular, the planner gives no explanation about the tra-
jectory it has returned while such additional descriptions would be needed to select the proper
way to regulate the motion execution. For �xed manipulator robots, the con�guration space is
the logical way to represent the trajectory [LozanoPerez 83]. When the action is explicitly re-
ferred to a given sensor (for example �place the embedded camera in front of a target�), a sensor-
based task space can be chosen to more appropriately represent the trajectory [Mezouar 02].
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Figure 10.2 � From mission planning to execution with the task-sequence optimization module

The proper landmarks for one sensor can be also automatically selected for longer range of
motion [Malti 11]. However, the trajectory, expressed in the con�guration space or into a
isomorphic space, may not be the easiest way to specify the movement: for example, track-
ing a con�guration trajectory with a mobile robot is not straightforward [DeLuca 97] while
a rougher motion description would ease the control [Segvic 09]. For humanoid robots, the
motion may be even more complex to specify as it requires several modalities (several sensors,
several feedback controls) with various levels of action models and environment models.

The idea here is to use the tasks (in the de�nition used in the previous part and last
chapter) as basic bricks upon which both the plan and the execution are built. The task,
which has been seen as a numerical controller of the execution up to now, is seen as
a symbol in the reasoning part. The trajectory is then expressed by a sequence of tasks
that the reasoning modules manipulate while computing the robot motion [Dantam 13].

However, the task by itself is not su�cient to de�ne the robot behavior and thus to set up
the control. It needs to be con�gured with some numerical speci�cations, typically the value
of the gain, the time of start, etc. The task is therefore a proto-symbol, close to the sense
de�ned in [Inamura 04]: we can reason on it like if it was a symbol but without forgetting
that numerical details are embedded into it.

10.2.1 Planning and replanning

From the planner, we suppose that a sequence of symbols is given. The symbols are then
re�ned by an optimizer (that acts as a scheduler), enriched and upgraded to proto-symbols.
The resulting plan can be directly executed in closed loop by the robot. An overview of the
treatment �ow from planning to execution is given in Fig. 10.2. This �ow is detailed below.
During the description, the example given in Section 10.2.3 is used to materialize the concepts:
the robot has to open the fridge with the right hand and to grasp an object inside the fridge
with the left hand.

Planning: In its general meaning, task planning [Ghallab 04] consists in building the ap-
propriate sequence of tasks to realize a given mission. In other words, it consists in choosing
in a given pool of doable tasks (called know-how) the adequate set of tasks and ordering them
to achieve the given mission. In such planning, the task is de�ned as a symbol that can be
translated into an action or a set of actions to be concretely realized and usually comes with
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Figure 10.3 � Example of mission mission decomposition (set the table) into a task plan.
Each leaves of the mission tree may be interpreted as a task as de�ned in Chapter 3. Figure
from F. Keith thesis [62].

a set of preconditions. A large majority of planners directly work with tasks from the pool.
More powerful hierarchical planners (Hierarchical Task Networks) use task complexes with a
descending approach from high level tasks down to low level ones. A survey can be found in
[Smith 00].

At the end of the planning phase, we have a set of sequence of symbols to be executed
on the robot. An example of such a plan is given in Fig. 10.3. The plan is purely symbolic
and can only handle symbolic concepts. Discrete resource allocation can be considered, but
numerical ones cannot. In the example detailed below in Section 10.2.3, the left hand can
start the reaching movement as soon as there is enough space in the door opening. A symbolic
planner cannot decide the exact date but would issue a condition such as �the door is open�.

In this work, we assume that the planning phase is provided. We work to its conversion
into an executive plan while keeping embedded in the plan the original symbolic plan.

Scheduling: In its general meaning, task scheduling [Baker 09] is the step which comes next
to task planning. It consists in determining the adequate timing for each task (start time,
completion period and sometimes safety period) to realize the task sequence while ful�lling
the constraints of availability of the resources and the temporal constraints. It often aims
at minimizing the total duration of the mission, but other objectives can also be considered,
such as the minimization of the cost or the respect of the deadlines.

Scheduling provides some numerical data for the task sequence: the starting and ending
dates. In robotics, the symbolic map is typically converted into a (explicit or implicit) trajec-
tory, that is to say into purely numerical data. This transformation loses knowledge in terms
of semantic: the original symbolic task plan is lost, which prevents any consulta-
tion during the execution. In fact, this gap [Likhachev 09] appears during the transition
between the planning and scheduling phases: whereas the planning phase work with purely
symbolic data, the scheduling phase works with purely numerical data, such as geometrical
data, temporal data (time constraints, task duration) and resources.
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Plan reparation: The execution phase corresponds to the realization of the task sequence
using the computed parameters. Because of the unexpected problems or events that may occur
during the execution (e.g. delays, di�erence between the expected and real environments,
failure of an action), it is most likely that the plan will have to be repaired, i.e. adapted
in response to situation changes and execution results. Example of a complete planning and
repairing framework is given in [Myers 99].

In robotics, where a motion planner is often used to pass from the symbolic plan to the
control, a reparation of the symbolic plan would mean to compute again the trajectory, which
is costly and poses real questions about the e�ect of the control of the system (the stable
tracking of a changing trajectory may not be a stable control law).

The ambition of the work proposed in this chapter is to provide a methodology to move
directly from the symbolic plan to the execution on the robot, without making the trajectory
explicit.

10.2.2 Implementation

We consider in the following that a given task planner provides a symbolic sequence of tasks as
de�ned in Chapter 3. A non-linear optimizer is used to compute all the numerical values that
are needed to complete the task sequence into a complete controller. This set of numerical
parameters is denoted by χ. It typically encompasses the gains of the proportional controllers,
the dates of task insertions and removals and the damping factor of the stack-of-tasks solver.
The parameter χ de�nes for each con�guration a control law q̇χ.

Tube of trajectories

Consider an initial con�guration of the robot q(0), this control law may be integrated into a
unique trajectory q(t):

q(t) =

∫ t

0
q̇χ(q(τ),Ω(τ)) dτ (10.1)

where Ω(t) generically denotes the con�guration of the robot environment at time t. The
trajectory is implicit but is completely de�ned by χ. The task set is a function family spanning
a subset of the robot trajectories, for which χ is the parameter family. Of course, if q(0)
is changed, or if any unidenti�ed parameter disturbs the integration, another trajectory is
generated. Importantly, if the disturbance is small enough, this new trajectory also ful�lls all
the objectives of the initial map, thanks to the task-function theory: the task sequence in fact
de�nes a tube around the nominal trajectory [Li 08], whose (non-constant) radius is di�cult
to estimate2, but which is empirically su�cient to ensure a good robustness at the execution.

Constraints on the tube

Any set of parameters does not systematically de�ne a proper execution. For example, closing
the gripper before it reaches the door handler does not allow to further open the door. The
controller is local and can converge into some local minimum that makes the execution fails.

2as always with the task function
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Moreover, all the robot constraints may not be taken into account in the control law. This
last consideration is detailed in the next subsection.

All these constraints are checked by a numerical solver. The problem is written with the
following generic form:

min
χ

f(q, T∞) (10.2)

subject to

q(t) =

∫ t

0
q̇χ(q(τ),Ω(τ)) dτ (10.3)

Robot limits ∀t, q(t) is a correct con�guration (10.4)

∀t, q̇χ(q(t),Ω(t)) is a correct control (10.5)

Schedule coherence ∀i, 0 ≤ T I
i < TF

i ≤ T∞ (10.6)

Termination condition ∀i, ||ei(TF
i )|| ≤ ǫ (10.7)

The timings T I
i and TF

i con�gure respectively the insertion and removal of task ei. The
�nal time T∞ ends the execution. All these times are part of the χ variable. The constraints
(10.4) and (10.5) check the robot constraints: joint position and velocity limits, obstacle,
visibility, etc. The schedule coherence (10.6) checks the obvious constraints that a task should
not be removed before its insertion. Causal constraints (such as the gripper should not be
closed before the object to grasp is reached) can also be added. The last constraints (10.7)
checks the termination of the tasks before they are removed.

A complete description of all the considered constraints is available in [34, 62].

Resolution

The constraints are checked on an explicit representation of the trajectory (10.1). The in-
tegration is performed by a mechanical simulator (e.g. rigid multi-body [Evrard 08]). The
solver is coupled with this simulator. For each evaluated point χ, the trajectory is made
explicit by the simulator and the distance to each constraint is computed. The gradient of
the cost and constraint functions are evaluated by the solver by �nite di�erences. The solver
CFSQP [Lawrence 97] was used for both the resolution and the gradient estimations.

The above problem can roughly be directly converted into a SQP for numerical resolution.
Attention has to be paid to the formulation of semi-in�nite problem: it includes a �nite number
of parameters χ, but has in�nitely many constraints such as (10.4) and (10.5). A method to
handle such constraints is to set one constraint on each time sample of the integration grid.
However, this leads to two problems: it adds a high number of constraints and this number
varies with T∞. If considering a rougher grid, the number of constraints diminishes but
multiple local maxima are likely to appear on a single grid sample, which causes continuity
problems. Alternative tricks can be used to provide a better solver behavior with a reduced
resolution cost. They are discussed in details in [62].

Constraints in the planner or in the control

This subsection is a short but digressive discussion about the level of de�nition to take con-
straints into account. Robot constraints, such as typically the collision avoidance, can be
taken here into account by two means: by a constraint in the controller (q̇χ would always
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avoid the obstacle) or only in the non-linear sequence optimizer. Similarly, in sampled-based
path planning [Barraquand 92, Ku�ner 00] (typically rapidly-exploring random tree � RRT),
the obstacle can be taken into account at the level of the local steering method or only by
the collision checker that builds the graph. In any case, the graph would be collision free, but
in the �rst case, many more connections would be enabled for fewer nodes. In other words,
the visibility (i.e. the volume of the neighborhood around each node that is reachable by the
local method) of each node is enlarged.

For both SQP and RRT, taking into account the obstacles in the local method reduces
the number of steps of the overall planning method is reduced but increases the cost of each
step. In [Dalibard 09], a rigorous experimental analysis was proposed to compare the cost of a
single obstacle-aware local method (no random iteration, the goal is visible from the starting
point with the considered local method) to a classical RRT propagation whose local method
does not take care of the obstacles. The �rst only needs a single iteration to converge but was
in total more costly than the iterative RRT.

Similarly, here, the obstacles may be taken into account into the control law that is
integrated by the simulator. The total cost is increased, since it is more e�cient to consider
the obstacle at the SQP level than at each step of the integrated QP control law. However, the
meaning is not the same: when the SQP checks the constraints alone, the resulting trajectory
avoids the obstacles �by chance�: a little disturbance on the process leads the trajectory into
collision, since nothing in the control law prevent it from occurring. In other words, the tube
around the nominal trajectory is improperly de�ned when going around an obstacle.

In the following experiment, the constraints were not taken into account by the control law
but only by the solver. The other solution is possible. To avoid any supplementary costs, this
integration should be carefully performed to avoid a double check by both the QP (control)
and SQP (sequencer). In any case, the controller alone has to take care of all the details
during the real execution on the robot.

10.2.3 An example: grasp the can out of the fridge

The sequence of tasks given in Fig. 10.4 describes a robot taking out a can from the fridge.
The corresponding tasks are:

• e0: Open the right gripper

• e1: Move the right arm to the fridge

• e2: Close the right gripper

• e3: Open the fridge

• e4: Close the fridge

• e5: Open the left gripper

• e6: Move the left gripper in the fridge area

• e7: Move the left gripper to the can

• e8: Close the left gripper
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Figure 10.4 � Sequence of tasks to be executed by the robot. The arrows represent the causal
links between tasks. An �R� is added when a the next task should wait for the regulation (error
nulli�ed) of the previous task to be inserted while keeping the previous task active. Both threads
then join with an �F� that removes the joining task.

(a) Optimal (b) Sub optimal

Figure 10.5 � Summary of the execution schedules. The left-hand tasks are in red and yellow
(red when the error is not zero, yellow when the task is regulated). The right-hand tasks are
in blue (dark blue when the error is not zero, light blue when the task is regulated).
The optimum takes advantage of the bi-manual robot con�guration and launches the left-arm
reaching task while the fridge is not fully open. The sub-optimal waits for the fridge to be
completely open.

• e9: Lift the can

• e10: Remove the can out of the fridge

In particular, no causal links are given between the end of e3 (fridge is open) and the
beginning of e6 (right hand moves). This link is implicit and is computed by the collision
checker inside the simulation. The cost function is simply the total time of the mission T∞.

The comparison between the schedule with and without optimization is given in Fig. 10.5.
The �rst sequence is the result output by the solver for the graph Fig. 10.4. The second
sequence is the result when an explicit causal link is added between the right e3 and left
e6 subgroups. This second optimization corresponds to the best that can be expected when
accounting only for symbols. In the �rst case, the total time is T∞ = 44s while it is T∞ = 56s
in the second case. With a dummy settings χ (medium gains and non-overlapping tasks), the
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Optimization of tasks warping and scheduling
for smooth sequencing of robotic actions

F. Keith, N. Mansard, S. Miossec, A. Kheddar

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS'09) [34]

Context:
This paper was written during F. Keith thesis. The scienti�c project behind the thesis
is still open and is now part of the FP7 Robohow.cog project.

Motivations:
The stack of tasks can be seen as a converter between a symbolic plan and a numerical
execution. However, the tasks are not pure symbolic objects, but rather proto-symbols
that contains a part of numerical data (e.g. gain, time of start and end). The objective
of this work is to give a complete solution to pass from a symbolic sequence of tasks to
the execution by the robot.

Approach:
The method proposes to compute all the numerical data to complete a sequence of tasks
given by a symbolic planner. A non-linear optimizer is coupled to a robotics simulator:
at each trial, the solver chooses a set of numerical data and the corresponding sequence
is executed in simulation. The distance to the constraints (joint position and velocity,
obstacle, etc) is computed by the simulator and feedback to the solver. The solver then
iteratively converges to the optimal parameter values with respect to the given cost, for
example minimum execution time.

Results and contributions:
The method e�ectively solves the problem and manages to �nd the best execution pa-
rameters that satis�es the sequence and robot constraints. It was used to optimize a
classical robotics example: grasp the can from the fridge.

Limitations and perspectives:
The problem is highly non-linear. Moreover, the gradients of the problem seems impos-
sible to analytically compute. The convergence time is then very slow and the solver is
often stuck into some local minimum. There is still some work to do on the problem
formulation.
During the execution by the robot, the parameters are �xed and, considering the com-
putation cost, cannot be re-optimized in real time in case of changes of the environment.
The gradient issued from the solver could be used to close the loop on the sequence
parameters.
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total time was 71s.
The motion was then executed by the robot with an impedance force-feedback task to

drive the right hand while opening the fridge. Snapshots of the execution can be found on
page 98.

10.2.4 Discussion and limits

The developments proposed in this chapter are only a �rst step in the direction of using the
task function to bind reasoning and execution. In practice, the proposed method su�ers of
one big limitation: its cost. The solver needs minutes of computation to compute seconds of
motion. There is a lot to do to optimize the solver. In particular, the simulation capabilities
are a key feature of the robot reasoning, while here a basic constant-timestep integrator is
used. We can hope to save a lot of time easily.

The biggest limitation comes from the high non-linear couplings between the parameters
and the constraints. Like many indirect systems, the control at the beginning of the sequence
impacts the trajectory at the end of the trajectory. Moreover, it seems di�cult to compute
the corresponding gradients analytically. Consequently, the solver di�cultly estimates the
gradient, while lack of precision in the �nite di�erence leads to improper descent direction.
Moreover, the complexity of the resolution increases with the length of the mission, even if
some sub parts may be nearly decoupled from each other.

10.3 Towards task-based motion planning?

In the previous section, we assumed the original symbolic sequence to be given by a symbolic
planner that has few numerical knowledge about the world. The sequence optimizer then
takes the position that is commonly occupied by a sampled-based motion planner, that is
to say to handle all the geometrical and numerical aspects that the symbolic planner cannot
manipulate.

Such a sampled-based planner could also work with task-based trajectories. Indeed,
sampled-based planners are based on local steering method that drives the system from one
node of the graph to the other. This local controller is typically based on an objective writ-
ten in the con�guration space for simple manipulators targeting a desired con�guration. For
systems that are redundant with respect to the target (typically, a 7 DOF arm targeting
a position of the end e�ector) or that are subject to additional constraints (typically, the
humanoid robot that should keep contact with the ground), the local controller cannot be
written by a simple objective in the con�guration space.

This aspect is explored in humanoid robotics but is formerly known as the manipulation
planning problem [Siméon 04]. The similarity with the structure of the sampled space when
considering humanoid (or generally legged) robots was done in [Hauser 08]. Consider �rst
the problem of contact planning for humanoid robots: among all the possible con�gurations,
only those in statically-stable contact are acceptable. The con�guration should be sampled in
submanifold of the con�guration space [Escande 08b, Mordatch 12]. The best understanding
of the resulting folded structure can be found from the theses of A. Escande [Escande 08a]3

and K. Bouyarmane [Bouyarmane 11a]. An example for a simple two-bodies robot taken from

3alas in French with a summary in English apart in [Escande 13]
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(b) Cartesian space: key postures

(a) Con�guration space (c) Cartesian space: complete trajectories

Figure 10.6 � (a) Layer structure of the con�guration space (b) Cartesian space key postures
(c) chronophography of the interpolated robot motion. Images from [Escande 08a]

[Escande 08a] is given in Fig. 10.6. The con�guration space is composed of multiple layers
that correspond to sets of contacts. The robot travels from one layer to the other with a
quasi-symbolic decision to add or relax one contact point.

The interesting aspect of contact planning is that all contacts are equivalent in a functional
point of view. A similar structure is highlighted in [Siméon 04] for manipulation. Some
semantics has then to be attached to the description of the environment to make explicit that
all the submanifolds are not equivalent in their function. A generic framework to include such
a semantic is developed under the name Documented Objects [Dalibard 10]: each relevant
object of the map is augmented with a description of its a�ordance, given as the sequence
of tasks to activate it. Such an approach melts both symbolic and geometrical search. It
issues a task sequence that can be nearly directly used as the working controller on board
the real robot to execute the plan. In that work chain, the sequencer optimizer would be an
interesting feature to smooth the random trajectory output by the planner. Many problems
arise when considering a realistic implementation. It constitutes one of the main perspectives
developed in the �nal chapter.



Chapter 11

Motion description

I
n the previous chapter, we have seen that the task-function approach is an appealing so-
lution to describe a motion to be executed by the robot and that it is possible to reason

with this representation. In this chapter, it is shown that the same approach can be used to
describe an observed motion. Of course, if a task-based description is extracted during the
recognition, it is straightforward to replicate it on any similar-shaped structure for imitation.
In a �rst time, we show the interest of the approach in recognizing ambiguous motions per-
formed by the HRP-2 robot in Section 11.2. We are now working to fuse this approach to the
possible models of human body and action, as described in Section 11.3.

11.1 Introductory example

Reference paper [19]

The Standing Lotus yoga motion was an internal challenge in our team, to design and
run on the robot a given dynamic motion (standing on one leg with an expressive posture)
using the motion-capture system and the motion-generation tools described in the �rst part,
in a single day of work. The initial motion was demonstrated by L. Saab on the morning and
recorder by the motion capture system (Fig. 11.1-(a)). The marker trajectories were targeted
to the robot geometry using, for each time step, a inverse geometry minimizing the distances
of each body of the robot to the associated body of the human teacher (Fig. 11.1-(b)). Two
problems clearly appear: the hands collides (Fig. 11.1-(b)-v) and the COM is not properly
positioned, which makes the robot falls while the human strikes balance (Fig. 11.1-(c)). If
trying to directly execute the motion into a dynamic simulator, the robot falls since the COM
is not below the support foot when reaching the still pose.

The dynamically-consistent motion is �nally obtain with the addition of one task to reg-
ulate the placements of the hands and remove the auto-collision and one task to track the
COM. The result is stable, collision safe (Fig. 11.1-(d)) and can be replayed by the robot
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(Fig. 11.1-(e)). This semi-automatic motion targeting from human-motion capture is the
basis of the �Dance with HRP-2� demonstration, presented in the next chapter.

The conclusion of this example is that the quality of the imitation depends on the choice of
the variables that are relevant for the motion context. For the yoga motion, the balance is the
�rst purpose of the motion. Then the position of the hands in front of the chest is considered.
The global posture only comes last. If asking a yoga teacher, other relevant variables would
certainly be proposed to improve the rendering of the motion. To automatize the imitation
process, one key point is to automatically detect which are the relevant variables. This is the
purpose of the next section.

11.2 Task recognition

Reference paper [9] (see also [47, 27])

11.2.1 Overview and hypothesis

In a �rst time, we consider the recognition of a motion performed by the robot, where all the
possible controllers are known. We suppose that the considered motion has been generated
by a stack of tasks and that all the possible tasks are known. The observed motion is given by
a trajectory t ∈ [0, T ] → q̇(t). The selected stack is supposed to be constant during the whole
motion (no task insertion or removal). The recognition then consists in selecting in the pool
of possible tasks the active ones. Like in the previous chapter, a task is then seen as a symbol
that categorizes the movement. However, a task contains some numerical quantities that make
it a proto-symbol. The task recognition simultaneously selects the active tasks and computes
the numerical data (position of the reference values, gain, etc.). For the experiments presented
below, the joint velocities are reconstructed from the motion-capture data using non-linear
optimization. No other contextual information (such as prominent objects of the environment)
or repetition of the motion is used to recognize the motion.

11.2.2 Iterative task selection

The selection algorithm iteratively chooses the most relevant task from the pool, by computing
the optimal numerical values �tting the task on q̇(t). For the next iteration, the algorithm
then nulli�es the e�ect of the task to avoid future false detection. The algorithm loops until
the initial velocity q̇(t) is completely canceled by successive task removal. The algorithm is
summarized in Algorithm 1. The two main parts (�tting and projection) are described below.

Task �tting

This part of the algorithm does the selection of the most relevant task. Each task is de�ned
by its task function e(q) and a vector �eld in the task space ė∗ (following the de�nition given
in Chapter 3). Consequently, if a task is active during the motion generation, the image of
the trajectory q̇(t) in the task space should �t with the vector �eld. This is characterized by
the distance of the tangent to the trajectory in the task space to the vector �eld. Since the
vector �eld is depending on some numerical parameters of the proto-symbolic task denoted
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(a) Original demonstrated motion

(b) Geometrical retargeting

(c) Dynamic inconsistency of the pure geometrical retargeting

(d) Correction with the added tasks

(e) Replay by the robot

Figure 11.1 � Standing-Lotus robot challenge: from human demonstration to dynamic robot
replay.
(a) The initial demonstrated movement: the trajectory of each marker is recorded by the
motion-capture system. (b) Each body of the robot is positioned to minimize the distance with
the associated body of the human. (c) If replaying the geometrical extracted motion into a
dynamic simulator, the robot falls: the COM of the robot is not properly positioned to ensure
balance. (d) Retargeting of the hands and COM positions in priority, posture second: dynamic
replay, the robot is balancing. (e) Replay by the physical robot with, in real-time, the dancer
T. Benamara imitating the robot.



104 Motion description

Algorithm 1 Task selection

1: Input: trajectory: t ∈ [0, T ] → q̇(t)
2: task pool: e1 ... eN
3: Output: k selected tasks es1 ... esk
4: associated numerical data χs1 ...χsk

5: v(t) := q̇(t)
6: repeat
7: for each unselected task i do

8: ##−− Compute numerical data χi and residue ri −−##
9: χi, ri := taskFitting(i, v(t))

10: end foreach

11: ##−− Select the task with minimum residue −−##
12: s := argmin ri
13: Select task s

14: ##−− Nullify the task e�ect −−##
15: v(t) := Psv(t)

16: until
∫ T
0 ||v(t)||dt < ǫ

χ, we choose the parameters that enable the best �tting:

χ∗ = min
χ

.

∫ T

0
||J(t)q̇(t)− ė∗χ||2dt (11.1)

In general, this is a non-linear minimization problem that is solved by a SQP. The residue
r∗ corresponding to the optimum χ∗ can be used as a distance that characterizes the given
motion q̇(t) the model of the task. Among all the tasks of the pool, the one that has the
smallest residue is the most relevant to be active. To avoid any scaling problem, the residue
is normalized. See [9] for details.

An example of a discrimination between two candidate tasks is given in Fig. 11.3.

To select a set of tasks that explains the observed motion, a solution would be to take all
the tasks whose �tting residue is below a given threshold. However, the threshold is di�cult
to set up and many false alarms may arise. If comparing the two graphs of Fig. 11.3, the right
one follows indeed the task model, but the left one is not so far neither. This is because the
motion in the left space is the image of the motion in the right space and thus looks similar
with a transformation that might be nearly linear.

Indeed, some tasks of the pool are linked together by a nearly-linear relation. The trajec-
tories in these neighbor tasks are then closely related. For example, if a task driving the tip
of the right arm e�ector is active (e.g. the tip follows a straight line), then the right wrist will
have a very similar trajectory and the elbow would also behave similarly. Another example:
if the COM moves from one foot to the other and the chest is straight, then the point between
the shoulders would move from one foot to the other. This e�ect is emphasized by biome-
chanical studies [Latash 02]: if studying the repetition of a same motion by a human subject,
the ratio between the variance in the task space and in its null-space (called uncontrolled
manifold) decreases when coming closer to the controlled point.
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Projection

To avoid the false alarms due to linked tasks, the e�ect in the observed motion of the detected
task is canceled. This is simply obtained by projecting the observed joint velocity in the null
space of the detected tasks. The following task will be detected from this projected velocity:

q̇(t) := P (t)q̇(t) (11.2)

The projector P depends on the robot con�guration and is computed from the observed
non-projected con�guration.

It is possible to prove �rst that, for a perfect observation, the successively projected joint
velocity becomes zero when and only when all the active tasks have been detected; and second
that the order of detection of the tasks does not in�uence any further detection (see [9] and [64]
for details).

11.2.3 Results

We have validated the approach with motions demonstrated by the HRP-2 robot. The mo-
tion is performed by the robot and recorded with the motion-capture system. The robot
con�guration is reconstructed by non-linear optimization of the marker models.

The algorithm is very accurate, even in noisy conditions. It is used to disambiguate
similar-looking motions. Consider the example of Fig. 11.2: two similarly-looking motions are
compared. On the �rst sequence (Fig. 11.2-(a)), the robot bends forward to reach a ball while
keeping a �xed COM. Its left hand automatically moves to correct the balance. On the second
motion (Fig. 11.2-(b)), both robot hands move to a target position: the right hand moves
toward the same target than in the �rst motion; the left hand moves toward the position
reached in Fig. 11.2-(a). The COM is also controlled at a �xed position. The purposes of the
two motions are di�erent: the left hand is free in the �rst case and is controlled in the second.
Both motions look very similar to the human eye.

The results of the �tting for the left hand are shown in Fig. 11.3. During the �rst move-
ment, the left hand moves to correct the balance. Its trajectory does not follow the task
model, as shown Fig. 11.3-(a). During the second motion, the left hand is controlled to a
given target and its trajectory �ts the task model very well, as shown in Fig. 11.3-(b).

The algorithm stops when all the motion can be explained by a task. The successive pro-
jections for both motions are displayed in Fig. 11.4. The �rst motion needs three projections
to be completely canceled (right hand, COM and feet tasks). The second motion needs four
projections (right and left hands, COM and feet tasks).

11.3 Human-like motion generation

Reference paper [7] (see also [63, 64])

The interest of this approach is to formulated the recognition as a dual problem to motion
generation. If we are able to generate some movements for a system, we are also able to
recognize and reconstruct the generation method from the observation only. The question is
then to know if it is possible to generate plausible motions on human avatars. Considering
the chosen task-based approach, the question is divided in two points:
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(a) First motion (b) Second motion

Figure 11.2 � Final pose for two similar-looking motions. (a) Right grasp, the left hand
moves to regulate the robot balance. (b) Right and left grasps, the left hand moves to the �nal
position reached during the �rst motion.
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(a) Negative �t (b) Positive �t

Figure 11.3 � Two examples of the optimized best �t of a task model (proportional ė∗ = −λe).
(a) First motion, uncontrolled left hand: the model does not �t well, the task is likely inactive.
(b) Second motion, left hand controlled: the model �ts well, the task is a good candidate.
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Figure 11.4 � Decrease of the quantity of movement ||q̇(t)|| after each projection of the
detection loop. (a) First motion: three tasks are active, the quantity of motion is zero (plus
noise) after the three projections. (b) Second motion: four tasks are active, there is residual
motion after the e�ects of third task are canceled. The projection into the null space of the
left hand �nally nulli�ed the quantity of motion.
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(a) Reaching while balancing (b)

Figure 11.5 � Example of minimum-jerk trajectories. (a) The human is asked to reach a
distant object with the left �ngertip, while maintaining his balance on one foot and keeping
his right hand �xed. (b) The trajectory of the left hand follows a minimum-jerk rule, which is
easily recognized by model �tting.
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Reverse control for humanoid robot task recognition

S. Hak, N. Mansard, O. Stasse, J-P. Laumond

IEEE Transaction on System, Man and Cybernetics [9]

Context:
This is paper was written during S. Hak thesis in the R-Blink project. The ultimate goal
is to recognize the on-going task to give after very small computation time (�in the blink
of an eye�) an appropriate answer or an instantaneous imitation.

Motivations:
When replicating a motion, several spaces can be chosen to compute the distance to the
original motion. However, in a given context, only one of them is relevant. The idea of
the paper is to automatically recognize the relevant space, which would then be used as
the reference task space to replicate.

Approach:
The task recognition is performed only from the body trajectories without using any
contextual information: the input is the con�guration trajectory of the demonstrator.
The motion is then projected in each task space of a candidate task pool and �t with
a reference trajectory. The residue of the �tting is used to select the best task among
the candidates. The e�ect of this task is then canceled from the original motion by
projecting it in the space orthogonal to the task. The iterative selection �nally ends
when the residual motion is null.

Results and contributions:
The approach was applied to disambiguate similar-looking motion of HRP-2. A real
experiment was achieved using the motion capture system to realistically acquire the
robot motion. The method produces very good performances even in the presence of
noise.

Limitations and perspectives:
The set of possible tasks has to be known beforehand. This is a strong assumption
when working with human. A preliminary experiment was set to recognize minimum-
jerk trajectories of the human hand during a pointing task, but the generalization to any
human motion is still an open topic.
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• Is there some characteristic trajectories in a space linked to the executed action?

• what are the combination rules to generated the whole-body trajectories from several
given objectives?

11.3.1 Model of task

The task-based approach, consisting in characterizing the on-going action into a reduced
space, seems relevant in view of some biomechanics studies [Latash 02, JacquierBret 09]: for
a repetition of movements, the variance is lower in some spaces intuitively linked to the
objective of the motion while the variance increases in the orthogonal to this space. However,
the trajectory itself may not be a characteristic of the observed movement. For example, we
have considered in a preliminary experiment the motion of the tip of the �nger in a distant-
reach task (see Fig. 11.5-(a)). The trajectory is a classical minimum jerk, easily detectable
with the �tting optimization problem formulated in the previous section (see Fig. 11.5-(b)).
However, this trajectory may not be characteristic, as we can expect to get a similar answer
from other parts of the body.

11.3.2 Task composition and motion generation

From a human demonstration, we can extract some features that are intuitively linked to
the demanded objectives: the hand motion when reaching, the COM or ZMP trajectories
if balancing matters, etc. From these basic features, we now would like to reconstruct the
motion of the whole body, i.e. the trajectories of all the joints angles and torques or the
activities of the muscles. Generation of realistic human motion is an objective per se, that
goes far beyond the work presented in this chapter. The preliminary work presented below
makes the link to vaster perspectives that are developed in the �nal chapter.

This objective is partially addressed in many topical works, where the muscle activity is
reconstructed from an accurate tracking of all the parts of the body, with if possible additional
data such as the evaluation of physiological states of muscles with electromyography or the
contact application forces with force plates [Rasmussen 01, Nakamura 05]. Here, we take the
hypothesis that all the possible parameters of the body model should be taken into account
and participate to the naturalness of the generated motion. A �rst step in this direction is to
use the inverse dynamics presented in Chapter 6 to solve at the same time the kinematics and
the dynamics of the system. Among the possible redundancy left for a given motion, we are
expected that the dynamic information is leading to choose a motion that looks more natural.
Such approach often relies �nally on the choice of the most appropriate cost function that can
be used for the optimization [Chadwick 09]. The dynamics of the system by itself acts as a
cost function that drives the choice among the redundant movements.

Fig. 11.6 shows a preliminary experiment. As previously, the human is asked to reach
an object with the �ngertip (to avoid any problem due to the orientation of the hand) while
standing on one foot (to avoid any problem due to a close kinematic chain). The same
objectives are given to an avatar whose inertia parameters are those of the human subject
and solved once by inverse kinematics and once by inverse dynamics. Motion artifacts appear
in the motion obtained by inverse kinematics: the left arm drifts upward, the chest unnaturally
tilts backward, the neck takes a strange angle. Those artifacts disappear when generating the
motion by inverse dynamics. Di�erences remain with the human performance that may be
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t = 0s

t = 1.8s

t = 3.8s

t = 5.6s

(a) Inverse kinematics (b) Inverse dynamics (c) Human performance

Figure 11.6 � Comparison of a motion generated by inverse kinematics or dynamics with a
real human performance. The avatar (a) and (b) has the same characteristics as the human
subject (dimension and inertia) although the appearance is based on HRP-2 (for technical
reasons). Motion artifacts appear in inverse kinematics that are naturally canceled when
taking into account the body dynamics.
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removed if taking a more accurate avatar model (taking into account the muscle actuation
redundancy for example). Similarly, the joint torques generated by inverse kinematics and
dynamics where compared with the torques reconstructed by inverse dynamics of the human
performance. As expected, the torques trajectories are closer to the natural ones using the
inverse dynamics.

11.4 Conclusion

The main contribution of this part is to write the trajectory recognition problem as a dual
problem of the motion generation problem. The same paradigms can thus be used in direct
(generation) and inverse (recognition) motion problems. The chapter opens many perspectives
both in motion recognition and imitation and in generation of human-like motions and human
model animation. The problem was here introduced in the context of the motion recognition,
but it originally comes from biomechanics for the understanding of human behavior models.
Many applications directly comes from this �eld, in computer animation (for realistic render-
ing and digital mock-up evaluation) or in robotics (for human-robot interaction). Animation
of complex-actuation musculoskeletal models also makes a link with recent mechatronics de-
velopment, where co-contraction (variable sti�ness) plays a central role. These perspectives
are developed in the last chapter.
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Chapter 12

Demonstration

T
his chapter aims at giving an integrative overview of the methodologies developed in the
document, by presenting two demonstrators based on the stack-of-tasks approach and

software for the humanoid robot HRP-2. The �rst demonstration is an applicative presenta-
tion the humanoid robotics as a tool for collaborative working environments (CWE). It is an
overview of the capabilities of the humanoids for navigating and executing manipulation tasks
while standing or walking, in remote control or in autonomy, but in any case when low cogni-
tive charge is expected. The second demonstration emphasizes HRP-2 dancing in open-loop
during a live event. It is a demonstrator of the capabilities of our motion generation methods.
The realization of these demonstrators was the opportunity to validate the capabilities of our
approach seen as a robot motion programing language.

12.1 Robot at collaborative working environments

Reference paper [3] (see also [35, 33, 30])

�Robot@CWE� was the opportunity to demonstrate a complete integration of the actions
that can be expected from a humanoid robot working in a CWE: autonomy for simple tasks
like navigation in a known environment, passive physical cooperation to help a local operator
and teleoperation for the �ne-manipulation tasks. The scenario places the HRP-2 robot in a
construction site in Japan, working with both local operators physically present on the site,
and specialist distant operators working by teleoperation through the robot. The integration
was led by O. Stasse and the �nalization of the demonstrator was performed at JRL-Japan
by O. Stasse and P. Evrard in collaboration with the FP7 Robot@CWE consortium.

The global sequence of the demonstration is given in Fig. 12.1. The overall objective
�assemble a heavy object on the construction site with a local operator � is build by a distant
manager inside a virtual world. The robot autonomously navigates in the construction site to
position itself in front of the object to assemble. The precise positioning of the robot e�ector
is performed in teleoperation from Germany. The teleoperation then stops and the robot
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Figure 12.1 � Robot@CWE: UML sequence diagram.
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Figure 12.2 � Robot@CWE: Robot control kernel.

starts a physical collaboration with a local operator. In a �rst time, the robot is follower and
the operator guides it to the assembly spot. In a second time, the robot takes the lead and
performs the �ne assembly task with the assistance of the human.

The core of the robot motion generation is summarized in Fig. 12.2. The control is
composed of active-compliance (impedance) tasks to move the hands to which reference forces
are fed in during teleoperation, control of the gaze orientation from the references sent by the
distant operator. The COM trajectories are computed from the preview control based on
a linear inverse pendulum model [Morisawa 07]. The �ying foot is modi�ed using a fast
feasibility test [Perrin 10]. All the tasks are composed together using the classical stack of
tasks (3.26) presented in Part I and integrated using the subsequent software. All the details
about the robot sequence and the control implementation are given in [3].

The demonstrator proved to be very robust. It was validated with ten users that did
not know anything of robotics, acting as the local operator on the construction site. The
robot functioning model (switch between teleoperation and autonomy, physical cooperation,
etc) appeared clear to the users. The central part of the demonstration (carrying an object
in cooperation with the walking robot) was also used as a standard demonstrator of the
laboratory and was tested by a hundred of visitors.

This demonstrator proves �rst that our software and the surrounding methodology enable
the development of composed robotic movements inside a complex applicative framework.
Thanks to the use of sensor feedback, it is possible to obtain a good robustness. Finally the
demonstrator shows the practical interest of the humanoid robot for an industrial process and
gives an idea of the maturity of this technology, with one key missing point: the robustness
of the walk and of the robot balance in general.
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Multi-modal collaborative work with humanoid robots:
a case study with hrp-2

O. Stasse, P. Evrard, N. Mansard et al.

To be submitted soon [3]

Context:
This paper synthesizes the work done around the demonstrator of the FP7 Robot @
Collaborative Working Environment project, led by A. Kheddar.

Motivations:
The ambition of the Robot@CWE project are to show some case studies where a hu-
manoid robot is used in a working environment for autonomous, teleoperated, single or
cooperative tasks.

Approach:
The scenario shows the HRP-2 robot autonomously reaching a location after a request of
a distant user for a surveillance task. When in front of the object, the robot is driven by
a long-distance teleoperator to grasp an object. It then autonomously carries the object
in collaboration with a local operator, bringing the object some step away. A cooperative
positioning task is �nally performed by the robot and the local operator.

Results and contributions:
The paper shows the �rst real implementation of a sequence of cooperative tasks per-
formed autonomously or in teleoperation by a humanoid robot. Moreover, a complete
case-study with non-specialists local operator was performed, that proofs the robustness
of the demonstrator and the interest of the humanoid robot in realistic scenarios.

Limitations and perspectives:
The demonstrator is the results of the integration of several research project (walking,
teleoperation, whole-body motion generation, planning, etc). Each of the modules is
subject to its own limits and perspectives. In term of application, the main limitation is
the balance of the humanoid robot, that should be able to robustly handle non-�at ter-
rains and perturbations by the human collaborators before to be really used in industrial
contexts.
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12.2 Dance with a robot

Reference paper [2] (see also [19, 47])

The second demonstration answers to a command of Toulouse-City, asking for a mix tech-
nological and cultural know-how into a popularization event. For us, it was the opportunity
to validate the use of the methods based on the inverse dynamics for quickly generating stable
and e�cient robot movements.

12.2.1 Design

The demonstration was designed by the professional choreographer and dancer T. Benamara.
The choreography of the robot was �rst executed by T. Benamara and recorded using the
motion capture system. It was then cut in thirty-�ve sequences, each of them being sys-
tematically treated to generate the robot movements. Three types of sequence were consid-
ered: double-support (see Fig. 12.3-(a)), walking (see Fig. 12.3-(b)) and single-support (see
Fig. 12.3-(c)&(d)) sequences. The generation of motion for each sequence type is very similar.

Consider the double-support motion class �rst. The human posture is retargeted to the
closest robot con�guration: each marker of the teacher is associated to a position on the
robot body, which is adjusted by non-linear optimization. The position of the hands and the
orientation of the gaze are extracted from the geometrical retargeting. The motion is then
generated with an inverse-dynamics stack of tasks, with two contacts (one for each foot),
and the following hierarchy of tasks: right-hand, left-hand, gaze (following the trajectories
extracted from the demonstration) and �nally the posture (adjusting the con�guration at
best to the posture of the human teacher). Depending of the choreography speci�cations, the
hands and gaze tasks are relaxed if the movement is not meaningful for the dance. The COM
is not constrained and the force constraints with the posture task are su�cient to ensure the
balance.

The walk is produced by a linearized inverse-pendulum pattern generator. The footprints
and corresponding timings are �rst computed from the human trajectories, by detecting cluster
of static points in the foot trajectories. From the footsteps, the COM and foot trajectories are
computed by trajectory optimization [Morisawa 07, Herdt 10]. The motion of the whole body
is generated as previously by an inverse-dynamics stack of tasks, whose contact points are one
foot or the other (depending on the generated foot trajectories) and whose task hierarchy is:
COM, �ying foot (if any), right hand, left hand, gaze, posture.

The single-support sequences are generated similarly, with the COM trajectory being
manually designed (a simple pattern generator could be used) and tracking the �ying foot
trajectory from the human performance.

The motion is generated o� line: the dynamic retargeting is nearly real time, but the
data parsing and geometrical retargeting processes are not optimized and very slow. The
whole process takes �ve times the real time. The motion is then replayed by the robot. The
motion execution is nearly open loop. The only loop closure is done by the �exibility stabilizer
[Kaneko 94, Kajita 10b]: each foot of the HRP-2 is equipped with a compliant sole that is
meant to absorb the impacts during the walk. The control stabilizes the motion of these
�exibilities using the leg motors, the foot force sensors and the reference trajectories of the
leg joints, ZMP and chest attitude. The stabilizer is one of the basic controllers of HRP-2
and is used in nearly all our demonstrations.
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(a) Fast arm movements in double support

(b) Walking while moving the arms

(c) Single support and arm movements

(d) Bending the chest in single support

(d) Final motion: single support and ending bow

(e) Snapshot of the event organization

Figure 12.3 � Snapshot of the performance �Dance with HRP2� performed with T. Benamara
using the HRP-2 robot, at Toulouse City music mall �La Halle aux Grains�, on the sixth of
October, 2012.
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12.2.2 Results

The dace is composed of more than �fteen minutes of motion with nearly ten minutes gener-
ated from the motion capture. The rate of automatic translations from the human motion to
a trajectory that the robot is able to replay is very high (100% for double-support sequences,
80% for single support) except for the walk. The generated upper-body motion implies im-
portant torques on the robot feet. The stabilizer is then not able to perfectly compensate for
these dynamic e�ects, because of di�erences between the real robot and the model used by
the control. Consequently, the robot behavior during the walk is poor and there is a higher
risk of fall, which is not acceptable during a demonstration. For large motions of the arms
during the walk, we �nally had to simplify the choreography by removing the upper-body
movements during some walk sequences (in four sequences over six).

These e�ects open some very interesting scienti�c problems in the control and estimation
of the robot dynamics. Yet we are not able to apply the inverse dynamics proposed in
Chapter 6 as a controller of the robot. The development of such a robust controller would
make it possible to execute for example large arm movements during the walk. It is one of
the perspectives developed in the next chapter.

As explained in Chapter 6, it is not possible to rely only of the instantaneously linearization
to control the balance stability. Furthermore, it is di�cult to track the movements of the
human-teacher's COM. We rather had to rely on the external computation of the COM
trajectory, which is disappointing. Using an approximation of the captured human COM
(for example, the position of the hip bone) was not su�cient: apparently, the dynamics are
too di�erent to easily absorb such inaccuracy. None of that would be problematic if using a
whole-body MPC optimizing the distance to the human posture on a preview window (for
real-time imitation, obtaining a preview of the human posture would raise another kind of
problem [Benallegue 10]).

12.2.3 Conclusions

The demonstrator proves the e�ciency of the task-based robot programing approach. The
complete dance show was composed of 15 minutes of whole-body movements and was de-
veloped by a just-graduated engineer (O. Ramos) in less than two months. The motion
capture is of a great help in this task, as it is known for a long time in computer anima-
tion [Ginsberg 83, Sturman 94]. In particular, the only interaction of the choreograph with
the motion generation system was through the motion capture, on the contrary to other
robot dance where the choreograph has to work directly with the software de�ning the mo-
tion [Nakaoka 10]. With a little bit of additional engineering, it would be possible to provide
to the choreographer an automatic and quick repetition of its movement by the robot, in order
to enable a more �uent interaction during the design of the motion.

The strength of the approach comes in part from the use of the robot dynamics in the
generation process. Contrary to inverse kinematics, where many parameters have to be tuned
to enable a real execution by the robot (in particular to scale the respective velocities in the
several task spaces and the accelerations at the beginning of each task), the inverse dynamics
naturally produces movements �tting the robot dynamics and provides a better rate of success.
According to us, the inverse dynamics is now nature enough to completely replace the inverse
kinematics for motion generation on humanoid robots.
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This success should not hide the fact that the robot follows a reference acceleration coming
from the inverse-dynamics solver, while the reference torques would provide a more robust
behavior during physical interactions (typically, for dealing with uncertain contacts like a
non-�at �oor). The inverse dynamics is seen here as a motion generation method rather than
a controller. Moving to a real closed-loop sensor-based inverse-dynamics control onboard
the real robot is one of the perspectives of this work and of a large community around the
humanoid robotics today.

Even when only considering motion generation, a limitation of the approach is the inca-
pacity to take into account the future of the robot. This is critical for considering the robot
balance and for walking. The robot balance cannot be simply de�ned as a local criterion on the
COM, like it is done with the quasi-static hypothesis in inverse kinematics. It is rather de�ned
in terms of future evolution of the robot, for example by the viability [Wieber 02, Wieber 08]
or capturability [Pratt 12, Koolen 12]. Today (and in particular for this demonstrator), we
have to rely on a simpli�ed model of the robot dynamics, the linearized inverse pendulum, to
handle the future through trajectory optimization. It is not possible in these conditions to
have a complete integration of walking and whole-body animation. As explained by J-P. Lau-
mond in his class [Laumond 12], there is a gap between the underactuation inherent to the
mobile robot and its hyper redundancy [Kanoun 11b]. The future could be taken into account
by optimizing the whole future trajectory, as studied in Chapter 10, but the cost remains too
expensive today for control, even if some new techniques could lead to this goal in a not-so-far
future [Tassa 12, Pham 12].

On a technological point of view, the dance demonstrator is interesting for the short
time necessary for its development, even if it does not reached the best performances, e.g.
[Nakaoka 07]. However, for people at large, there is little di�erences and we encountered an
unexpected interest during the live demonstration. For the �rst presentation, one unique live
demonstration was planned, followed by a scienti�c debate. We �nally had to cancel the debate
and replace it by two additional demonstrations in front of a full room. The second year, the
presentation (joined to a broader scienti�c debate with the scienti�c community of Toulouse)
attracted more than 1000 persons. This interest, joined to the relatively quick development
time (with the now-developed tools, we estimate the replication of such an event to three
weeks of work for three persons including the choreographer) makes of live demonstrations
with such robots a realistic business. Some professional demonstration robots already exists,
such as the �Dances with Robots� in France in the Futuroscope [Solveig 12] or the �Theater of
Robots� around the speci�c robot platform Robothespian [EAL 12].

12.3 What demonstrations teach us

This chapter was given as an exempli�cation of the work presented throughout this document.
�Robot@CWE� is the occasion to challenge the versatility of our concepts into a broader
demonstration involving a large architecture, several human partners and several computing
units around the world. �Dance with HRP-2� validates the interest of the approach as a basic
tools that a robotics engineer can use to animate the robot. These two demonstrations are
also the occasion to emphasize the limits of the current work and are a transition to the
perspectives developed in the next chapter.
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Dance with HRP-2:
a case-study of fast development of dynamics whole-body movements

O. Ramos, N. Mansard, O. Stasse, S. Hak, L. Saab, C. Benazeth

Submitted to IEEE Robotics and Automation Magazine [2]

Context:
The paper presents the methodology used to develop the motions of HRP-2 for the dance
show designed by the choreograph T. Benamara. The presentation occurred three times
on October 2011 and once in October 2012 in front of 1200 spectators.

Motivations:
The Dance with HRP-2 project is the opportunity to show the interest of the inverse-
dynamics approach for the generation of whole-body movements for humanoid robots.

Approach:
The movements were �rst demonstrated by T. Benamara and recorded using a vision-
based motion-capture system. The human posture is extracted by solving for each pose
a non-linear least-square problem. The resulting posture is then dynamically retargeted
using the inverse-dynamics solver. When necessary, tasks are added to obtain a more
accurate replication of the movement (in particular, for fast motion of the COM). For
walking, an inverse-pendulum based pattern generator is used to design the COM tra-
jectory.

Results and contributions:
Motion capture together with inverse dynamics for reshaping allows a pretty fast devel-
opment time. Nearly twenty minutes of motion were designed in less than two months
by a single programmer.

Limitations and perspectives:
The process from the motion recording to the replay by the robot is not purely automatic:
for complex movements, the robot programmer has to select some relevant aspects that
are more important to imitate (e.g. hand position or COM). The motion is computed o�
line and then replayed in open loop by the robot. Real-time recognition and replication
is a very demanding open challenge.
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Sensing: The �rst aspect concerns sensor feedback. We have seen that humanoid robots
are equipped with standard sensors, cameras, force sensors and IMU and that the task func-
tion approach enables to easily linked sensing and control, directly or by reconstruction. The
sensory feedback is �nally a simple adaptation of some techniques originally developed for
classical manipulators (force control, visual servoing) or mobile robots (IMU-based localiza-
tion tracking). However, we can wonder if the humanoid robot, by its mobility, underactuation
and redundancy, does not imply the development of speci�c sensory capabilities. In the �rst
demonstration, we can see that there are many di�erent modalities during a robot action: ma-
nipulation, navigation in open terrains, walk with precise footstep positioning, manipulation
while walking, etc. Each modality comes with some speci�c sensing model: navigation does
not require the same accuracy of perception than manipulation. The originality of humanoid
robots is the continuity between the di�erent modalities. On a perfectly horizontal terrain, the
robot can navigate like a unicycle. On a rough terrain [Hauser 08], the locomotion is rather
resolved by the techniques developed for dexterous manipulation [Han 98, Bouyarmane 10].
The transition between �at ground and rough terrain is continuous and requires a continuous
overlapping of sensory-feedback strategies.

These questions about sensing also cover the development of tactile capabilities (skin)
[Dahiya 10] and variable impedance capabilities (muscle-like actuation) [Flacco 12]. In the
same direction, there are some strong questionings about the sensor-based motion generation,
control but also body design, for the control of the balance and the walk. These questions
arise from the comparison with the human synergies, where some evidence shows that the
control paradigms are in opposition to robot strategies.

Balancing: This last question opens to the sense of balance, for which most of the di�culty
on the control part. Paradoxically in humanoid robotics, the balance is not a notion with a
very strict de�nition. A given motion is often said stable when it can keep a stable contact
[Pang 00, Hirukawa 06]. Typically, the walking motions obtained by MPC [Kajita 03] are
said stable in the sense that the ZMP condition, upon which they are build, ensures a stable
contact with some robustness [Sardain 04]. This notion is linked to balance if the robot
implicitly is in a stable locomotion cycle [Grizzle 01]. More generically, balance is de�ned by
the future states of the robot. Viability, which is the ability of not falling into a undesirable
state [Wieber 02], is certainly the most generic de�nition. A reduction is capturability, the
ability to nullify the robot velocity in a �nite number of steps. [Pratt 12].

As said upper, it is not possible to take such complex criteria depending on the future states
of the robot in the proposed control loop. We can hope that a direct writing of such conditions
into a non-linear numerical solver would bridge the gap with the instantaneously-linearized
formulation that we have considered here. In that case, the solution to the problem of balance
is purely technological: we �just� have to wait for the su�cient computing capabilities and
use them to solve a more complex but similar problem. A very impressive �rst step in this
direction is given in [Tassa 12].

In the meantime, balance does not spontaneously appear in the motion generated by our
approach. It has to be enforced by additional models, for example by arti�cially limiting
the COM movements [Sugihara 02] or by pre-computing the COM trajectory using a walking
pattern. This division between whole-body movements and balance criteria leads to arti�cial
problems, such as the di�culty to choose if a walking step is necessary [Yoshida 06] or where
the next footprint should be positioned [Kanoun 11b] to accomplish a criteria written at the
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whole body level.

Planning: Finally, very little integration has been done at the planning level. In the �rst
demonstration, all the decision capabilities have been forwarded at the symbolic level by the
scheduler or directly to a human operator by using teleoperation. A planner was used but
only for simple navigation. In the second demonstration, there was absolutely no decision,
the demonstrator being rather at the motion-generation level. It is possible to autonomously
plan movements with a humanoid robots [Ku�ner 03, Yoshida 05, Berenson 11, Baudouin 11].
The problem is complex because of the dimension of the robot con�guration space and of the
manifold structure coming from the robot constraints [Dalibard 10]. This complexity is known
and is studied.

Many other problems arise when trying to execute the planned trajectories on the real
robot. Indeed, it is a di�cult problem to formulate the planned trajectory as a control
objective. The approach by joint trajectory is coming from the manipulation robotics, where
the trajectory is the con�guration space directly leads to a controller [LozanoPerez 83]. The
same paradigm may not be the most useful in humanoid robotics. This issue is linked to the
questions listed in the sensing paragraph on the previous pages: it is di�cult to automatically
�nd the sensor that can be used to servo the trajectory tracking. More generically, the
problem comes that the planner does not give any explanation about the path it has selected.
A semantic has to be recovered from the path before sending it to a controller.

These open questions are a mixed of technological and scienti�c problems. Some directions
to address them are given in the next chapter.
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Chapter 13

Conclusion and perspectives

B
eyond the dream of a robot companion working as the perfect servant acting among
humans, our laboratory humanoid robots are giving an idea of the potential application

in robotics. For a direct application of the humanoid robot outside of the laboratories, safe
locomotion and balance remain the major open issue, as illustrated by being one of the primary
targets of the DARPA robotics challenge [Guizzo 12]. But humanoid robots also open the
way to many developments for smart robotics cell and human-friendly mobile manipulators.
In this view, the humanoid robot is only one complexity-step further to other robotics setup.
All these setups, from the simple work cell in factory to the science-�ction among-human
humanoid robot, are needed some advances in soft motion prototyping, for both supervised
and autonomous motion generation. In this chapter, my contributions to achieve this goal
are �rst quickly summarized, before introducing my future research orientations.

C
ontributions

The document has followed our bottom-up approach. Contributions have been detailed at
the end of each chapter. A quick list is synthetically recalled here.

Part I: Control level

The �rst part is aiming at building a task-based low level controller that simultaneously covers
all the robot modalities and o�er some easy high-level control inputs. The approach relies on
the task-function approach. It provides an abstraction hiding the joint-level robot control and
in exchange o�ers a proto-symbolic control of the robot by selecting or modifying the active
tasks.

Hierarchical task inversion: The main concern when combining several tasks on a redun-
dant structure is the possible arising singularities. Singularities are intrinsically due to the
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non linearities coming from the robot structure. However, if each combination of two tasks
may rise a singularity due to possible con�ict, the number of singular regions exponentially
increases with the number of tasks. Setting a hierarchy between the active tasks is a way to
handle the singularities due to con�ict, or at least a way to limit the impact of each singularity
to a limited number of DOF. Based on the well-known works on the redundancy framework
[Siciliano 91, Baerlocher 04], our work has focused on the insertion of inequality-written tasks
into the stack of tasks. We have proposed two solutions. The �rst one [8] is based on a ho-
motopy between free and saturated controllers. It o�ers a very smooth control. However, the
cost increases with the number of inequality constraints and prevents practical systems with
a large number of DOF. The second one [4] is based on active-search algorithms, which are
a way to handle this complexity. We have proposed a hierarchic version of the active-search
algorithm and implemented it into an e�cient HQP solver [28, 4]. The solver is able to solve
in real-time (less than 1ms) an inverse kinematics for a 40-DOF robot. In my opinion, this
solver and its application to inverse dynamics is the main practical contribution of this doc-
ument. I believe it is going to replace any iterative pseudo-inverse based inverse-kinematics
implementations (that we have shown theoretically equivalent and far less e�cient) in a near
future.

Continuity and damping: The hierarchy is a way to handle the con�icts between tasks,
by preventing the propagation of the singularity e�ects to the tasks having priority. The
hierarchy also simpli�es the diagnostic by isolating the singular task. We have shown how it
is possible to put into evidence the source of the numerical problems from the HCOD at the
foundation of the solver. The next step is to automatically treat the singularity, by adding
a kind of �fuse� that would continuously cut out the singular parts of the task. Such a fuse
is known as damping by roboticists. It avoids a waste of motion resources by a task that, in
any case, will not be properly executed because singular.

If we are not able to propose a solution yet, our contribution here is to make explicit the
need of such a damping term and to connect it to the problem of continuous task sequencing.
Indeed, removing a task from the stack is nothing more than increasing its damping term
until e�ective cancellation. Practical solutions to enforce the control continuity during the
task transition have also been proposed.

Fast operational-space inverse dynamics: Inverse kinematics can only handle motions
in the free space. Contact or balance can be arti�cially introduced but this formulation
presents some limitations. The natural extension is to add the dynamics model of the robot.
We have proposed an operational-space inverse dynamics able to handle priorities among
a large number of tasks. The objective is to reach real-time (1ms) computation on board
robot computers. With the proposition of a condensed dynamic solver, we nearly reached this
objective and have started the practical implementation on the robot.

And the robot: A big e�ort has been deployed to e�ectively applied the methods on the
robot. The physical machine brings uncertainties in the control loop. These uncertainties are
resolved by closing it on the sensor feedbacks. We have in particular worked with the cameras,
the force sensors and the IMU to produce real and e�cient movements on the humanoid robot
HRP-2.
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Part II: Emergence of a motion semiotics

The second part of the document took advantage of the low level layer built in the �rst part
to propose a methodology to assemble the basic motion components in complex movements.
Rather than a complete working method, this second part proposes a promising route for
future researches that we refer as �semiotics of motion�.

Automation of task sequences: The ultimate goal is to provide an automatic solution
to assemble the tasks in a complex sequence. In this direction, we have shown that a task
sequence can be used as an implicit trajectory representation. Such a representation enables
at the same time a planner to perform geometrical reasoning on the trajectory and a controller
to e�ciently execute the trajectory while relying on the sensors. We have proposed a solution
to compute the numerical components of a task and automatically convert a deliberative
symbol into a control-ready proto-symbol.

Motion description: Since a task can be used to represent a motion to be executed by
the robot, it can also be used to describe an observed motion. We have used decomposition
by tasks to recognize the movement realized by an external structure. The method is able to
distinguish between very similar-looking movements.

And the robot: We also made a lot of e�ort to provide an e�cient implementation of our
approach that can be used to animate a real robot. In particular, the software StackOfTasks,
counting about 250 000 lines of code, is provided in open source and has been used in several
demonstrations and experiments in four (and soon �ve) laboratories. We have also worked
directly in two real-scale demonstrators. The �rst one, Robot@CWE, proves the concept
of semi-autonomous humanoid robots working in CWE. The second, Dance with HRP-2,
demonstrates the expressivity of the task-based approach to rapidly developed complex robot
motion.

P
erspectives

Several perspectives have been expressed along the document, in particular at the end of
each chapter. Some of them are gathered here and developed into a wider perspective. A
direct continuation of the work presented in the �rst part is necessary to reach a complete
embodiment of the multiple robot modalities. The objective is to build the larger possible
vocabulary of action, equipped with powerful and generic combination rules that make the
composition of complex action possible. In particular, perspectives are open to go one step
lower and use speci�c mechatronics to handle the limitation of the control.

This action vocabulary can be at the origin of two explorations. First, as explained by the
preliminary experiments we did, the task, viewed as proto-symbols of movement, can be used
to bridge the gap between planning and control. This does not solve the intrinsic complexity
of planning but gives a way to link geometrical reasoning to control supervision.

The developed low-level functionalities are progressively bringing the humanoid robot
closer to the humanoid body capabilities. The tools that we are developing to animate the
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robot can also be used to describe the movement principles of human beings. Direct applica-
tions to the �eld of arti�cial movements are the realistic animation of avatars, in particular
for ergonomics study on virtual prototypes, and learning-by-observation to ease the robot
programming.

Whole-body sensor-based dynamics-consistent model-

predictive control of the humanoid robot

This title looks like a Christmas wish list. It however corre-
sponds to the real todo-list to complete before completely cov-
ering the capabilities of the robot. In particular, the dynamics
motion produced in Chapter 6 were generated o�-line, and there
is a lot of work to do before obtaining the same result on the
robot while taking into account the sensor feedback. The cre-
ation of such sensory-motor loops requires to take into account
or to develop speci�c hardware for both the actuation and the perception systems. A preview
window on the robot future should be considered while computing the control law. MPC is
particularly important when the dynamics play a central role, for balance or when considering
elastic materials. These three aspects are closely related and are given below in an arbitrary
order.

Sensor-based dynamics: The target achieved in Chapter 6 was to compute the operational-
space inverse dynamics in real time. With classical CPU (e.g. those embedded at reasonable
cost on the HRP-2 robot), we achieve the whole-body computation in 5ms. For a method
of similar complexity [de Lasa 10], 1kHz was achieved by increasing the cost (both �nancial
and energetic) of the CPU. These results open the possibility to use the inverse-dynamics
scheme as the controller of the robot. Several problems need to be considered. First, an
inverse-dynamics scheme is relevant if the loop is closed on the force data. On the other
humanoid robot models of the same generation than HRP-2, only position control is possible.
One solution is to identify the actuation model and to by-pass the position-based controller
[Khatib 08]. On the other hand, it is possible to rather send the desired acceleration (inte-
grated twice into a desired position) and rely on force sensing to correct the impedance loop
[Hogan 85]. Both approaches are known to be limited, but can enable to obtain preliminary
results, in particular concerning the walk on uncertain terrains.

Following the technology developed in the HRP, Asimo or Hubo robots, France has started
some original design with cable backdrivable actuators [Olaru 09, Guizzo 10] that might enable
position controller to execute dynamic movements with a torque feedback of every joints.
Romeo is expected to settle in our laboratory in Summer 2013.

The alternative is to completely change the technology and to use actuators with intrinsic
torque-based control capabilities, by adding e�ort gauge following the DLR developments
[Ott 10] or with compliant actuation [Vanderborght 10]. It can be remarked that HRP-2
already has such capabilities, by embedding in the ankle at the same time a �exible element
and a 6D force-torque sensor. For walking at least, we have the proper experimental setup.

Consider now that it is possible to execute with the robot a torque reference. The question
is then to be able to reconstruct some models of physical interfaces. Preliminary worked
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have started with manipulators arm [Park 06b, Petrovskaya 07]. The approach has to be
generalized and augmented by the feedback of other sensors: for example adding vision to
force to reconstruct a surface, or the IMU to the integral of force data to evaluate the ground
friction or elastic parameters.

Toward dedicated mechatronics: The application of dynamics-based sensorimotor loops
are closely linked to the design and integration of new dedicated hardware. The insertion of
joint-torque sensing capabilities implies the addition of �exibilities in the kinematic tree. It
makes more complex the control models but it also enables the robot to store some energy in
the �exible parts and increase its power.

Force sensors measure the physical e�ects acting of the robot structure. For reconstructing
the contact interface, tactile capabilities (such as o�ered by a skin) provides very complemen-
tary information. For example, for point contact, a skin enables to localize the contact points,
while a single force sensor needs to combine several measures on a time interval before recon-
structing it.

Finally, if the humanoid tree shape is (by de�nition) nearly �xed, the design of speci�c
kinematic or actuation structures would be a need for e�cient robotics solution. The design
parameters (body length or mass) are already often decided by numerical optimization. We
could hope to integrate the mechanical design to the motion generation process to ease and
improve the decision of an integrated solution.

Preview window: As we repeated several times in the document, the instantaneous lin-
earization, done to obtained a simpler problem and track it in real time, is limited. The
robot balance cannot be considered as an instantaneous criterion. Similarly, the movements
of �exible elements are not subject to instantaneous linearization. Two concurrent approaches
can be considered.

The �rst one is to follow the hierarchical approach used for walking [Kajita 03]: a speci�c
reduced model is extracted, that gathers the relevant dynamical e�ect. This simpli�ed model
is handled by MPC and the solution is injected in the instantaneous linearized model that
then handles the whole-body aspects. This approach can typically be applied at the level of
each joints to handle the �exibilities [AlbuSchä�er 07b, Sardellitti 12]. The two drawbacks
are the lack of genericity (a dedicated model has to be design for each relevant dynamics)
and its sub-optimality (each dynamics being handled separately, which prevents any synergy
between them).

On the other hand, the entire dynamics can be solved in a big optimization problem.
The system is huge, but the theoretical continuity property of the optimum with respect to
the problem changes can be used to warm start each resolution and to signi�cantly reduce
the cost. Still, until recently, this direction was considered to be very appealing but also
very exploratory. The results demonstrated in [Tassa 12] show that it is now technologically
possible or nearly possible to apply this solution. The preview window widely increases
the expressivity of the control. It would for example directly handle the �exible elements.
However, prediction of the control means that we also have to predict the evolution of the
sensors, i.e. to increase the accuracy of the environment models, which can be di�cult to
perform in practice.
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Unifying planning and control

The idea behind the task-based control approach is to ab-
sorb at the lowest possible level the maximum of uncertain-
ties. Consequently, it is possible to reduce the granularity
of the model used at higher levels. However, the objective
is not to hide to a hypothetical symbolic level the physical
world that is intrinsically numeric. On the opposite, the
task-based level provides the necessary inputs to act in this
numerical world. We have shown in Chapter 10 that the task sequence can be used to describe
a trajectory simultaneously for the planner and the controller. The developments of this idea
are to use it to e�ciently drive some geometrical reasoning.

From folded con�guration space to symbols: We have described the speci�c folded
structure of the con�guration space of walker robots [Siméon 04]. Each leaf corresponds to
a set of contacts along with the robot is moving. Locomotion (at large) can be achieved by
moving from one leaf to the other. The classical complexity of path planning, arising from
the robot dimension, is increased by this nearly symbolic structure. The contact constraint
is in fact very close to the notion of task. When a task is regulated, it imposes a �xed point
in a given submanifold; said di�erently, it creates an implicit leaf in the con�guration space.
Moving toward the regulation of a task is nothing more than reaching a speci�c leaf along
with a new action can be activated. Sequences of tasks and contacts are used to solve the
manipulation problem in [Siméon 04].

The same approach can be generalized to various situations for simultaneous humanoid
locomotion and manipulation and in other simpler contexts of robotics. However, when
considering actions triggered by other actions or by a given object position, the problem
dimension increases and so increases the complexity. For example, if the robot can pick up
an object after opening a drawer, the state of the drawer (open or close) as to be embedded
in the con�guration space and increases the dimension. Hierarchical reasoning coming from
deliberative process can then be used to hide this complexity.

Task-based trajectories: To reduce the complexity, the planner works with simpli�ed
models. For example, kino-dynamics planning is barely used for humanoid robotics: the
model generally neglects the dynamics, or is reduced to the dynamics to a free �oating
wheel [Dellin 12]. The output trajectory in the con�guration is thus implicit. Optimiza-
tion can be used to validate or locally correct the whole-body trajectory [El Khoury 13,
Mordatch 12].

In that case, the task-based trajectory is interesting. Such a representation does not
need the complete con�guration trajectory to be computed. It also gives an augmented
robustness, since the trajectory is de�ned as an implicit tube and not as a zero-measure
thread. In particular, the vector �eld controlling the robot to track the trajectory is explicitly
(or nearly explicitly when tasks have to be combined) given by the task de�nition. However,
the convergence domain of the tube is not in�nite and its bound are di�cult (not to say
impossible) to compute. Moreover, the sequence of tasks corresponds to a physical meaning:
there is no sense to try to open the fridge door if the handle has not yet be reached. The
control is then �nally rewritten using the classical symbolic execution paradigms and the
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coupling with the sensor-based control has to be considered.

Synergies: Finally, we can deduce from simple observation that complex geometrical rea-
soning is most of the time avoided by human or other intelligent animals. When necessary,
the search is well guided by the brain experience. In [Dalibard 10], speci�c structures are
added to describe the a�ordance of the objects located in the robot environment, to guide the
search and to simplify the planning. Such documentations could be increased to gather the
main part of the decision process when the planner encounters a classical situation.

A large part of the complexity of sampled-based planning comes from the connection tests
to validate the transition between two nodes. There is a trade-o� to �nd when building
the planner: a more complex local method has a better chance to connect two nodes but is
more costly to evaluate. Learning techniques can be developed to approximate the feasibility
function and only test the connections that really have a chance to be validated [Perrin 10].
In the simplest cases, the feasibility function can validate an action without even calling the
planner.

Finally, empirical combination of actions can be stored and used to improve the perfor-
mances or the robustness of a movement. For example, when moving the arm to reach an
object in a cluttered environments, risks of collision are lowered by keeping the hand in the
FOV [Kanoun 09a]. Such synergies are even more important when using a redundant actu-
ation chain to perform a movement with a high dynamics, where each motor has to be used
at best to cope with the robot power limits. Learning from experience can be used to build a
description of the synergies. Their insertion in a task-based planner or in a task-sequence con-
troller is straightforward. Strong connections can be made with human motion description,
as discussed in the next section.

Toward human motion representation

The previous two sections have focused on motion gen-
eration, planning and control in robotics. In particu-
lar, we have concluded on the possibility to learn from
human strategies. We now consider the dual perspec-
tives: �how can the tools developed for robotics be
used to explain the natural motion?�. At the �rst
level, we can only consider the human body and try to replicate the way redundancy (both
in motion and actuation) is handled. Our approach can also renew a dialog with movement
neuroscience.

Biomechanics: The human body can be modeled by a rigid kinematic tree, subject to joint
constraints and limits, and actuated by redundant linear actuators, the muscles, wired to two
or more links by tendons. The muscles have their own constraints, in particular they are
limited to positive e�ort, to which it is possible to add constraints on the muscle or group
of muscles activation. Accurate models exist that directly enter in our motion-generation
framework. A �rst attempt would be to use these methodologies to generate in simulation
a motion of the musculoskeletal model. Such a result has direct applications for example in
PLM for virtual ergonomics study.
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The musculoskeletal model is redundant, both in motion and in actuation: for a same end-
e�ector target, there are several joint acceleration and muscle forces performing the reference.
The next step is to recognize the strategies used by the human body to select among this
redundancy. We can use numerical learning to identify these strategies, in order to replicate
them, for ergonomics purposes or realistic human motion rendering in computer animation.

Behind the numerical replication, understanding these synergies and adapting them to
redundant robot would close the loop, from robot to biomechanics and back to the robot.

Neuroscience of motion: From the robotics study, we gather mathematical and engineer-
ing tools to describe the motion. The biomechanics gives us a model of the body implementing
the embodiment of the movement. The natural continuation is to search for the control mod-
els of the human movement. The representation of action is a key research issue today in
neuroscience. Our tools for studying and generating arti�cial movements can give an input
to this research and lead to bene�cial dialogs in both directions.

Such a nice robot!

I would like to insist a last time about the importance in robotics
of the application on a physical robot acting in the real world.
This aspect becomes even more important now that robotics is
slowly moving to the real world. One of the major perspectives
is �nally nothing more than the direct application of our meth-
ods to industrial problems. The �rst objective of the task-based
approach is to simplify the programing of the robot motion and by this way, to ease the
introduction of complex robots in versatile processes. A typical example is the concept of a
Factory in a Day [Wisse 13], that is to say a generic industrial robotics process that can be
deployed within a day to start a speci�c production. Our robots are redundant, in the sense
that they can perform multiple variety of tasks without hardware modi�cation, by simply
changing the software. What is really missing now is to have the proper software toolboxes
to demonstrate the interest and the readiness of such technologies outside of the laboratory
context.
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Appendix A

Generalized inverse

A.1 Moore-Penrose pseudoinverse

The Moore-Penrose pseudoinverse can be seen as a generalization of the matrix inverse when
the matrix is not invertible. It is uniquely de�ned by the four conditions:

AA+A = A (A.1)

A+AA+ = A+ (A.2)
AA+ is symmetrical (A.3)

A+A is symmetrical (A.4)

It is referred as the pseudoinverse in all the document. A+ is also called the least-square
inverse because it solves the min-min problem

A+b = min
x∈S∗

||x|| (A.5)

with
S∗ = min

x
||Ax− b|| (A.6)

In other world, A+b corresponds to the least-square x that minimizes the distance from
Ax to b.

A.2 Non constructive property

The pseudoinverse always respects the following property:

A+ = AT (AAT )+ = (ATA)+AT (A.7)

When A is full-row rank (i.e. surjective, the rows of A are a free vector family), then AAT

is invertible and the �rst equality can be rewritten as a constructive property:

A+ = AT (AAT )−1 (A.8)
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When A is full-column rank (i.e. injective, the columns of A are a free vector family),
then ATA is invertible and the second equality can be rewritten as a constructive property:

A+ = (ATA)−1AT (A.9)

In general, these two equalities are false and only (A.7) is ensured. Moreover, if the
coe�cients of A+ have to be computed, non of the two forms above should be used as they
involved two matrix products and one poorly-conditioned inversion. Indeed, ATA and AAT

norms are lower than the square of A norm. Any numerical algorithms used to invert them
would then behave poorly.

A.3 Other generalized inverses

In the general case, the four conditions are necessary and su�cient to uniquely de�ne the
inverse. Inverses can be de�ned that only respects some of the four Moore-Penrose conditions.

To ensure a good behavior of the pseudoinverse-based control laws, (A.1) and (A.2) are
often su�cient1. A class of inverses that do not respects (A.3) and (A.4) are the weighted
inverse [Doty 93]. The size of A is denoted by m × n. Consider two positive de�nite weight
matrices L and R of dimension n × n and m × m, respectively. These matrices de�ne new
norms ||x||L =

√
xTLx and ||y||R =

√

yTRy . Then the R-right L-left weighted inverse AL#R

of A is de�ned as the unique matrix that ensures a minimal R-norm in Rm and a minimal
L-norm in Rm [BenIsrael 03] i.e.

AL#Rb = min
x∈S∗

L

||x||R (A.10)

with
S∗
L = min

x
||Ax− b||L (A.11)

Denoting by
√
L (resp. R) any matrix such that

√
L
√
L
T
= L (for example, the Cholesky

decomposition of L [Golub 96]), the weighted inverse can be constructed by:

AL#R =
√
R(

√
LA

√
R)+

√
L (A.12)

In particular, when A is full row rank, AL#R is independent of L (since the least-square
residue is always null). It is denoted by A#R. Using (A.8), the weighted inverse can be
constructed from [Doty 93]:

A#R = RAT (ARAT )−1 (A.13)

when A is full column rank, AL#R is independent of R (since A has a trivial null space).
It is denoted by AL#. Using (A.9), the weighted inverse can be constructed from [Doty 93]:

AL# = (ATLA)−1ATL (A.14)

Right weighted inverse are very important in inverse dynamics. R is then chosen to be
the generalized inertia matrix of the system. Left weighted inverse are important for varying-
feature-set tasks, where L is often used as an activation matrix.

1A matrix satisfying (A.1) and (A.2) is called a re�exive generalized inverse
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A.4 Singularities

A singularity arises when local structure of the direct geometry map h collapses, i.e. when
the rank of the corresponding Jacobian decreases. The pseudoinverse is always de�ned, thus
the behavior inside the singular region is not problematic. The pseudoinverse has a similar
behavior to the function:

σ →
{

1
σ if σ 6= 0
0 otherwise

(A.15)

This is actually the pseudoinverse of the matrix
[

σ
]

.
The point 0 is singular. Far from 0 and at exactly 0, the behavior is correct. The problem

is in the neighborhood of the singularity: there the inverse map increases toward the in�nity.
A classical solution is to damp the behavior of the inverse. This corresponds to apply a

Tikhonov regularization of the QP (3.17):

min
q̇

||Jq̇ − ė∗||2 + η2||q̇||2 (A.16)

where η is the damping parameter. The damped inverse can be explicitly formulated by:

Jη† = JT (JJT + η2I)−1 (A.17)

The damping of (A.15) is:

σ → σ

η2 + σ2
(A.18)

This is equivalent to 1
σ when σ is large and equivalent to σ

η2
when σ is close to 0. The

damped inverse will thus behaves like the pseudoinverse far from the singularity borders and
like the Jacobian transpose 1

η2
JT close to the singularity border.
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Seminotics of Motion

My work is aiming at establishing the bases of a semiotics of motion, in order to facilitate the pro-
graming of complex robotics systems. The objective is to build a symbolic model of the action,
based on the analysis of the numerical functions that drive the motion (control and planning). The
methodology comes from the well-known robotics concepts: motion-planning algorithms, control of
redundant systems and task-function approach. The originality of the work is to consider the �task�
as the unifying concept both to describe the motion and to control its execution.

The document is organized in two parts. In the �rst part, the task-function control framework
is extended to cover all the possible modalities of the robot. The objective is to absorb from the
lowest-possible functional level the maximum of uncertainty factors. It is then not any more necessary
to model these factors at the higher functional levels. This sensorimotor layer is then used as a basic
�action vocabulary� that enables the system to be controlled with a higher-level interface. In the
second part, this action vocabulary is used to provide a dedicated robotics programing language, to
build motion-planning methods and to describe an observed movement.

The proposed methods are generic and can be applied to a various systems, from robotics (re-
dundant robots) to computer animation (virtual avatars). Nonetheless, the work is more speci�cally
dedicated to humanoid robotics. Without forgetting other possible outlets, humanoid robotics pro-
vides a tangible applicative and experimental framework. It also leads toward the natural human
motion, as presented in the end of the document.

Keywords: Robotic, redundant systems, anthropomorphic mouvement, sensor-based control, task

sequencing, obstacle avoidance

Vers une sémiotique du mouvement

Mes travaux se proposent d'étudier les fondements d'une sémiotique du mouvement pour fa-
ciliter la programmation de systèmes robotiques complexes. Il s'agit d'établir des modèles
symboliques de l'action sur la base de l'analyse des fonctions numériques qui préludent au
mouvement (plani�cation et contrôle). Ce travail s'appuie sur la maîtrise de concepts robo-
tiques bien établis en algorithmique de la plani�cation de mouvements, en commande des
systèmes redondants et en modélisation de tâches. L'originalité de l'approche consiste à éten-
dre le concept de tâche comme un cadre uni�cateur pour décrire le mouvement à e�ectuer et
pour réaliser son exécution.

Le document est organisé en deux axes. Dans un premier temps, on cherche à étendre le
cadre de la commande par fonction de tâche, de manière à absorber au plus bas niveau un
maximum d'incertitudes qui n'auront ainsi plus à être traitées au niveau décisionnel. C'est
de cette couche sensori-motrices que j'entends faire émerger un � vocabulaire de l'action �
permettant une commande � haut niveau � du système. Dans un second temps, on s'intéresse
à l'organisation de ce vocabulaire pour la programmation et la planni�cation automatique de
mouvement, ou encore comme cadre descripteur de mouvements observés.

Les méthodes proposées se veulent génériques. Elles peuvent être appliquées à une grande
variété de systèmes allant de la robotique (robots redondants) à l'animation graphique (avatars
virtuels). Néanmoins, le travail est délibérément orienté plus spéci�quement vers la robotique
humanoïde. Sans condamner d'autres débouchés, cela permet de �xer à la fois un cadre
expérimental et un cadre applicatif précis, et comme présenté dans la �n du document, d'ouvrir
le projet vers la thématique plus générale du mouvement humain.

Mots-clefs : Robotique, systèmes redondant, mouvement anthropomorphe, asservissement
référencé capteur, enchaînement de tâches, évitement d'obstacles
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