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Abstract

Hierarchical least-square optimization is of-
ten used in robotics to inverse a direct function
when multiple incompatible objectives are in-
volved. Typical examples are inverse kinemat-
ics or dynamics. The objectives can be given
as equalities to be satisfied (e.g. point-to-point
task) or as areas of satisfaction (e.g. the joint
range). This paper proposes a complete so-
lution to solve multiple least-square quadratic
problems of both equality and inequality con-
straints ordered into a strict hierarchy. Our
method is able to solve a hierarchy of only
equalities ten time faster than the classical
method and can consider inequalities at any
level while running at the typical control fre-
quency on whole-body size problems. This
generic solver is used to resolve the redundancy
of humanoid robots while generating complex
movements in constrained environment.

1 Introduction

1.1 Context

Least squares are a mean to satisfy at best a set
of constraints that may not be feasible. When
the constraints are linear, the least squares are
written as a quadratic program, whose solution
is given for example by the pseudo-inverse. Lin-
ear least squares have been widely used in robot
control in the frame of instantaneous task reso-
lution [De Schutter and Van Brussel, 1988], inverse

(a) (b) (c)

Fig. 1: Various situations of inequality and equality con-
straints. (a) reaching a distant object while keeping bal-
ance. The visibility and postural tasks are satisfied only if
possible. (b) Obstacle avoidance, joint limits and support
polygon. (c) Grasping an object on the floor. Sequence of
subtasks naturally appears from the use of the hierarchy.

kinematics (IK) [Whitney, 1972] or operational-space
inverse dynamics (ID) [Khatib, 1987]. These ap-
proaches describe the robot objectives using a func-
tion depending on the robot configuration, named the
task function [Samson et al., 1991]. The time deriva-
tive of this function depends linearly on the robot
velocity, which gives a set of linear constraints, to be
satisfied at best in the least-square sense.

When the constraint does not require the use
of all the robot degrees of freedom (DOF), the
remaining DOF can be used to perform a secondary
objective. This redundancy was first emphasized
in [Liégeois, 1977]. Least squares can be used
again to execute at best a secondary objective
using the redundant DOF [Hanafusa et al., 1981],
and by recurrence, any number of constraints
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can be handled [Siciliano and Slotine, 1991]. Here
again, the pseudo-inverse is used to compute
the least-square optimum. The same technique
has been widely used for redundant manipulator
[Chiaverini et al., 2008], mobile or underwater
[Antonelli and Chiaverini, 1998] manipulator, multi
manipulator [Khatib et al., 1996], platoon of mo-
bile robots [Antonelli and Chiaverini, 2006],visual
servoing [Mansard and Chaumette, 2007], medical
robots [Li et al., 2012], planning under constraints
[Berenson et al., 2011], control of the dynamics
[Park and Khatib, 2006], etc. Such a hierarchy
is now nearly systematically used in humanoid
animation [Baerlocher and Boulic, 2004] and
robotics [Sian et al., 2005, Mansard et al., 2007,
Khatib et al., 2008].
Very often, the task objectives are defined

as equality constraints. On the opposite,
some objectives would naturally be written
as inequality constraints, such as joints lim-
its [Liégeois, 1977, Chaumette and Marchand, 2001],
collision avoidance [Marchand and Hager, 1998,
Stasse et al., 2008], singularities avoid-
ance [Padois et al., 2007, Yoshikawa, 1985]
or visibility [Garcia-Aracil et al., 2005,
Remazeilles et al., 2006] (see Fig. 1). A first
solution to account for these tasks is to embed
the corresponding inequality constraint into a
potential function [Khatib, 1986] such as a log
barrier function, whose gradient is projected into
the redundant DOF let free by the first objec-
tive [Liégeois, 1977, Gienger et al., 2006]. The
potential function simultaneously prevents the robot
to enter into a forbidden region and pushes it away
from the obstacles when it is coming closer. The
potential function in fact transforms the inequality
into an equality constraint, that is always applied
even far from the obstacle. However, this last
property prevents the application of this solution for
top-priority constraints.
To ensure that avoidance is realized whatever the

situation (and not only when there is enough DOF),
several solutions have been proposed, that try to
specify inequality objectives as higher-priority tasks.
In [Nelson and Khosla, 1995], a trade-off between the
avoidance and the motion objectives was performed.

In [Chang and Dubey, 1995], the joint limit avoid-
ance was used as a damping factor to stop the motion
of a joint close to the limit. Both solutions behave
improperly when the motion objective and the avoid-
ance criteria become incompatible. In [?], the con-
straints having priority were relaxed to improve the
execution of the avoidance constraint, set at a lower
priority level. However, this solution is only valid far
from the target point, and the obstacle may finally
collide at the convergence of the motion task. An im-
provement is done by temporarily relaxing the most
distant DOF in [Mansard and Chaumette, 2009], but
that cannot solve the main problem. In the cases
where damping is not sufficient, clamping was pro-
posed [Raunhardt and Boulic, 2007]. It was ap-
plied for example to avoid the joint limits of a hu-
manoid [Sentis, 2007]. However, this solution re-
quires several iterations and might be costly. More-
over, it is difficult to relax a DOF that was clamped.
In [Mansard et al., 2009], it was proposed to realize
an homotopy between the control law with and with-
out avoidance. A proper balance of the homotopy
factors ensures that the objectives having priority are
respected. However, the cost of this solution in com-
plex cases is prohibitive. A reduction was proposed
in [Lee et al., 2012] in the case of joint limits but in-
volve very specific study for each new type of task.

Alternatively, the inequality constraint
can be included in the least-square program
as it is [Nenchev, 1989, Sung et al., 1996,
Decré et al., 2009]. Such a solution is very pop-
ular for controling the dynamic of the simulated
system [Collette et al., 2007, Salini et al., 2009,
Bouyarmane and Kheddar, 2011]. These papers
can consider inequality constraints but loose the
possibility of enforcing priorities among them.
The earliest and most obvious approach to solve
such hierarchical optimization problems is to solve
single-objective optimization problems successively,
in cascade [Behringer, 1977]. A dedicated simplex
solver was designed in [Isermann, 1982] for linear
problem only. Cascade was then applied to quadratic
problems in [Kanoun et al., 2011], which gives the
first definition of a hierarchical quadratic program
along with a simple yet limited resolution. A simpli-
fied version was proposed in [De Lasa et al., 2010],
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that improves the computation cost but prevent the
inclusion of inequality except at the top priority.
Specific work on the solver linear decomposition
was used in [Escande et al., 2010] to avoid repetitive
computations, reduce the resolution cost while
keeping a generic formulation.
Before defining the objectives and specificities of

our approach, we rewrite briefly the main resolution
schemes for hierarchy of quadratic problems (with
and without inequalities) in the next sections.

1.2 From inverse kinematics to least
square

The task-function approach [Samson et al., 1991] is
an elegant solution to express the objectives to be
performed by the robot and deduce from this expres-
sion the control to be applied at the joint level. Con-
sider a robot defined by its configuration vector q and
whose control input is the joint velocity q̇. A task
function is any derivable function e of q. The evolu-
tion in the image space (or task space) with respect
to the robot input is given by ė = Jq̇, with J = ∂e

∂q

the task Jacobian.
The objective to be accomplished by the robot can

then be expressed in the task space by giving a ref-
erence task velocity ė∗. Computing the robot input
boils down to solving the following quadratic least-
square program (QP):

Find q̇∗ ∈ Argmin
q̇

‖Jq̇ − ė∗‖ (1)

More generally, many robotic schemes relies on
solving linear equalities. For example, such a
QP formulation can also be encoutered to in-
verse the system dynamics in the operational
space [Khatib, 1987, Collette et al., 2007], compute
a walking pattern [Herdt et al., 2010] or optimize
a linearized trajectory of the robot whole body
[Pham and Nakamura, 2012]. The variables are for
example the joint accelerations, joint torques and
contact forces in the first case, the third derivative
of the center of mass for the walking pattern, the
coeeficient of an affine transformation in the last
case, and many types of equalities can be devised.
Hierachy of tasks has been widely used in inverse

dynamics [Khatib et al., 2008, Mansard et al., 2009,
Wensing and Orin, 2013] and we can forsee some in-
teresting application in optimal control too.

Consequently, we abstract in this paper these mul-
tiple contextes by considering a set of linear equality
constraints Ax = b. In case this set of constraints
is not feasible, it has to be satisfied at best in the
least-square sense:

Find x∗ ∈ Argmin
x

‖Ax− b ‖ (2)

Among the possible x∗, the solution that minimizes
the norm of x∗ is given by the pseudo-inverse:

x∗ = A+b (3)

where A+ is the (Moore-Penrose) pseudo-inverse of
A.

The set of all the solutions to (2) is given by
[Liégeois, 1977]:

x∗ = A+b+ P x̃2 (4)

where P is a projector on the null space of A (i.e.
such that AP = 0 and PP = P ), and x̃2 is any arbi-
trary vector of the parameter space, that can be used
as a secondary input to satisfy a second objective.

1.3 Hierarchy of equality constraints
[Siciliano and Slotine, 1991]

In this paper, we consider the case where p linear
constraints (A1, b1) ... (Ap, bp) have to be satisfied
at best simultaneously. If the constraints do not con-
flict, then the solution is directly obtained by stacking
them into a single constraint:

Ap =







A1

...
Ap






, bp =







b1
...
bp






(5)

The resulting QP can be solved as before. If the con-
straints are conflicting, a weighting matrix Q is often
used to give more importance to some constraints
with respect to others or to artificially create a bal-
ance between objectives of various physical dimen-
sions:

min
x

(Apx− bp)
TQ(Apx− bp) (6)
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Rather than selecting a-priori values of Q, it was
proposed in [Siciliano and Slotine, 1991] to impose a
strict hierarchy between the constraints. The first
constraint (with highest priority) (A1, b1) will be
solved at best in the least-square sense using (3).
Then the second constraint (A2, b2) is solved in the
null space of the first constraint without modifying
the obtained minimum of the first constraint. Intro-
ducing (4) in A2x = b2, a QP in x̃2 is obtained:

min
x̃2

‖A2P1x̃2 − (b2 −A2A
+
1 b1)‖ (7)

The generic solution to this QP is:

x̃∗
2 = (A2P1)

+(b2 −A2A
+
1 b1) + P̃2x̃3 (8)

with P̃2 the projector into the null space of (A2P1)
+

and x̃3 any vector of the parameter space that can
be used to fulfill a third objective. The complete so-
lution solving (A1, b1) at best and (A2, b2) if possible
is:

x∗
2 = A+

1 b1 + (A2P1)
+(b2 −A2A

+
1 b1) + P2x̃3 (9)

where x∗
2 denotes the solution for the hierarchy com-

posed of the two first levels, and P2 = P1P̃2 is the
projector over A2.
This solution can be extended recur-

sively to solve the p levels of the hierar-
chy [Siciliano and Slotine, 1991]:

x∗
p =

p
∑

k=1

(AkPk−1)
+(bk −Akx

∗
k−1) + Ppx̃p+1 (10)

with P0 = I, x0 = 0 and Pk = Pk−1P̃k

the projector into the null space of
Ak [Baerlocher and Boulic, 2004]. x̃p+1 is any
vector of the parameter space that denotes the free
space remaining after the resolution of the whole
hierarchy.

1.4 Projection versus basis multipli-
cation [Escande et al., 2010]

Given a basis Z1 of the null space of A1 (i.e. A1Z1 =
0 and ZT

1 Z1 = I), the projector in the null space of

A1 can be written P1 = Z1Z
T
1 . In that case, it is easy

to show that

(A2P1)
+ = (A2Z1Z

T
1 )

+ = Z1(A2Z1)
+ (11)

The last writing is more efficient to compute than the
first one due to the corresponding matrix size. Then,
(10) can be rewritten equivalently under a more effi-
cient form:

x∗
p =

p
∑

k=1

Zk−1(AkZk−1)
+(bk −Akx

∗
k−1) + Zpzp+1

(12)
where Zk is a basis of the null space of Ak and zp+1 is
a vector of the dimension of the null space of Ap. This
observation was exploited in [Escande et al., 2010]
(which constitute a preliminary version of this work)
to fasten the computation of (10).

1.5 Inequalities inside a cascade of
QP [Kanoun et al., 2011]

The problem (2) is an equality-only least-square
quadratic program (eQP). Searching a vector x that
satisfy a set of linear inequalities is straightforward
to write:

Find x∗ ∈ {x, s.t. Ax ≤ b} (13)

If the polytope defined by Ax ≤ b is empty (the set
of constraints is infeasible), then x∗ can be searched
as before as a minimizer in the least-square sense.
The form (2) can be extended to inequalities by in-
troducing an additional variable w, named the slack
variable, in the parameter vector:

min
x,w

‖w ‖ (14)

subject to Ax ≤ b+ w (15)

The slack variable can relax the constraint in case
of infeasibility [Hofmann et al., 2009]. This QP is
named a inequality QP (iQP, by opposition to the
eQP). In the remaining of the paper, we keep this
reduced shape with only upper bound, since it en-
compasses lower bounds Ax ≥ b, double bounds
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b− ≤ Ax ≤ b+ and equalities Ax = b by set-

ting respectively −Ax ≤ −b,

[

−A

A

]

x ≤

[

−b−
b+

]

and
[

−A

A

]

x ≤

[

−b

b

]

. Such an iQP can be solved, for

example, using an active-search method.
The work in [Siciliano and Slotine, 1991] is limited

to a hierarchy of eQP. In [Kanoun et al., 2011], a
complete solution to extend the hierarchy to inequal-
ity constraints was proposed. The method begins
with minimizing the violation ‖w1 ‖ of the first level
of constraints in a least-squares sense through (14).
This gives a unique optimal value w∗

1 since the cost
function is strictly convex in w1. It proceeds then in
minimizing the violation of the second level of con-
straints in a least-squares sense:

min
x,w2

‖w2 ‖ (16)

subject to A1x ≤ b1 + w∗
1 (17)

A2x ≤ b2 + w2 (18)

The first line of constraints (17) is expressed with
respect to the fixed value w∗

1 obtained from the first
QP, which ensures that the new x will not affect the
first level of constraints and therefore enforces a strict
hierarchy. In that sense, (17) is a strict constraint
while (18) is a relaxed constraint. The same process
is then carried on through all p levels of priority.

1.6 Reduction of the computation
cost [De Lasa et al., 2010]

The solution [Kanoun et al., 2011] makes it possible
to solve hierarchies of iQP. However, it is very slow,
since each constraint k is solved at the iQP of level
k and all the following ones. In particular, the first
constraint is solved p times.
In [De Lasa et al., 2010], a solution is pro-

posed to lower the computation cost by reduc-
ing the generic nature of the problem studied
in [Kanoun et al., 2011]: inequalities are considered
only at the first level, and this level is supposed fea-
sible. This hypothesis reduces the expressiveness of
the method, forbidding the use of weak constraints

such as visibility or preference area. However, this
expressivity reduction enables to obtain very im-
pressive result for walking, jumping or, as shown
in [Mordatch et al., 2012], for planning contacts and
manipulation.

The first iQP of the cascade does not need an ex-
plicit computation, since w∗

1 = 0 by hypothesis. Then
each level k > 2 is solved in the null space of the levels
2 to k − 1:

min
zk,wk

‖wk ‖ (19)

subject to A1(x
∗
k−1 + Zk−1zk) ≤ b1 (20)

Ak(x
∗
k−1 + Zk−1zk) = bk + wk (21)

where x∗
k−1 is the optimal solution for the k − 1 first

levels, and Zk−1 is the null space of the levels 2 to
k − 1. The solution in the canonical basis after the
kth QP is set to x∗

k = x∗
k−1 + Zk−1z

∗
k. The Zk basis

is computed from Zk−1 and a singular value decom-
position (SVD) of (AkZk−1).

If the first level is empty (or equivalently, if the
bounds are wide enough for never being activated),
this method is equivalent to (12). The global work-
ing scheme of the method [De Lasa et al., 2010] is the
same as [Kanoun et al., 2011] since both rely on a
cascade of QP computed successively for each level of
the hierarchy. The method of [De Lasa et al., 2010]
is faster since each QP is smaller than the previous
one (the dimension of zk decreases with k), while
each QP of [Kanoun et al., 2011] was bigger than the
previous ones (the number of constraints increases).
The method of [De Lasa et al., 2010] requires an ad-
ditional SVD, but this could be avoided since the
SVD or an equivalent decomposition is already com-
puted when solving the corresponding QP.

However, both methods [Kanoun et al., 2011] and
[De Lasa et al., 2010] have the same intrinsic prob-
lem due to the nature of the underlying active search
algorithm. Basically, it searches for the set of active
constraints, that holds as equality at the optimum.
At each new QP of the cascade, the optimal active
set may be completely different. The active search
may then activate and deactivate a constraint sev-
eral times when moving along the cascade, and the
succession of all these iterative processes appears to
be very inefficient in the end.
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Typical examples of this situation are given in Sec-
tion 6. Consider a humanoid robot that should keep
its center of mass inside the support polygon, put its
right hand in the front and its left hand far in the
back: when solving the right-hand constraint, the
center of mass will saturate in the front, which ac-
tivates the corresponding constraint. The front con-
straint is then deactivated when the left-hand con-
straint brings the center of mass on the back, while
the back of the support polygon becomes active. The
back constraint may even be deactivated if a last level
is added that regulates the robot posture.

1.7 Directions and objectives

By minimizing successively ‖w1‖, ‖w2‖ until ‖wp‖,
the above approaches end up with a sequence of op-
timal objectives

{

‖w∗
1‖, ‖w

∗
2‖, . . . , ‖w

∗
p‖
}

which is it-
self minimal with respect to a lexicographic order: it
is not possible to decrease an objective ‖wk‖ with-
out increasing an objective ‖wj‖ with higher pri-
ority (j < k). Considering a hierarchy between
these objectives or a lexicographic order appear to
be synonyms. The above approaches can therefore be
summarized as a lexicographic multi-objective least-
squares quadratic problem, looking for

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} (22)

subject to ∀k = 1 : p, Akx ≤ bk + wk

Using this formulation, the hierarchical quadratic
program (HQP) appears more clearly as a single
problem. In this paper, we propose to keep this
unity in the resolution scheme, by providing a solver
that considers all the priority levels at the same time,
which appears to be much more efficient. Moreover,
the monolithic resolution also enables us to warm-
start the solver, which is very important to enables
fast resolution when it is used to compute a control
law. Beside fast computation, it also enables the al-
gorithm to guarantee the convergence time (real-time
answer), which is also very important in control.
Our solver is based on the active-set method, where

an activation loop iteratively compute the optimum
of a sub-problem considering only inequalities. In

Section 2, we then focus on equality-only and describe
a hiearchical resolution scheme, equivalent to the
very classical robotics [Siciliano and Slotine, 1991]
method but up to ten times more efficient. The hi-
erarchical active-set algorithm is then described in
Section 3. In Section 4, we consider more specifically
the continuation property of the hierarchical prob-
lem, which is important if it used in a control frame-
work, and we explained how this property can be
used to obtain fast computations using warm-start.
The method efficiency is demonstrated by generating
whole body movements on a humanoid robot using
IK. The robotics setup is described in Section 5. Fi-
nally, the solver is compared in this context to our im-
plementation of the concurent methods, and is proven
to be much more efficient in practice.

2 Equality hierarchical
quadratic program

We propose in this section a method to resolve
a hierarchy of linear equality in the least-square
sense. This resolution of the primal optimum
of this problem equivalent to iterative solution
proposed in [Siciliano and Slotine, 1991] using the
task redundancy [Liégeois, 1977], upon which many
robotics control schemes are based [Chiaverini, 1997,
Baerlocher and Boulic, 2004, Sian et al., 2005,
Khatib et al., 2008, Berenson et al., 2011] to cite
a few. We propose a original decomposition that
encompases the hierarchy between the constraints.
Using the best expertise of numerical mathematics,
this decomposition provides a very fast computation
of the primal.

We also provide an expression and an algorithm for
the dual optimum, which is less used in robotics. An
rough approximation of it for hierarchy of constraints
was proposed in [Mansard and Chaumette, 2007].
The dual can quantify the involvement of each con-
straints to the primal optimum, and is very useful
to predict which constraint could be relaxed, for ex-
ample in the active-set algorithm. In simple case
like joint limits [Raunhardt and Boulic, 2007], it was
used to relax a saturated constraint.
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The optimality conditions are first expressed in
Sec. 2.1, upon which the decomposition dedicated to
hierarchical problem is built Sec. 2.3. The primal
then dual optimum are finally expressed in Sec. 2.4
and 2.5 respectively.

2.1 Optimality conditions

At first, we consider an equality-only hierarchical
quadratic least-square program (eHQP). It is writ-
ten as a set of p eQP: at level k, the QP to be solved
is written:

min
xk,wk

‖wk‖ (23)

subject to Akxk = bk + wk (24)

Ak−1xk = bk−1 + w∗
k−1 (25)

where Ak−1, bk−1 and w∗
k−1 are the matrix and vec-

tors composed of the stacked quantities of levels 1
to k − 1 (by convention, they are empty matrix and
vectors for k − 1 = 0). w∗

k−1 is the fixed value ob-
tained from the previous QP. The Lagrangian of this
problem is:

Lk =
1

2
wT

k wk + λT
k (Ak−1xk − bk−1 − w∗

k−1)

+ λT
k (Akxk − bk − wk) (26)

where λk and λk are the Lagrange multipliers corre-
sponding respectively to (25) and (24). Differentiat-
ing the Lagrangian over the primal variables xk, wk

and dual variables λk, λk gives the optimality condi-
tions:

wk = Akxk − bk (27)

Ak−1xk = bk−1 + w∗
k−1 (28)

λk = wk (29)

AT
k−1λk = −AT

kwk (30)

The two first lines give the condition to compute
the primal optimum. From (29), we see that w is
indeed at the same time a primal and a dual variable.
The last equation gives the condition to compute the
dual optimum.

2.2 Complete orthogonal decomposi-
tion

In the first level, (25) and (28) are empty. The
primal optimum is computed by minimizing w1 in
(27), that is to say by a classical pseudo-inverse of
A1. The pseudo-inverse can be computed by per-
forming a complete rank revealing decomposition. In
robotics a SVD is often chosen. Alternatively, a
complete orthogonal decomposition (COD) can be
used1 [Golub and Van Loan, 1996]:

A1 =
[

V1 U1

]

[

0 0
L1 0

]

[

Y1 Z1

]T
= U1L1Y

T
1

(31)
where W1 =

[

V1 U1

]

and
[

Y1 Z1

]

are two or-
thonormal matrices, U1 being a basis of the range
space of A1, Z1 of its kernel and L1 is a lower tri-
angular matrix whose diagonal is strictly nonzero. If
the first level (A1, b1) is feasible, then A1 is full row
rank and U1 is the identity (V1 is empty). In that
case, (31) is the QR decomposition of AT

1 (or LQ
decomposition of A1).

The pseudo-inverse of A1 now only implies the eas-
ily computable inversion of L1:

A+
1 =

[

Y1 Z1

]

[

0 L−1
1

0 0

]

[

V1 U1

]T
= Y1L

−1
1 UT

1

(32)
The optimal solution x∗

1 is obtained by

x∗
1 = A+

1 b1 = Y1L
−1
1 UT

1 b1 (33)

Rather than computing the explicit pseudo-inverse,
the optimum should be computed by realizing a for-
ward substitution of L1 on UT

1 b1.
The corresponding slack variable is:

w∗
1 = A1x

∗
1 − b1 = U1U

T
1 b1 − b1 = −V1V

T
1 b1 (34)

1The COD is cheaper to compute than the SVD. The al-
gorithms to compute it involve a rather simple serie of basic
transformations and are known to be nearly as robust as the
algorithms computing the SVD (and much easier to imple-
ment). As a matter of fact, the conditioning advantage of the
SVD over the COD will come into play when we are so close
to singularity compared to the machine precision that the sit-
uation already is problematic from a robotics point of view.
It is one of the classical ways to solve rank deficient quadratic
least-squares problems [Björck, 1996].
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2.3 Hierarchical complete orthogonal
decomposition

Consider now the second level of the hierarchy (23)
(k = 2). As in Sec. 1.4, condition (28) can be rewrit-
ten using (33) and (34) as:

x2 = x∗
1 + Z1z2 (35)

where z2 is any parameter of the null space of A1.
Condition (27) is then written:

w2 = (A2Z1)z2 − (b2 −A2x
∗
1) (36)

=
[

A2Y1 A2Z1

]

[

Y T
1 x∗

1

z2

]

− b2 (37)

because Y1Y
T
1 x∗

1 = x∗
1. The matrix A2 is in fact

separated in two parts along the Y1, Z1 basis: the
first part A2Y1 corresponds to the coupling between
the two first levels. The corresponding part of the
parameter space has already been used for the level
1 and can not be used here. The second part A2Z1

corresponds to the free space that can be used to
solve the second level.
The optima x∗

2 and w∗
2 are obtained by performing

the pseudo-inverse of A2Z1 using its COD:

(A2Z1) =
[

V2 U2

]

[

0 0
L2 0

]

[

Ỹ2 Z̃2

]T
(38)

The basis W2 =
[

V2 U2

]

provides a decomposition
of the image space of A2 along its range space and the
orthogonal to it. The basis

[

Y2 Z2

]

= Z1

[

Ỹ2 Z̃2

]

is in fact another basis of the null space of A1 that
also provides a separation of the kernel of A2. In
particular, Z2 is a basis of the null space of both A1

and A2 that can be used to perform the third level.
The optimum x∗

2 is finally:

x∗
2 = x∗

1 + Z1(A2Z1)
+(b2 −A2x

∗
1) + Z2z3 (39)

= x∗
1 + Y2L

−1
2 UT

2 (b2 −A2x
∗
1) + Z2z3 (40)

=
[

Y1 Y2 Z2

]





Y T
1 x∗

1

Y T
2 x̃∗

2

z3



 (41)

where x̃∗
2 = Y2L

−1
2 UT

2 (b2 −A2x
∗
1) is the contribution

of the second level to the optimum and z3 is any

parameter of the null space Z2 used to perform the
following levels. The optimum w∗

2 is directly obtained
using (37). This can be written using the two basis
V2, U2 and Y1, Y2, Z2:

w∗
2 =

[

V2 U2

]

[

N2 0 0
M2 L2 0

]





Y T
1 x∗

1

Y T
2 x∗

2

z3



− b2 (42)

with M2 = UT
2 A2Y1 and N2 = V T

2 A2Y1 the cou-
pled part of A2 corresponding respectively to its fea-
sible space U2 and its orthogonal, and using Y T

2 x̃∗
2 =

Y T
2 x∗

2.

In (42) a decomposition of the matrix A2 appears,
that can be written generically for any k ≥ 2:

Ak =
[

Vk Uk

]

[

Nk 0 0
Mk Lk 0

]

[

Y k−1 Yk Zk

]T

(43)

= WkHkY
T
k (44)

with Nk = V T
k AkY k−1, Mk = UT

k AkY k−1, Y k−1 =
[

Y1 . . . Yk−1

]

and Hk =

[

Nk 0
Mk Lk

]

.

Stacking all the decompositions (43) for the k first
levels, a single decomposition of Ak is recursively ob-
tained by:

[

Ak−1

Ak

]

=

[

W k−1 0
0 Wk

]





Hk−1 0 0
Nk 0 0
Mk Lk 0



 [Y k−1 Yk Zk]
T

= W kHkY
T
k (45)

The complete form for the p levels is finally:







A1

...
Ap






=







W1

. . .

Wp









































0 0 0 0 0

L1
0 0 0 0

N2

M2

0 0 0 0

L2
0 0 0

...
...

...
...

Np

Mp

0 0

Lp
0



































Y T

8



with Y =
[

Y p Zp

]

.
If all the levels are feasible, all the matrices Ak

and AkZk−1 are full row rank and all the Nk matri-
ces are empty. In this case, the decomposition is a
COD of Ap. If there is no conflict between the levels,
all the Nk are zero. In this case, it is only a matter
of row permutations to turn the above decomposition
into a perfect COD of the matrix Ap, involving an in-
vertible lower triangular matrix. This decomposition,
which has been designed to enforce a strict hierarchy
between different priority levels, looks close to a clas-
sical COD and is indeed a COD in particular cases.
For this reason, we propose to call this decomposition
a Hierarchical Complete Orthogonal Decomposition
(HCOD) of the matrix Ap.
The HCOD reveals a lot of information about the

structure of the problem. In particular, algorith-
mic singularities [Chiaverini, 1997] appear in the ze-
ros above each Lk. The kinematic singularities cor-
responds to zero row in the Nk. Conflicts between
tasks can be quantified by looking at large columns
in the Nk: for a singular level k, a large column in
Nk indicate which lower level should be relaxed to
leave the singularity of level k. The redundancy of
the whole problem is described by the last column of
zeros and then can be used through Zp. And, like
with the SVD, small values on the diagonal of the Lk

indicates the proximity of a singularity. All the indi-
cators can be used when solving a control problem to
diagnose and improve the behavior of the controller.

2.4 Primal optimum and hierarchical
inverse

2.4.1 Computing x∗
p

We have seen in (40) that the primal optimum of the
second level x∗

2 is directly computed from H2 and x∗
1.

Using the same reasoning, the optimum of level k,
given by (12), is computed using Hk:

x∗
k = x∗

k−1+YkL
−1
k UT

k (bk −Akx
∗
k−1)+Zkzk+1 (46)

The least norm solution for x∗
k is obtained for every

zi+1 = 0, what we suppose from now on. As ob-
served in this equation, the optimum of each level
k is computed using the level k of the HCOD and

the optimum of level k− 1. By recurrence, x∗
p can be

computed directly using the HCOD, by reformulating
(46) in the following way:

x∗
p = A‡

pbp (47)

where A‡
p is defined by a matrix recursion:

A
‡
k =

[

(I − YkL
−1
k UT

k Ak)A
‡
k−1 YkL

−1
k UT

k

]

(48)

Or more simply, with the HCOD:

A‡
p = Y p H

‡
p W

T
p (49)

with

H
‡
k =

[

H
‡
k−1 0 0

−L−1
k MkH

‡
k−1 0 L−1

k

]

(50)

Matrix A‡
p is called the hierarchical inverse of Ap.

It respects three of the four Moore-Penrose condi-
tions used to define the pseudo-inverse (as shown in
App. A.1). It has been designed to enforce a strict
hierarchy between different priority levels and looks
close to a pseudo-inverse. For this reason, we pro-
pose to call this matrix the hierarchical inverse of
the matrix Ak.

2.4.2 Optimum structure

From this last form, we can see that the optimum is
structured by layer, following the hierarchy of prob-
lems. This structure is more evident when the op-
timum is computed in the Y basis. The primal op-
timum in the Y basis is denoted y∗

k
= Y T

k x
∗
k. The

contribution x∗
k − x∗

k−1 of the level k to the primal

optimum is denoted y∗k = Y T
k (x∗

k − x∗
k−1) (= Y T

k x∗
k

since Y T
k x∗

k−1 = 0). Then (46) can be rewritten as:

y∗
k
=

[

y∗
k−1

y∗k

]

(51)

where y∗k = L−1
k (UT

k bk−Mky
∗

k−1
). Each component k

of the optimum vector y∗
p
= (y∗1 , . . . , y

∗
p) corresponds

to the contribution of the level k of the hierarchy. The
study of y∗

p
is thus very informative to understand the

obtained x∗
p: for example the hierarchy levels that
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Algorithm 1 Primal eHQP

1: function eHQP primal(Ap, bp)
2: Input: HCOD of Ap, bp
3: Output: x∗

p, w
∗
p minimizing (23)

4: y∗
0
:= []

5: for k in 1:p do

6: e = UT
k bk −Mky

∗

k−1

7: w∗
k = Vk(Nky

∗

k−1
− V T

k bk)

8: e := L−1
k e

9: y∗
k
:= [ y∗

k−1
; e ]

10: end for

11: x∗
p = Y py

∗

p
, w∗

p = (w∗
1 , ..., w

∗
p)

12: return x∗
p, w

∗
p

induce large contributions in x∗
p directly appear in

y∗
p
.

As said upper, the primal optimum is equivalent
to the solution computed by the iterative projection
in [Siciliano and Slotine, 1991]. This clearly appears
in (46), with YkL

−1
k UT

k being the projected Jaco-
bian. The similarity are less evident in (50), buth
the HCOD interestingly reveals a sparsity, that is
used in Alg. 1 to reduce the amount of computa-
tion. The optimum in the HCOD basis y∗

p
also reveals

some information about the hiearchical structure of
the problem: the levels with the high participation in
the whole problem appear as large coefficient of y∗

p
.

On the robot, this can be used to understand the out-
put control and if necessary change the behavior of
the robot by removing or damping some of the tasks.

2.4.3 Computing the w∗
p

For each level k, the slack variable is directly obtained
from x∗

k using (27). By replacing Ak byWkHkY
T
k and

x∗
k by (51), we obtain:

w∗
k = VkNky

∗

k−1
− VkV

T
k bk (52)

= VkV
T
k (Akx

∗
k−1 − bk) (53)

The algorithm to compute x∗
p and w∗

p is summa-
rized in Alg. 1.

2.5 Transposed hierarchical inverse
and dual optimum

2.5.1 Dual expression

At level k, the dual optimum is given by (30), recalled
here:

AT
k−1λk = −AT

kwk

A solution (the least-square one) to this second opti-
mality condition can be obtained with the transpose
of the hierarchical inverse:

λk = −A
‡T
k−1A

T
kw

∗
k (54)

A quick proof is given in App. A.2. For each level
k, there is a multiplier λk that corresponds to all
the level of higher priority. There is no real sense in
stacking the multipliers of each levels. They can be
summarized under a matrix structure:

Λp =



















w∗
1

1λ2
1λ3 . . . 1λp−1

1λp

w∗
2

2λ3 . . . 2λp−1
2λp

w∗
3 . . . 3λp−1

3λp

...
...

w∗
p−1

p−1λp

w∗
p



















(55)

where jλk (j < k) denotes the components of the
multipliers λk of the level k for the constraints of
level j and the empty spaces for j > k express the
absence of multipliers on above levels.

The matrix Λp gives another way to look at
the interactions between tasks, thanks to a classi-
cal result of perturbation and sensitivity analysis
(see [Boyd and Vandenberghe, 2004], chapter 5.6):
the bigger an element of jλk is (in absolute value),
the more a further violation of the corresponding con-
straint would decrease ‖wk‖. Thus, big elements in
Λp indicate strong incompatibilities between tasks.
On the contrary, for compatible tasks j and k, jλk =
0.

2.5.2 Dual computation

There is no direct formulation to compute the whole
Λp. Alternatively, the multipliers of each level have
to be computed iteratively. The solution (54) gives
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the matrix formulation of the Lagrange multipliers
of level k. To compute the multipliers, it is more
efficient to avoid the explicit computation of the hi-
erarchical transpose inverse. Using (48), (54) can be
rewritten:

λk =







1λk

...
k−1λk






=

[

−A
‡T
k−2(A

T
kw

∗
k +AT

k−1
k−1λk)

−Uk−1L
−T
k−1Y

T
k−1A

T
kw

∗
k

]

(56)
By recurrence, the components jλk of the multipliers
of level k can be computed starting from j = k − 1
down to 1.

jλk = −UjL
−T
j Y T

j

(

k−1
∑

i=j+1

AT
i

iλk+AT
kw

∗
k

)

(57)

Using the HCOD structuration of the AT
i

iλk, the
sum on the right part can be computed for a reduced
cost. The algorithm is given in Alg. 2. The cumu-
lative variable ρ is used to propagate the recursion
across the k levels. At the end of any iteration j, the
following property is respected:

ρ(j) = Y T
j

(

k−1
∑

i=j+1

AT
i

iλk +AT
kw

∗
k

)

(58)

In line #7, ρ(j+1) is separated in two parts following

the separation of Aj+1 =

[

Aj

Aj+1

]

. The first part of

the vector is used to satisfy (58) while the second
part gives jλk using (57).

While the primal algorithm 1 computes the primal
optima x and w for all the levels at the same time, the
dual algorithm 2 can only achieve the computation
of w and λ for one level at a time. Both algorithms
can compute w naturally. If both are used, then a
choice has to be made on where to really perform the
computation of w∗.

2.6 Conclusion

We provide two algorithms to compute the pri-
mal and dual optima of a eHQP problem. Both
are based on the HCOD. This decomposition is

Algorithm 2 Dual eHQP of level k

1: function eHQP dual(Ap, bp, x
∗, k)

2: Input: HCOD of Ap, bp, Primal optimum x∗,
level k

3: Output: w∗
k and λk satisfying (27) and (30)

4: e = Nky
∗

k
− Vkbk

5: w∗
k = Vke

6: ρ = −NT
k e

7: for j=k-1 downto 1 do

8:

[

ρ

ρ

]

:= ρ

9: r := L−T
j ρ

10: jλk := Ujr

11: ρ := ρ−MT
j r

12: end for

13: return w∗
k, λk

adapted to the hierarchical structure, which spare
many computation that are necessary in the clas-
sical iterative methods used in robotics, such as
[Siciliano and Slotine, 1991]. Based on the COD, the
method does not produce any significant drawback,
in particular in term of numerical robustness. Using
the eHQP resolution, we know propose a dedicated
hierarchical active-set algorithm.

3 Inequality hierarchical
quadratic program

In this section, we devise an algorithm for solv-
ing the hierarchical problem (22) subject to in-
equality constraints (iHQP). We derived this algo-
rithm from the classical primal active set method
for QP [Nocedal and Wright, 2006]. This choice for
this class of methods is motivated by the need to
use warm start in our robotic context of parametric
problems, and is made available by the fact we have
at hand, with the HCOD, a decomposition that is
cheaply updatable, and thus perfectly adapted. The
active sets of all the hierarchical levels are computed
at the same time, so that we avoid the unneces-
sary iterations encountered in [Kanoun et al., 2011,
De Lasa et al., 2010].
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3.1 Definitions and preliminary re-
marks

For a given x, a constraint a, b, with a a row vector
is satisfied if ax ≤ b, violated if ax > b and saturated

if ax = b. Active set methods stem from the fol-
lowing remark: at the optimum of the optimization
problem, some inequality constraints hold as equal-
ity constraints. Those are the constraints prevent-
ing to go closer to the unconstraint minimum. They
are said to be active at the optimum. The other
constraints (coined inactive) are irrelevant for de-
termining the solution. Would we knew in advance
the optimal active set S∗, i.e. the indices of active
constraints at the optimum, we would only need to
solve the associated eQP obtained by selecting the
constraints indexed by S∗ to solve the iQP. An ac-
tive set method works with a set S of active con-
straints. At each iteration, the corresponding eQP is
solved, and depending on the result, the active set is
modified by activating a violated constraint or deac-
tivating one whose Lagrange multiplier is negative.
See [Nocedal and Wright, 2006] for details.

Adaptating the method for iHQP is done through
the following changes:

• using our eHQP solver instead of the eQP, ob-
viously, to find the hierarchical optimum for a
given active set,

• iterating on the number of levels to compute the
Lagrange multipliers, since they can not be com-
puted for all the levels at the same time,

• take advantage of the specific role of the wi vari-
ables to simplify the computations.

For the two first points, we trivially adapt
the two first algorithms to work only with
the active constraints and denote them by
eHQP primal(Ap, bp,S) and eHQP dual(Ap, bp,S).
With the use of the eHQP solver we can process all
the levels together and therefore only need one active-
set, to the contrary of methods based on a sequence
of QP [Kanoun et al., 2011, De Lasa et al., 2010]
which use an active set for each QP.

The third point requires more explanations and is
based on two observations: (i) at the optimum, the
components of the wk corresponding to the inactive
constraints (we name them inactive slack variables

or inactive slacks for short) are equal to 0, and (ii)
when solving the eHQP for a given active set, only
the value of the active slacks are relevant. At an
iteration i of our active search, we can thus take

w
(i)
k,r = Ak,rx

(i) − bk,r if the rth constraint of level k

is active, where Xk,r refers to the rth row of X, and

w
(i)
k,r = 0 otherwise. At each iteration, the wk are

thus completly determined by x(i) and the current
active set, therefore we do not need to keep track of
them. In particular, we can compute the step lengths
by taking only x into accounts, and perform the steps
only on x.

With this choice of wk, some constraints might be
inactive and violated at first. Our algorithm readily
detects these constraints and activate them.

3.2 Hierarchical active search

Our hierarchical active search algorithm, HQP, is
summarized in Alg. 3 and detailed below.

3.2.1 Algorithm organization

The proposed algorithm is composed of two loops: an
inner loop that first enforces then maintains the prop-
erty that all the constraints should be activated or

satisfied. And an outer loop that explores all the lev-
els in ascending order to search for the corresponding
optimal active set. The inner loop itself is composed
of two sets of instructions: the first one (lines #7 to
#16) concerns the activation of needed constraints,
while the second one (lines #17 to #26) deals with
the deactivation to obtain the optimal active set.

3.2.2 Initialization

The algorithm starts with an initial guess S(0) of the
active set of all the levels. It does not need an initial
parameter x(0) since none of the levels (even the first
one) is guaranteed to be feasible. It then starts with
the arbitrary value x(0) = 0.

12



3.2.3 Step length and activation

The active-search then maintains a value of the pa-
rameter x(i) and the active set S(i). At each inner
iteration, the algorithm first computes the optimum
x(∗i) of eHQP associated to S(i). The current param-
eter is then moved toward x(∗i):

x(i+1) = x(i) + τ(x(∗i) − x(i)) (59)

where τ is the biggest fraction of the step that can be
taken without violating any satisfied constraints. It
is the minimum of the step allowed by each individual
constraint:

τ = min

(

min
k,r

τk,r, 1

)

(60)

with τk,r =

{

bk,r−Ak,rx
(i)

Ak,r(x(∗i)−x(i))
if Ak,rx

(i) ≤ bk,r

1 otherwise

The constraint with the smallest τk,r ≤ 1 is satu-
rated by the step (59) and is activated. If several
constraints correspond to the minimum, only one of
them should be arbitrarily activated.
Depending on the initial guess S(0) and the corre-

sponding eHQP optimum, some of the inactive con-
straints may be violated. In that case, the activation
loop will eventually make some full steps τ = 1, while
each time adding one violated constraint into the ac-
tive set. The number of activation steps is bounded
by the number of rows of Ap. At the end of these
steps, all the constraints should be activated or sat-

isfied. This property is then maintained throughout
all the following iterations.

3.2.4 Positivity of the multipliers and deac-

tivation

Eventually, a full step (τ = 1), possibly trivial
(x(∗i) = x(i)), will be taken without activating any
constraint. The Lagrange multipliers for the current
level k are then computed (it was not necessary to
test them before). The active set is optimal with re-
spect to the current level if no multiplier component
is strictly negative. Otherwise, the constraint corre-
sponding to the lowest component is deactivated, and
a new inner iteration is started.

If the active set is optimal for the current level k
we can distinguish between the strongly active con-
straints for which the corresponding Lagrange multi-
pliers are strictly positive and the weakly active con-
straints with a multiplier equal to 0. As observed
in [Kanoun et al., 2011], strongly active constraints
can not be deactivated at a next level. To enforce
this, the strongly active constraints are lock, like
in [Kanoun et al., 2011].

In summary, the outer loop explores each level
starting from the first one. At each level, it com-
putes the multipliers. If a constraint is strictly neg-
ative and does not correspond to a strictly positive
component of the multipliers of the previous levels, it
is deactivated. When no more constraint needs to be
deactivated, the constraint corresponding to strictly
positive components of the multipliers are stored in
the set F of locked constraints.

3.2.5 Algorithm termination and proof of

convergence

The algorithm stops after p outer iterations have
been completed. Each outer iteration k finishes when
there are no more constraint to activate or deactivate,
which induces that ‖wk‖ is optimal and will not be
changed anymore. Upon termination, the active set
is such that all the constraints are active or satisfied,
and it is optimal for each of the levels.

The termination of the whole algorithm is ensured
by the fact that each outer loop k terminates, as
proved in App. A.3.

3.3 Lexicographic optimization

The algorithm deactivates a constraint if there exists
a level k for which the component of the multiplier
corresponding to the constraint is negative, while it
is zero for all the multipliers of level j < k. Consider
the matrix Λp in (55).A constraint is deactivated iff

the corresponding row of Λp has one strictly negative
component on column k preceded by only zeros for
the columns j < k. In other words, the row is smaller
than zero in the lexicographic sense:

Λp =
[

0 ... 0 −α × × ... ×
]

≺ 0 (61)
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Algorithm 3 Hierarchical active search

1: Input: Initial guess S(0)

2: Output: x∗ minimizing (22)
3: x = 0 ; S = S(0)

4: F = ∅
5: for k = 1 : p do

6: repeat

7: −−Compute the next optimum−−
8: x∗ = eHQP primal (Ap, bp,S)

9: −−Compute the step length using (60)−−
10: τ ,activate,cst = step length(Ap, bp, x, x

∗)
11: x := x+ τ(x∗ − x)

12: −−If necessary, increase the active set−−
13: if activate then

14: S := S
⋃

{cst}
15: continue

16: end if

17: −−If necessary, decrease the active set−−
18: w, λ = eHQP dual (Ap, bp, x, k,S)
19: λF := 0
20: ν, cst = min{λ,w}
21: if ν < 0 then

22: S := S \ {cst}
23: continue

24: else

25: F := S
⋃

{cst, λcst > 0}
⋃

{cst, wcst > 0}
26: break

27: end if

28: until not activate and ν > 0
29: end for

30: return x∗ := x

Using this notation, Alg. 3 can be rewritten as a clas-
sical active set, using a lexicographic test on Λp in-
stead on lines #18-#19. If the lexicographical for-
mulation is simpler, the more explicit Alg. Alg. 3 re-
mains more efficient from a computational point of
view since it avoids computing the whole Λp at each
iteration.

3.4 Least-norm solution

The eHQP algorithm gives the least-square solution
among all the solutions of same cost, when zp+1 is
set to 0. However, this is not the case of the iHQP
since some constraints might be uselessly active. In-
deed, there is no mechanism to deactivate the un-
necessary constraints if they are not disturbing the
optimum. To force the deactivation of the unneces-
sary constraints, an artificial last level can be added
by setting Ap+1 = I and bp+1 = 0 that is to say:

x = 0 (62)

This constraint will always be rank deficient, but its
satisfaction at best in the least-square sense ensures
that the constraints that artificially increase the norm
of x are deactivated: the optimal active set is unique
and the the returned optimum is the least-square one.

3.5 Implementation details and com-
plexity

We note Ap(S) the matrix whose lines are the lines of
Ap corresponding to active constraints. The costlier
operation in the algorithm is the computation of
the HCOD in eHQP primal of Ap(S), which is in

O(n3). All other operations (computation of x∗,
step (59), computation of (λk, wk) for one level) are
performed in O(n2). Computing this decomposition
from scratch at every inner loop is therefore out of
question. Fortunatly, the decomposition being based
on the COD, rank-1 updates can be done cheaply:
the addition or removal of a line at any position in
Ap(S), corresponding to a the activation or deacti-
vation of a constraint implies a change in the de-
composition that is done in O(n2). The correct way
to implement the algorithm is therefore to compute
only once the HCOD, at the first iteration, then to
update it at each change of the active set. Details
of the update process and complexity costs are given
in [Escande et al., 2013].

As any numerical scheme, the algorithm needs the
settings of tolerances, two in our case, for rank de-
termination and constraint violation. We set both to
square root of the machine precision.
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3.6 Conclusion

Based on the hierarchical decomposition, we have
proposed an active-search algorithm that solves the
iHQP problem. On the contrary to the cascade of QP
used in [Kanoun et al., 2011, De Lasa et al., 2010],
this algorithm computes the active set of all the level
of the hierarchy at the same time. It thus solves the
complete hierarchical problem at once, avoiding the
back-and-forth effects encoutered with cascades and
sparing the cost of computation.
One of the costly computation of the algorithm is

the HCOD. This should be computed once at the
start of the loop. Then, the initial decomposition
can be updated to follow the changes of the active
set. This is detailed in [Escande et al., 2013].

4 Parametric optimization

The major recognized interest of hierarchical opti-
mization in robotics is in control, for IK and ID. In
these contexts, the problem definition (matrices A

and vectors b) only varies slightly from on control
cycle to the other. We can then use the solution
computed at a given cycle to reduce the complex-
ity of the search at the next cycle. This is known
as warm-starting in optimization. For that we first
need to show that the optimum continuously evolves
with the problem definition, by defining a parametric
hierarchical problem.

4.1 Parametric problem definition

We consider that HQP, that varies continuously with
respect to a given parameter t:

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} . (63)

subject to ∀k = 1 : p, Ak(t)x ≤ bk(t) + wj

with Ak(t) and bk(t) continuous function of a real pa-
rameter t ∈ R. This problem is denoted by HQP(t).
We study the continuity of the two functions:

O : t → O(t) = {x, ∀x′, Apx 4 Apx
′} (64)

x∗ : t → x∗(t) = min
x∈O(t)

{‖x‖} (65)

where b1 4 b2 denotes the lexicographic order cor-
responding to the hierarchy. O(t) is the optimal set
of the HQP(t) and x∗(t) is the least-norm element of
O(t) (unique since O(t) is convex).

4.2 Continuity of the parametric op-
timum

For a given t, we note S∗(t) the optimal active set of
HQP(t) with no weakly active constraint correspond-
ing to x∗(t). As t evolves, some constraints are added
or removed from S∗(t). Since there is a finite num-
ber of constraints, this happens at discrete instants,
between which S∗(t) is constant. In fact S∗(t) is con-
stant almost everywhere.

On each interval where S∗(t) is constant, HQP(t)
is equivalent to the much studied equality-constraints
only hierarchical problem, and therefore its solu-
tion x∗(t) is continuous everywhere but when passing
through a singularity [Ben-Israel and Greville, 2003].
Note that the discontinuity only occurs at the in-
stant the singularity appears or disappears (instants
of rank change of an AkZk−1). We name such an
instant singularity instant.

We are left with the study of continuity at the in-
stants of active-set changes. Denoting by x∗

S(t) the
least-norm optimum of the eHQP associated to the
active set S, the following theorem ensures the con-
tinuity of the solution everywhere but singularity in-
stants:

Theorem 4.1. At a given t0, if t → x∗
S∗

t0

(t) is con-

tinuous, then x∗(t) is continuous.

Its proof only needs to consider instants
of active-set changes and is formally given
in [Escande et al., 2013]. It is based on the fact that
if such an instant t0 is not also a singularity instant,
a constraint activated or deactivated at t0 is weakly
active and thus do not perturbate the optimum at
t0 wether it is active or not. The optimum being
continuous before and after t0, the continuity is
obtained.

The only sources of discontinuity are therefore the
rank change in AkZk−1, as in the equality-constraint
only case.
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This continuity result is inherent to the prob-
lem (63) and fully independant of the way to solve
it. We now show how to take advantage of it with
our solver.

4.3 Warm start and real-time imple-
mentation

On-board a robot, the solver is used at discretized
times t,t+1,... Thanks to the continuity, the optimum
of time t nearly satisfies the feasible constraints of
time t + 1. A good initial guess for the active set of
time t+ 1 is thus the optimal active set of time t. In
most of the cases, this is enough to reach the optimum
in only one iteration. From time to time, the active
set changes: in most cases few additional activations
and deactivations are sufficient. However, one cannot
guarantee the number of necessary iterations to reach
the optimum. In particular, a minor modification
of one optimum can trigger a cascade of activations-
deactivations in pathological cases.
The warm start improve the efficiency of the solver.

However, we cannot yet guarantee that the solver an-
swers in a bounded number of iterations. It is how-
ever possible to force the solver to stop after an ar-
bitrary number N of iterations, which enforces the
real-time property. Thanks to the continuity prop-
erty, the obtained final point x(N) is at a distance to
the optimum x∗ proportional to the sampling of the
control, which guarantee a good behavior in practice.
If the optimal active set was not reached at t+1, the
search will restart at t+ 2 from the intermediary ac-
tive set obtained after the N iterations of time t+1.

By using the previous active set as a warm start
and bounding the number of iterations, the solver will
find the optimum within the bounded number of iter-
ations in most of the case, and otherwise will respect
the real-time constraint by spreading the search of
the optimal active set over several iterations.
The fast and real-time properties are obtained

thanks to the continuity of the optimum and to
the monolythic structure of the active-set algorithm,
that consider only one active set candidate for
all the levels simultaneously. On the opposite, it
would not possible to adapt the warm start to a

cascade resolution like in [Kanoun et al., 2011] and
[De Lasa et al., 2010].

5 Hierarchical inverse kinemat-
ics

We first discuss quickly the possible use of the HQP
solver. Then we expose the robotics setup that has
been used in the experiment, implementing IK for a
humanoid robot. An important aspect is to prove the
stability of the controller. The theoretical results is
expressed in Sec. 5.2 but only the main lines of the
proof are given. The IK scheme is then used in the
next section to validate the interest of our approach.

As explained above, the hierarchical formulation
has been used in robotics for IK and ID. IK is
straight-forward, since the solver variable is the
robot velocity. In ID, the main variable are the
joint torques but the robot acceleration and the
external contact forces have also to be consid-
ered [Collette et al., 2007]. On a robotics point of
view, IK is more limited (many constraints of the
robot such as actuator limits or humanoid balance)
can not be expressed properly. However, it is also
more widely used and easier to understand. To limit
the context of this paper, we kept IK in this paper.
Hierarchical ID with the same solver is discussed in
[Saab et al., 2013].

5.1 Robotic setup

The solver has been tested to perform an IK with
the HRP-2 robot, in simulation and on the real plate-
form. The robot has 36 DOF whose first six are not
actuated. When considering only the kinematics, a
classical solution is to replace the underactuation by
a contact constraint of equivalent size, typically con-
straining the six parameters of position and orienta-
tion of one contacting foot. The underactuation is
then resolved while the dynamic of the robot is neg-
ligible. All the QP resolved in the following have a
parameter size n = 36. The robot is controlled at
200Hz.

Two sets of tasks are considered. The first set aims
at regulating to 0 an error depending on the robot
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configuration. The task function is then given by:

e(q,Ω) = s(q)− s∗(Ω) (66)

where the task function e depends on the robot con-
figuration and other parameters of the universe Ω as
an error between a current measurement s(q) and a
desired value of it s∗. The functions used in the fol-
lowing are the end-effectors position and orientation
of the right hand erh, left hand elh and feet erf , elf .
Both feet are controlled together on the ground by
stacking the two last tasks efeet = (erf , elf ). The
center of mass (COM) is controlled to a given point
by ecom. The orientation of one vector attached to
the robot (for example, having the hand around a
stick but able to rotate around the stick axis) is con-
trolled by regulating the cross product:

eθ = u(q)× u∗(Ω) (67)

where u is the vector attached to the robot to
be placed on u∗. More details about these clas-
sical task functions can be found in [Sentis, 2007,
Kanoun, 2009]. The regulation of the error is real-
ized by a proportional correction ė∗ = −κe, κ > 0.
The linear constraint is finally:

Jq̇ = ė∗ −
∂e

∂Ω
Ω̇ (68)

where J = ∂e
∂q

is the robot task Jacobian.
The second set of tasks defines a bound on a func-

tion of the robot configuration:

el(Ω) ≤ e(q) ≤ eu(Ω) (69)

This constraint is homogeneous to the configuration.
The linear constraint is obtained by the first-order
Taylor approximation:

κ

∆t
(el(Ω)− e(q)) ≤ Jq̇ ≤

κ

∆t
(eu(Ω)− e(q)) (70)

where κ is the time horizon (in number of
control iteration) used as a gain modifier
[Faverjon and Tournassoud, 1987].
Several task functions e can be used to obtain var-

ious behaviors. The joint-limit task ejl bounds the
robot configuration q by a set of fixed value. The

task esupp keeps the COM in the support polygon.
The field-of-view (FOV) task efov considers the pro-
jection of an object on the image plane and bounds
it by the image border. The collision avoidance is
enforced by the task ecoll by imposing the distance
between a body of the robot and an object to be
positive. In that case, the pair of bodies and object
to check has to be specified (no systematic collision
checking was performed here, it should be consid-
ered in the future [Stasse et al., 2008]). Once more,
details about these classical functions can be found
in [Sentis, 2007, Kanoun, 2009].

By construction, the IK problem, with or with pri-
ority, is subject to singularity. In the neighborhood of
a singular point, the diagonals of the Lk matrices be-
come low (as explained in Sec. 2.3, which raises unde-
sirable high values during their inversion. This is the
same problem encountered in any other IK scheme
and our solver is not more sensible to this. Three so-
lutions can be considered. It is possible to regularize
the problem, for example by adapting the classical
Tikhonov regularization classically used as a damp-
ing term for each level. Or a coercive bound can be
enforced on the robot velocity, or even better, on the
acceleration. This can be seen as a regularization of
the dual. Finally, during the execution, the HCOD
can be used to diagnose the near-singular tasks and
remove them.

5.2 Stability

More abstractly, the HQP constraints can be written
by a set of p tasks:

ėk = Jkq̇ (71)

∀k ∈ SI , ėk ≤ bk (72)

∀k ∈ SE , ėk = ė∗k (73)

where SI

⋃

SE is a partition of the set {1 . . . p} of the
p first integers: SI are the task levels that are defined
by a limit bk and SE are the task constraints to fol-
low a given velocity ė∗k. We denote by eE the stack
of all equality constraints and by JE the associated
jacobian.

We suppose that all the equality task are stable
(i.e. ekė

∗
k < 0) and that 0 is an acceptable solution

17



for all the tasks of SI , i.e. ∀k ∈ Si, bk > 0. In this
section, we briefly prove that the use of a HQP keeps
the same properties of control stability than in other
classical IK approaches.

Theorem 5.1. The hierarchical IK control law is

stable in the sense of Lyapunov. It is asymptotically

stable iff JE is full row rank and none of the equality-

constraint levels of the HCOD are rank deficient.

The idea of the proof is the following: if the at-
tractor region is inside the polytop defined by the
inequality constraints, then the control is stable us-
ing the well-known results of the task-function ap-
proach [Samson et al., 1991]. If it is outside, then
the inequality constraints limit the motion (and pre-
vent asymptotical stability) but do not destabilize it.
If the polytop is trivial because some inequalities are
not feasible, then these inequalities can be considered
like equalities and the previous remarks holds. More
details are included in [Escande et al., 2013].

6 Results: simulation and ex-
periments

We first present in Sec. 6.1 some analytical results
obtained with random problems out of any robotics
application to compare our solver with previous ap-
proaches. The IK scheme presented in the previ-
ous section is then used to generate three move-
ments in simulation and on the real robot HRP-
2. For each movement, our solver is compared to
the solvers proposed in [Kanoun et al., 2011] and
[De Lasa et al., 2010]. An overview of the solver per-
formances is given in Table 1.

6.1 Computation time

6.1.1 Equality-only HQP

We first experimentally check the computation time
needed to compute the primal optimum of a eHQP
using the three following methods:

• MP : using iterative pseudoinversion
and explicit projector Pk, as proposed in

[Siciliano and Slotine, 1991] (recalled in Eq.
(10) of the first part)

• MZ : using iterative pseudoinversion and the
basis of the null space Zk (recalled in Eq. (12)
of the first part)

• MH : using the hierarchical inverse (47).

Since the pseudoinverses and projectors of
MP are generally computed using a SVD
[Baerlocher and Boulic, 2004] which is well known
for being slower than a COD, the same MP is com-
puted twice, once with a SVD and the second time
with a COD. A set of eHQP problems is resolved.
These solvers are run on a set of random problems
whose size parameters (number of columns, of rows
and total rank) are the same but whose number p of
levels of the hierarchy varies. The computation costs
are presented in Fig. 2.

For all methods, the cost increases for small p.
The hierarchy induces very little extra cost, even for
large p, and no significant cost at all when using our
method. As expected, the SVD is very expensive
compared to the COD. Apart from the additional
cost due to the SVD, the total cost is similar for MP

and MZ but is differently distributed: MP spends
more time in the decomposition while MZ spends
more time in computing Z. Finally, by working with
y∗ directly and using only one basis Y for all the de-
composition, MH is the most efficient. Most of the
time is spent in the decomposition. Inverting L and
translating y∗

p
into x∗ are negligible. The method

is approximately six times faster than the classical
SVD-based MP (and up to ten times for small p).

6.1.2 Active search

Similarly, the hierarchical active search Alg. 3
is compared to the cascade of QP used in
[Kanoun et al., 2011]. The results are shown in Fig-
ures 3 and 4. The computation cost increases with
the number p of levels when using a cascade of QP,
while it remains constant with Alg. 3 as shown in
Fig. 3. This is due to an increase of the number of
iterations of the active-search loops used in the cas-
cade, as shown in Fig. 4. Indeed, the cascade acti-
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(a) MP with a SVD (b) MP with a COD (c) MZ (d) MH

Fig. 2: Comparison of the computation time of the eHQP primal optimum using four methods. (a) Using MP with
a SVD (b) Using MP with a COD (c) Using MZ with a COD (d) Using MH. Various random problems A with
n = 100, m =

∑
mi = 120, r =

∑
ri = 80 are solved using varying number of levels p on a 2.5GHz PC processor.

The computation time is plotted wrt p. The plots display the time measured for the decomposition of AP and AZ only
(D), for the decomposition and the inversion (D+I), and for decomposition, inversion and projection (total cost). In
(a) and (b) (D) is nearly equal to (D+I).In (d), the projection consists in translating y∗ in the canonical basis, which
is plotted but is negligible.

vates a set of constraints at level k that may not be
necessary at level k+1 and activates it again at level
k + 2. These back-and-forth decisions are avoided
when considering all the levels at the same time.
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Fig. 3: Computation time for the iHQP resolution us-
ing a cascade of QP [Kanoun et al., 2011] or a our HQP
solver (Alg. 3). A set of random hierarchical problems
is solved, whose size parameters are the same (n = 100,
m = 150, r = 80) but whose number p of levels varies.
The computation time is plotted wrt p. The time increases
with the number of levels when using a cascade, while it is
nearly constant with our solver. A little overhead appears
for high p and is due to the computation of Λp. For p = 1,
the cost are exactly the same.
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Fig. 4: Number of activations and deactivations using a
cascade of QP and a our solver for the same problems as
in Fig. 3. The number increases with p for the cascade of
QP and remains constant for the HQP solver.

6.2 Simulation A: grasping using con-
ditional visual guidance

The robot has to grasp a point object while keeping
its balance and respecting its joint limits. During
the task, the robot tries to keep the object in its
FOV and, if possible to keep its COM into a small
2cm-wide band inside its support polygon to obtain
a well-balanced posture (ebal). The task order is then
ejl ≺ efeet ≺ esupp ≺ erh ≺ efov ≺ ebal. The robot
motion is summarized by Figures 5 to 11.
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The ball is moved in four different places as shown
in Fig. 5: first in front of the robot, in an easily reach-
able position; then far in the left, so that the robot
has to bend to reach it; the ball is put back to the
initial position before putting it to a far right po-
sition that is not reachable while keeping the COM
inside the support polygon. At the first ball posi-
tion, the two last tasks are respected: the ball is in-
side the FOV and the COM is in the central band.
The second ball position is further away and requires
to the robot to importantly bend to reach it. The
COM cannot be kept inside the central band while
satisfying all the other tasks. Relaxing the least-
priority COM task enables to satisfy efov and erh.
The higher-priority COM task is respected, that en-
sures the robot balance. The ball is then placed back
in front of the robot: the COM comes back to the
central band while all the other tasks are kept satis-
fied. The last position is unreachable while keeping
the COM in the support polygon. All the tasks from
the least-priority one are successively relaxed until
the minimal distance to the ball is finally reached: at
the final position, the COM is outside of the central
band, on the border of the support polygon, and the
ball is outside the FOV. This is a typical case of inter-
est of the hierarchy: a proper behavior is ensured by
the tasks having priority (balance, joint limits) while
the optional objectives are satisfied at best.
The task sequence is given in Fig. 6. In the be-

ginning of each motion sequence (when the ball is
just moved), the visibility constraint (69) might be
violated without the FOV task (70) being violated:
the control is simply bringing the ball inside the FOV
boundaries according to the task definition. The task
becomes violated when (70) cannot be fulfilled. De-
tails about the COM and FOV satisfaction are given
in Figures 7 and 8. At the beginning of the third
motion sequence, the COM is outside of the central
band. It is brought back to this zone after 0.2 sec-
onds. Similarly, at the beginning of each sequence,
the ball is outside of the FOV and is quickly brought
back. At time T = 4s, the COM is at the central-
band limit when several joints reach their limits (see
Fig. 9). This reduces the available DOF for the
grasp task, and following for ebal, which has to be
relaxed: the COM leaves the central band. Similarly,

0 1 2 3 4 5 6 7 8 9 10

jl     e       

feet e       

suppe       

rh    e       

fove       

com e       

Time (s)

 

 

Front Far left Front Far right
Active

Violated

Saturation

Fig. 6: Simulation A: task sequence, listed by priority
from bottom to top. The tasks are specifically marked
when they become violated. The hierarchy appears through
the violation order: the least-priority tasks are relaxed
first in case of conflicts. The number of saturated joint
limits is displayed in the ejl row.

at T = 9s, the COM is on the border of the band.
The activation of some joint limits once more drives
the COM outside of the central band. At T = 9.5s,
some DOF of the grasp task erh collapse because of
a kinematic singularity. The reallocation of the DOF
used by the least-priority tasks leads first the X coor-
dinate of the COM to leave the central band, then the
ball to leave the FOV. The COM quickly escapes the
central band, until it finally reaches the second COM
bound imposed by esupp. The limitation of the COM
causes the violation of erh: the robot then stops as
close as possible to the ball. Some typical trajectories
of the joints are shown in Fig. 9: the limits are al-
ways respected. The number of active constraints for
all levels together (i.e. the size of the optimal active
set) is displayed in Fig. 10.

Finally, the computation cost is studied. We
compare in Fig. 11 the cascade resolution proposed
in [Kanoun et al., 2011] with our method using an
empty initial guess and using a warm start as pro-
posed in Sec. 4.3. First, the number of iterations in
the active search loop is much higher with a cascade
of QP than using the proposed HQP solver. The
number of iterations in the active search is very sim-
ilar to the number of active constraints at the opti-
mum, as can be seen by comparing Fig. 10 to Fig. 11-
(top). Our solver barely needs any deactivation to
find the optimal active set. This is not the case when
using a cascade of QP, which approximately needs
twice as many iterations to reach the optimal active
set. As expected, the number of iterations is even
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(t=2s) Ball in front (t=5s) Far left (t=7s) Front (t=10.4s) Far right

Fig. 5: Top row: snapshots of the robot motion. Bottom row: corresponding COM projection (blue point) in the
support polygon (brown rectangles depict the feet, the blue rectangle shows the area for ebal). Each snapshot is captured
at the end of a motion sequence. The FOV is displayed by the 4 lines passing by the center of the image projection.
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Fig. 7: Simulation A: position of the COM wrt the inner
and outer limits. The COM has to remain into the outer
limits to ensure the balance of the robot, and should be
kept if possible inside the central band (inner limits) to
obtain a balanced robot posture.

lower using a proper warm start: in that case, the
active search only iterates when a new boundary is
reached. The maximal number of iterations is 6 (at
the first iteration after the change of the ball posi-
tion at T=7), the mean number is 0.03 and in 97.6%
of the case, the active search converges without any
update. As shown in Sec. ??, the computation time
depends on the number of active constraints and of
active-search iterations. Since there is nearly no it-
eration, the time with warm start in Fig. 11 depends
only on Fig. 10 and has the same shape. For the
two other, the influence of the number of iterations
is more important, and the time graph shape is sim-
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Fig. 8: Simulation A: position of the object projection
in the image plane wrt the FOV limits. When the ball is
moved outside the FOV, efov brings it back into the FOV
limits. At T = 0s, 2s, 5s and 7s, the ball is artificially
moved out of the FOV and the robot brings it back follow-
ing the task reference. The robot loses the ball at T = 9.8s
due to a conflict with the tasks having priority.
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Fig. 9: Simulation A: normalized joint positions.
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Fig. 10: Simulation A: number of active inequalities at
each control cycle.
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Fig. 11: Simulation A: Number of algorithm itera-
tions and computation time when using a cascade of QP
[Kanoun et al., 2011] and using the HQP without and
with warm start.

ilar to the graph of number of iterations. Using the
HQP and the warm start, an average of 0.56ms of
computation is needed.

6.3 Simulation B: opening a valve

The robot has to open a valve by manipulating a
wheel. The motion is composed of two parts: the

(t=5.0s) (t=5.5s) (t=6.3s)

Fig. 12: Simulation B-1: Snapshots of the first move-
ment: the robot uses only its left hand to manipulate the
wheel. The three snapshots are captured during the wheel
rotation for three angles of 0, 2π

3
and 4π

3
.

robot first manipulates the wheel using one hand,
then rotates the wheel using both hands with suc-
cessive re-grasps. During the motion, the robot has
to avoid a block located on its left, and to keep its
COM inside the support polygon. When grasping
the wheel, the robot has to look at it; when rotat-
ing the wheel, it has to look at a pression meter
located on its left. All the inequalities are consid-
ered at the top priority levels so that the HQP be-
havior can be compared to the solution proposed in
[De Lasa et al., 2010]. The first movement (left-arm
manipulation) is summarized in Figures 12 to 15.
The second movement (both-arm manipulation) is
summarized in Figures 16 to 21. The comparison of
the computation times are given in Figures 22 to 24.

6.3.1 First movement

Snapshots of the first motion are shown in Fig. 12.
The task sequence is detailed in Fig. 13. The con-
straints are the joint limits, the support polygon, the
FOV and the distance of the left elbow and shoul-
der to the left obstacle. The left-hand task is di-
vided into the translation eTlh and rotation eRlh com-
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Fig. 13: Simulation B-1: Task sequences of the first
movement. The wheel is rotated of two complete loops.
For the four inequality tasks, the number of active con-
straints during the motion are plotted for each levels.

ponents. During the approach, both the left-hand
rotation and translation are controlled. When the
robot rotates the wheel, the rotation of the hand
around the wheel axis is let free and only two de-
grees of rotation are controlled. The hierarchy is
ejl ≺ esupp ≺ efov ≺ ecoll ≺ efeet ≺ eTlh ≺ eRlh.
The number of active constraints for the four first
levels is also shown in Fig. 13. The total number
of active inequalities is given in Fig. 14. When the
robot is on the left part of the wheel, the obstacle
strongly constraints the robot, which causes an in-
crease of the number of active constraints: two peaks
appear for each loop of the wheel. The distances of
the shoulder and elbow to the obstacle is given in
Fig. 15. The arm comes close to collision when the
robot approaches the wheel: the constraints are sat-
urated to prevent it. The constraints are then deac-
tivated when the robot goes away from the obstacle.
When the robot starts to rotate the wheel, the con-
straints become once more active. Since the motion is
not holonomic [Zanchettin and Rocco, 2012] (in par-
ticular, there is no posture task), the motion realized
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Fig. 14: Simulation B-1: Number of active inequalities
during the first movement.
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Fig. 15: Simulation B-1: distance to the obstacle during
the first movement. The obstacle is on the way between
the left-arm initial position and the wheel: the two con-
straints of the shoulder and the elbow become active at
T = 1.1s and T = 1.2s. They are deactivated later during
the grasping phase, at T = 2s and T = 2.1s. At each
loop of the wheel, the left arm comes close to the obstacle,
between T = 4s and T = 5s, and a second time between
T = 5.7s and T = 7s.

for each loop is different: during the second loop, the
elbow constraint remains saturated.

6.3.2 Second movement

The robot then uses the second arm to ease the ma-
nipulation of the wheel. The motion is then more
constrained since both hands are bound to the wheel.
Snapshots of the motion are given in Fig. 16. The
task sequence is given in Fig. 17: each hand first
reaches an arbitrary pre-grasp position before grasp-
ing the wheel. During the approach, the three ro-
tations are controlled, while the rotation along the
tangential axis to the wheel is left free during the
manipulation. The distance to the obstacle is plot-
ted in Fig. 18. The constraint becomes active at the
end of the motion. The joint position with respect
to the limit is shown in Fig. 19. Contrary to the
previous simulation, the joints do not systematically
remain on the exact limits since the robot is moving
to follow the rotation of the wheel. The number of
active constraints is given in Fig. 20. The number
of active constraints increases with the complexity
of the task. It reaches its maximum just before the
robot starts to move the wheel (see Fig. 16-left, the
robot is bent on the right with many apparent sat-
urations). It then decreases when the robot stands
straight (see Fig. 16-middle), and increases again at
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(t=13.5s) (t=14.5s) (t=16.5s)

Fig. 16: Simulation B-2: Snapshots of the second move-
ment: the robot uses both hands to manipulate the wheel.
For the sake of clarity, the environment is not displayed.

the end of the motion (see Fig. 16-right). Finally, the
conditioning number of the left- and right-hand tasks
is shown in Fig. 21. The conditioning number evolves
both continuously with the changes in the Jacobians
and discreetly at each constraint activation.

6.3.3 Computation times

Finally, the computation cost of the overall motion
is studied. The computation time and corresponding
number of iterations of the active set are plotted in
Fig. 22. In 97.5% of the cases, the active search loop
converges without any update. The mean number of
iterations is 0.035 and the maximum is 9. The mean
of computation time is 0.9ms. The peaks of num-
ber of iteration correspond to peaks of computation
time. When 9 iterations are needed, the algorithm
takes 3.7ms to converges. This effect emphasizes the
fact that the active search is not real time: it is not
possible to predict how many iterations are needed
to reach the optimum and, even if the mean is below
1ms, a control frequency of 1kHz is not possible.

As proposed in Sec. 4.3, it is possible to arbitrarily
limit the number of iterations to enforce a determinis-
tic convergence time. In Fig. 23, the algorithm can do
only one update at each control cycle. When a second
update is requested, the algorithm quits without even
computing the dual optimum. The peaks of compu-
tation disappear. In exchange, the number of control
cycles without update decreases to 96.6%. There is
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Fig. 17: Simulation B-2: Task sequence of the second
movement: the plots show the grasping phase (from T =
9s to T = 13.5s) and a rotation of 2π
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inequality tasks, the number of active constraints during
the motion is plotted for each levels.
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Fig. 18: Simulation B-2: Distance to the obstacle.
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Fig. 19: Simulation B-2: Normalized joint positions dur-
ing the second movement.
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Fig. 20: Simulation B-2: Number of active inequalities
during the second movement.
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Fig. 22: Simulation B: Number of algorithm iterations
and computation time when using a warm start based on
the previous control cycle.

no perceptible changes in the robot behavior, since,
due to the continuity properties, the obtained sub-
optimum is very close to the solution.

Since the only inequalities are at the first levels of
the hierarchy and are always compatible, the solver
proposed in [De Lasa et al., 2010] can be used to gen-
erate the motion. The computation time and corre-
sponding number of iterations of the active-set loops
are plotted in Fig. 24. As already noticed with the
cascade of QP, the active search needs many itera-
tions to find the optimal active set (up to 30, with a
mean at 4.5). However, since each QP solved in the
cascade is very small, the number of iterations only
slightly impacts the computation cost. In most of the
cases, the convergence is slower than in Fig. 22 (the
mean is 1.3ms), but there is no peak of computation
like with our solver (the maximum is 2.6ms). The
computation time is always higher than in Fig. 23.

6.4 Experiment C: grasping with pos-
ture constraints

This experiment is executed by the real HRP-2 robot.
The robot has to grasp a point object while looking at
it and avoiding its joint limits and the collisions with
the environment. Three tasks are set at the least-
priority levels to enforce the use of the upper limbs
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Fig. 23: Simulation B: Number of algorithm iterations
and computation time when using a warm start and a
limitation of active-set iterations.
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Fig. 24: Simulation B: Number of algorithm iterations
and computation time when using the projected cascade
described in [De Lasa et al., 2010].

of the robot: the task elegs is regulating the joint po-
sitions of the legs to the reference initial position; the
task echest is regulating the orientation of the chest
to keep it vertical, using (67). Finally, the last task
eup is blocking the upper part of the robot (chest,
arms and neck). This kind of behavior using only the
necessary limbs to perform an action was proposed
in [Ee et al., 2007] using dedicated geometrical com-
putations. The hierarchy is ejl ≺ ecoll ≺ esupp ≺
erh ≺ efov ≺ elegs ≺ echest ≺ eup. The motion is

summarized by Figures 25 to 30.
The ball is moved in three different positions, as

shown in Fig. 25: first close in front of the robot,
then at the height of the waist and finally on the
ground behind a small box. The grasping task is fi-
nally removed when the last position is reached. The
task sequence is shown in Fig. 26. When the ball is
close enough, only the least-priority task eup is vio-
lated, and the robot is grasping the ball using only its
right arm. The neck and the left arm are marginally
used, respectively for the FOV task and support task.
When the ball is placed at the second position, it is
out of the reach of the arm alone. The task elegs is
violated at the end of the grasping motion. When the
ball is on the ground, it is not possible to grasp it with
the chest being vertical. The task echest is violated
at the end of the motion to reach the ball. Finally,
the task erh is removed. The three tasks elegs, echest
and eup are then feasible, and the robot goes back
naturally to its initial position.

The errors of the four tasks are given in Fig. 27
and illustrate very well the hierarchical order: the
task erh has priority over the three other ones, and
is always accomplished: the error exponentially con-
verges as imposed. The task eup is violated first, and
its error is the most important. The task elegs is vi-
olated then, while the task echest is violated at the
end, and keeps the lowest error value.

The activation of the limits is synthesized on
Fig. 26. Some examples of activations are given in
Figures 28 and 29. The left hand is moving backward
to ensure the robot balance, and is quickly blocked
by the task preventing the collision with the wall sit-
uated behind the robot. The right hand avoids a
collision with the box when going to the third target
position. Both collision constraints are deactivated
when the robot moves back to the initial pose. Some
joints limits of the legs are saturated when the robot
goes for the second target position, and many limits
are saturated when reaching the third target.

Finally, the number of active inequality con-
straints, and the number of iterations of the active-
search loop are given in Fig. 30. As previously, the
active set of the previous control cycle is used as
warm start and reduces the number of iterations of
the loop. The maximum number of iterations is 7
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and is reached when the task erh is removed from
the hierarchy. In average, 0.035 iterations and 1.1ms
are needed at each control cycle, and 97.8% of the
cycles are resolved without extra iteration.

7 Conclusion

In this paper, we have proposed a generic solution
to resolve a hierarchical least-square quadratic
program defined by equality or inequality con-
straints. When only equalities are set, the method
comes back to the classical stat-of-the-art solutions
[Hanafusa et al., 1981, Siciliano and Slotine, 1991,
Baerlocher and Boulic, 2004] but is up to ten times
faster. When the problem encompasses inequality
constraints, a true hierarchy is solved with inequal-
ities at any level. The resolution loop keeps a low
number of iterations by using a unified active-search
algorithm, in contrast to the cascades of QP used
in [Kanoun et al., 2011, De Lasa et al., 2010]. Using
a proper construction of the active-search loop, the
resolution can be performed in real-time at 200Hz
using a classical personal computer and no specific
hardware tuning.

The solver is generic and can be applied to many
problems in robotics and beyond. We have proposed
to apply it to compute the control law of a redundant
robot in the inverse-kinematics context. In that case,
we have shown that the control is continuous for a
given hierarchy, and stable. The method was used to
generate several complex motions with the humanoid
robot HRP-2, in presence of realistic constraints such
as joint limits, obstacle or field of view. For most of
the control cycles (97% in average in the presented ex-
periments), the active-search loop does not need any
iterations, which implies that the solver deals with
inequalities as if they were equalities. The presented
experiments validated that the proposed method is
the first complete solution to handle inequalities at
any level inside a hierarchy of tasks to generate robot
motions in real time.

In the future, we will try to reduce the computation
cost by predicting the future constraint activations.
The solver was only applied to inverse the robot kine-
matics, but the dynamics could be handled as well.

(t=2.1s) (t=4.2s) (t=7.3s)

Fig. 25: Experiment C: Snapshots of the robot move-
ment.
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Fig. 26: Experiment C: Task sequence.
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Kanoun De Lasa HQP HQP warm-start HQP real-time
Simu. A

Visual grasp 2.08 (19) NR 0.82 (4.2) 0.45 (0.02) 0.43 (0.02)
Simu. B

Pipe gate 2.78 (17.6) 1.34 (4.7) 0.95 (2.6) 0.69 (0.04) 0.67 (0.03)
Exp. C

Floor grasp 2.99 (18) NR 0.92 (3.5) 0.63 (0.03) 0.62 (0.03)

Average 2.61 (18.25) NR 0.89 (3.43) 0.59 (0.03) 0.58 (0.03)

Table 1: Time scores for the three movements, in milliseconds. Secondary score between parenthesis is the average
number of iterations after the first one. Non Relevant (NR) is indicated when the method does not apply.
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Fig. 28: Experiment C: Distance to the obstacle.
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Fig. 29: Experiment C: Normalized joint positions.
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Fig. 30: Experiment C: Number of active inequalities
and updates.

Only a simple obstacle-avoidance scheme was set up,
and a proper link with a complete collision checker
should be studied. Finally, the continuity of the con-
trol scheme is not ensured when adding or removing
a task from the hierarchy, which is needed before be-
ing able to apply it as a basic solution on our robots.
Openings to other kind of problems, such as those
solved by a walking pattern generator, is also an im-
portant perspective.
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A Intermediate proofs

A.1 Moore-Penrose conditions of A‡
p

The four Moore-Penrose conditions are used to de-
fined the pseudo-inverse A+ of A:

AA+A = A (74)

A+AA+ = A+ (75)

AA+ is symmetric (76)

A+A is symmetric (77)

The matrix A‡
p defines in Sec. 2.4 respects three

of the four conditions of Moore-Penrose (74)-(77).
First, H‡

pHp is easily shown to be equal to the iden-

tity matrix (by recurrence, starting from H
‡
1H1 =

L−1
1 L1 = I). Then:

A‡
pAp = Y pY

T
p =

p
∑

k=1

YkY
T
k (78)

This matrix product is obviously symmetric: A‡
p re-

spects (77). From this result, the condition (74) is
easily demonstrated:

ApA
‡
pAp = W pHpY

T
p Y pY

T
p = Ap (79)

With the same argument, (75) is also respected. The
last condition (76) is not respected in general:

HkH
‡
k =





Hk−1H
‡
k−1 0 0

NkH
‡
k−1 0 0

0 0 I



 (80)

Indeed, we can verify that this solution satisfies the
condition (30). Setting λk and w∗

k in (30) and using
(78), we obtain:

AT
k−1λk = −AT

k−1A
‡T
k−1A

T
kw

∗
k = −Y k−1Y

T
k−1A

T
kw

∗
k

(81)

This last form is equal to AT
kw

∗
k since, from (43) and

(52), we have:

AT
kw

∗
k = Y k−1N

T
k (Nky

∗

k−1
− V T

k bk) (82)

Since H
‡
k−1 is full row rank, the term NkH

‡
k−1 is

zero iff Nk is zero, that is to say if level k does not

conflict with the above hierarchy. If all the N1...Nk

are zero, the fourth property (76) is then also re-
spected: A‡

p is strictly the pseudo-inverse of Ap and
the optimum (46) enforcing a strict hierarchy be-
tween the different priority levels appears to be equal
to a classical least-squares solution to Akx = bk re-
gardless of any hierarchy.

In general, the matrix A‡
p respects only three of

the four properties of Moore-Penrose. This matrix is
a reflexive generalized inverse of Ap.

A.2 Proof of (54)

Indeed, we can verify that this solution satisfies the
condition (30). Setting λk and w∗

k in (30) and using
(78), we obtain:

AT
k−1λk = −AT

k−1A
‡T
k−1A

T
kw

∗
k = −Y k−1Y

T
k−1A

T
kw

∗
k

(83)

This last form is equal to AT
kw

∗
k since, from (43) and

(52), we have:

AT
kw

∗
k = Y k−1N

T
k (Nky

∗

k−1
− V T

k bk) (84)

A.3 Algorithm 3 termination

We prove here that each outler loop of Algorithm
3 terminates. We note m the total number of con-
straints, and w = (‖w1‖ , · · · , ‖wp‖).

The first outer iteration (k = 1) begins with a se-
quence of activations (at most m) until all the con-
straints are active or satisfied. There are no deacti-
vation before this, and the property is always verified
after. All outer iterations have then the same behav-
ior. Let us consider the k-th loop: the steps (59) are
such that ‖wk‖ is non-increasing: x(∗i) is computed
so that w decreases, and ‖w1‖ , · · · , ‖wk−1‖ are con-
stant.

Whenever an activation occurs, the constraint is
activated with the corresponding slack variable equal
to zero since it was feasible, so that ‖wk‖ does not
increase.

When a constraint is deactivated at iteration i, two
cases occur: if it is the r-th constraint of level k,
the slack wk,r is strictly negative since it also the
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Lagrange multiplier of the constraint, then wk,r will
be set to zero by the deactivation, yielding a strict
decrease of ‖wk‖. Otherwise, the deactivated con-
straint belongs to a level l < k. It was selected for
deactivation because it prevents ‖wk‖ to decrease.
Then, either the next step will decrease ‖wk‖, or
x(∗i+1) = x(i+1), meaning that another constraint
needs to be immediatly deactivated. This can happen
only a finite number of time (bounded by the number
of weakly active constraints at levels 1..k − 1) before
a non-zero step is taken that strictly decreases ‖wk‖.

Any of the two deactivation cases occurs after the
optimal ‖wk‖ has been reach for the current active
set, and yields a strict decrease of ‖wk‖ inducing that
the algorithm will never go back to this active set
since ‖wk‖ will never increase. Since there are a fi-
nite number of active sets, the outer loop is bound
terminates.
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