
Hierarchical Quadratic Programming:

Fast Online Humanoid-Robot Motion Generation

Adrien Escande
JRL-CNRS/AIST

Tsukuba, Japan

Nicolas Mansard
LAAS-CNRS, Univ. Toulouse

Toulouse, France

Pierre-Brice Wieber
INRIA Grenoble

St Ismier, France

Abstract

Hierarchical least-square optimization is of-
ten used in robotics to inverse a direct function
when multiple incompatible objectives are in-
volved. Typical examples are inverse kinemat-
ics or dynamics. The objectives can be given
as equalities to be satisfied (e.g. point-to-point
task) or as areas of satisfaction (e.g. the joint
range). This paper proposes a complete so-
lution to solve multiple least-square quadratic
problems of both equality and inequality con-
straints ordered into a strict hierarchy. Our
method is able to solve a hierarchy of only
equalities ten times faster than the iterative-
projection hierarchical solvers and can consider
inequalities at any level while running at the
typical control frequency on whole-body size
problems. This generic solver is used to resolve
the redundancy of humanoid robots while gen-
erating complex movements in constrained en-
vironment.

1 Introduction

1.1 Context

Least squares are a mean to satisfy at best a set
of constraints that may not be feasible. When
the constraints are linear, the least squares are
written as a quadratic program, whose solution
is given for example by the pseudo-inverse. Lin-
ear least squares have been widely used in robot

(a) (b) (c)

Fig. 1: Various situations of inequality and equality con-
straints. (a) reaching a distant object while keeping bal-
ance. The visibility and postural tasks are satisfied only if
possible. (b) Obstacle avoidance, joint limits and support
polygon. (c) Grasping an object on the floor. Sequence of
subtasks naturally appears from the use of the hierarchy.

control in the frame of instantaneous task reso-
lution [De Schutter and Van Brussel, 1988], inverse
kinematics (IK) [Whitney, 1972] or operational-space
inverse dynamics (ID) [Khatib, 1987]. These ap-
proaches describe the robot objectives using a func-
tion depending on the robot configuration, named the
task function [Samson et al., 1991]. Time derivatives
of this function depend linearly on the robot velocity
or acceleration, which gives a set of linear constraints,
to be satisfied at best in the least-square sense.

When the constraint does not require the use
of all the robot degrees of freedom (DOF), the
remaining DOF can be used to perform a secondary
objective. This redundancy was first emphasized
in [Liégeois, 1977]. Least squares can be used
again to execute at best a secondary objective

1

using the redundant DOF [Hanafusa et al., 1981],
and by recurrence, any number of constraints
can be handled [Siciliano and Slotine, 1991]. Here
again, the pseudo-inverse is used to compute
the least-square optimum. The same technique
has been widely used for redundant manipulator
[Chiaverini et al., 2008], mobile or underwater
[Antonelli and Chiaverini, 1998] manipulator, multi
manipulator [Khatib et al., 1996], platoon of mo-
bile robots [Antonelli and Chiaverini, 2006],visual
servoing [Mansard and Chaumette, 2007], medical
robots [Li et al., 2012], planning under constraints
[Berenson et al., 2011], control of the dynamics
[Park and Khatib, 2006], etc. Such a hierarchy
is now nearly systematically used in humanoid
animation [Baerlocher and Boulic, 2004] and
robotics [Sian et al., 2005, Mansard et al., 2007,
Khatib et al., 2008].
Very often, the task objectives are defined

as equality constraints. On the opposite,
some objectives would naturally be written
as inequality constraints, such as joints lim-
its [Liégeois, 1977, Chaumette and Marchand, 2001],
collision avoidance [Marchand and Hager, 1998,
Stasse et al., 2008], singularities avoid-
ance [Yoshikawa, 1985] or visi-
bility [Garcia-Aracil et al., 2005,
Remazeilles et al., 2006] (see Fig. 1). A first
solution to account for these tasks is to embed
the corresponding inequality constraint into a
potential function [Khatib, 1986] such as a log
barrier function, whose gradient is projected into
the redundant DOF let free by the first objec-
tive [Liégeois, 1977, Gienger et al., 2006]. The
potential function simultaneously prevents the robot
to enter into a forbidden region and pushes it away
from the obstacles when it is coming closer. The
potential function in fact transforms the inequality
into an equality constraint, which is always applied
even far from the obstacle. However, this last
property prevents the application of this solution for
top-priority constraints.
To ensure that avoidance is realized whatever the

situation (and not only when there is enough DOF),
several solutions have been proposed, that try to
specify inequality objectives as higher-priority tasks.

In [Nelson and Khosla, 1995], a trade-off between
the avoidance and the motion objectives was per-
formed. In [Chang and Dubey, 1995], the joint limit
avoidance was used as a damping factor to stop
the motion of a joint close to the limit. Both so-
lutions behave improperly when the motion objec-
tive and the avoidance criteria become incompatible.
In [Mansard and Chaumette, 2007], the constraints
having priority were relaxed to improve the execu-
tion of the avoidance constraint, set at a lower pri-
ority level. However, this solution is only valid far
from the target point, and the obstacle may finally
collide at the convergence of the motion task. An im-
provement is done by temporarily relaxing the most
distant DOF in [Mansard and Chaumette, 2009], but
that cannot solve the main problem. In the cases
where damping is not sufficient, clamping was pro-
posed [Raunhardt and Boulic, 2007]. It was ap-
plied for example to avoid the joint limits of a hu-
manoid [Sentis, 2007]. However, this solution re-
quires several iterations and might be costly. More-
over, it is difficult to relax a DOF that was clamped.
In [Mansard et al., 2009], it was proposed to realize
an homotopy between the control law with and with-
out avoidance. A proper balance of the homotopy
factors ensures that the objectives having priority are
respected. However, the cost of this solution in com-
plex cases is prohibitive. A reduction was proposed
in [Lee et al., 2012] in the case of joint limits but in-
volve very specific study for each new type of task.

Alternatively, the inequality constraint
can be included in the least-square program
as it is [Nenchev, 1989, Sung et al., 1996,
Decré et al., 2009]. Such a solution is very pop-
ular for controling the dynamic of the simulated
system [Collette et al., 2007, Salini et al., 2009,
Bouyarmane and Kheddar, 2011]. These papers
can consider inequality constraints but lose the
possibility of enforcing priorities among them.
The earliest and most obvious approach to solve
hierarchical optimization problems is to solve single-
objective optimization problems successively, in
cascade [Behringer, 1977]. A dedicated simplex
solver was designed in [Isermann, 1982] for linear
problem only. Cascade was then applied to quadratic
problems in [Kanoun et al., 2011], which gives the

2

first definition of a hierarchical quadratic program
along with a simple yet limited resolution. A simpli-
fied version was proposed in [De Lasa et al., 2010],
that improves the computation cost but prevents
the inclusion of inequality except at the top priority.
Specific work on the solver linear decomposition
was used in [Escande et al., 2010] to avoid repetitive
computations, reducing the resolution cost while
keeping a generic formulation.
Before defining the objectives and specificities of

our approach, we rewrite briefly the main resolution
schemes for hierarchy of quadratic problems (with
and without inequalities) in the next sections.

1.2 From inverse kinematics to least
square

The task-function approach [Samson et al., 1991] is
an elegant solution to express the objectives to be
performed by the robot and deduce from this expres-
sion the control to be applied at the joint level. Con-
sider a robot defined by its configuration vector q and
whose control input is the joint velocity q̇. A task
function is any derivable function e of q. The evolu-
tion in the image space (or task space) with respect
to the robot input is given by ė = Jq̇, with J = ∂e

∂q

the task Jacobian.
The objective to be accomplished by the robot can

then be expressed in the task space by giving a ref-
erence task velocity ė∗. Computing the robot input
boils down to solving the following quadratic least-
square program (QP):

Find q̇∗ ∈ Argmin
q̇

‖Jq̇ − ė∗‖ (1)

More generally, many robotic schemes rely on
solving linear equalities. For example, such a
QP formulation can also be encountered to in-
verse the system dynamics in the operational
space [Khatib, 1987, Collette et al., 2007], compute
a walking pattern [Herdt et al., 2010] or optimize
a linearized trajectory of the robot whole body
[Pham and Nakamura, 2012]. The variables are for
example the joint accelerations, joint torques and
contact forces in the first case, the third derivative
of the center of mass for the walking pattern, the

coefficients of an affine transformation in the last
case, and many types of equalities can be devised.
Hierarchy of tasks has been widely used in inverse
dynamics [Khatib et al., 2008, Mansard et al., 2009,
Wensing and Orin, 2013]. In that case, the solver
would typically search for the system acceleration and
forces under the constraint of satisfying the dynamic
consistency. We can foresee some interesting appli-
cations in optimal control too.

Consequently, we abstract in this paper these mul-
tiple contexts by considering a set of linear equality
constraints Ax = b. In case this set of constraints
is not feasible, it has to be satisfied at best in the
least-square sense:

Find x∗ ∈ Argmin
x

‖Ax− b ‖ (2)

Among the possible x∗, the solution that minimizes
the norm of x∗ is given by the pseudo-inverse:

x∗ = A+b (3)

where A+ is the (Moore-Penrose) pseudo-inverse of
A.

The set of all the solutions to (2) is given by
[Liégeois, 1977]:

x∗ = A+b+ P x̃2 (4)

where P is a projector on the null space of A (i.e.
such that AP = 0 and PP = P), and x̃2 is any arbi-
trary vector of the parameter space, that can be used
as a secondary input to satisfy a second objective.

1.3 Hierarchy of equality constraints
[Siciliano and Slotine, 1991]

In this paper, we consider the case where p linear
constraints (A1, b1) ... (Ap, bp) have to be satisfied
at best simultaneously. If the constraints do not con-
flict, then the solution is directly obtained by stacking
them into a single constraint:

Ap =







A1

...
Ap






, bp =







b1
...
bp






(5)

3

The resulting QP can be solved as before. If the con-
straints are conflicting, a weighting matrix Q is often
used to give more importance to some constraints
with respect to others or to artificially create a bal-
ance between objectives of various physical dimen-
sions:

min
x

(Apx− bp)
TQ(Apx− bp) (6)

Rather than selecting a-priori values of Q, it was
proposed in [Siciliano and Slotine, 1991] to impose a
strict hierarchy between the constraints. The first
constraint (with highest priority) (A1, b1) will be
solved at best in the least-square sense using (3).
Then the second constraint (A2, b2) is solved in the
null space of the first constraint without modifying
the obtained minimum of the first constraint. Intro-
ducing (4) in A2x = b2, a QP in x̃2 is obtained:

min
x̃2

‖A2P1x̃2 − (b2 −A2A
+
1 b1)‖ (7)

The generic solution to this QP is:

x̃∗
2 = (A2P1)

+(b2 −A2A
+
1 b1) + P̃2x̃3 (8)

with P̃2 the projector into the null space of (A2P1)
+

and x̃3 any vector of the parameter space that can
be used to fulfill a third objective. The complete so-
lution solving (A1, b1) at best and (A2, b2) if possible
is:

x∗
2 = A+

1 b1 + (A2P1)
+(b2 −A2A

+
1 b1) + P2x̃3 (9)

where x∗
2 denotes the solution for the hierarchy com-

posed of the two first levels, and P2 = P1P̃2 is the
projector over A2.
This solution can be extended recur-

sively to solve the p levels of the hierar-
chy [Siciliano and Slotine, 1991]:

x∗
p =

p
∑

k=1

(AkPk−1)
+(bk −Akx

∗
k−1) + Ppx̃p+1 (10)

with P0 = I, x0 = 0 and Pk = Pk−1P̃k

the projector into the null space of
Ak [Baerlocher and Boulic, 2004]. x̃p+1 is any
vector of the parameter space that denotes the free
space remaining after the resolution of the whole
hierarchy.

1.4 Projection versus basis multipli-
cation [Escande et al., 2010]

Given a basis Z1 of the null space of A1 (i.e. A1Z1 =
0 and ZT

1 Z1 = I), the projector in the null space of
A1 can be written P1 = Z1Z

T
1 . In that case, it is easy

to show that

(A2P1)
+ = (A2Z1Z

T
1)

+ = Z1(A2Z1)
+ (11)

The last writing is more efficient to compute than the
first one due to the corresponding matrix sizes. Then,
(10) can be rewritten equivalently under a more effi-
cient form:

x∗
p =

p
∑

k=1

Zk−1(AkZk−1)
+(bk −Akx

∗
k−1) + Zpzp+1

(12)
where Zk is a basis of the null space of Ak and zp+1 is
a vector of the dimension of the null space of Ap. This
observation was exploited in [Escande et al., 2010]
(which constitute a preliminary version of this work)
to fasten the computation of (10).

1.5 Inequalities inside a cascade of
QP [Kanoun et al., 2011]

The problem (2) is an equality-only least-square
quadratic program (eQP). Searching a vector x that
satisfy a set of linear inequalities is straightforward
to write:

Find x∗ ∈ {x, s.t. Ax ≤ b} (13)

If the polytope defined by Ax ≤ b is empty (the set
of constraints is infeasible), then x∗ can be searched
as before as a minimizer in the least-square sense.
The form (2) can be extended to inequalities by in-
troducing an additional variable w, named the slack
variable, in the parameter vector:

min
x,w

‖w ‖ (14)

subject to Ax ≤ b+ w (15)

The slack variable can relax the constraint in case
of infeasibility [Hofmann et al., 2009]. This QP is

4

named a inequality QP (iQP, by opposition to the
eQP). In the remaining of the paper, we keep this
reduced shape with only upper bound, since it en-
compasses lower bounds Ax ≥ b, double bounds
b− ≤ Ax ≤ b+ and equalities Ax = b by set-

ting respectively −Ax ≤ −b,

[

−A

A

]

x ≤

[

−b−
b+

]

and
[

−A

A

]

x ≤

[

−b

b

]

. Such an iQP can be solved, for

example, using an active-search method.
The work in [Siciliano and Slotine, 1991] is limited

to a hierarchy of eQP. In [Kanoun et al., 2011], a
complete solution to extend the hierarchy to inequal-
ity constraints was proposed. The method begins
with minimizing the violation ‖w1 ‖ of the first level
of constraints in a least-squares sense through (14).
This gives a unique optimal value w∗

1 since the cost
function is strictly convex in w1. It proceeds then in
minimizing the violation of the second level of con-
straints in a least-squares sense:

min
x,w2

‖w2 ‖ (16)

subject to A1x ≤ b1 + w∗
1 (17)

A2x ≤ b2 + w2 (18)

The first line of constraints (17) is expressed with
respect to the fixed value w∗

1 obtained from the first
QP, which ensures that the new x will not affect the
first level of constraints and therefore enforces a strict
hierarchy. In that sense, (17) is a strict constraint
while (18) is a relaxed constraint. The same process
is then carried on through all p levels of priority.

1.6 Reduction of the computation
cost [De Lasa et al., 2010]

The solution [Kanoun et al., 2011] makes it possible
to solve hierarchies of iQP. However, it is very slow,
since each constraint k is solved at the iQP of level
k and all the following ones. In particular, the first
constraint is solved p times.
In [De Lasa et al., 2010], a solution is pro-

posed to lower the computation cost by reduc-
ing the generic nature of the problem studied

in [Kanoun et al., 2011]: inequalities are considered
only at the first level, and this level is supposed fea-
sible. This hypothesis reduces the expressiveness of
the method, forbidding the use of weak constraints
such as visibility or preference area. However, this
expressivity reduction enables to obtain very im-
pressive result for walking, jumping or, as shown
in [Mordatch et al., 2012], for planning contacts and
manipulation.

The first iQP of the cascade does not need an ex-
plicit computation, since w∗

1 = 0 by hypothesis. Then
each level k > 2 is solved in the null space of the levels
2 to k − 1:

min
zk,wk

‖wk ‖ (19)

subject to A1(x
∗
k−1 + Zk−1zk) ≤ b1 (20)

Ak(x
∗
k−1 + Zk−1zk) = bk + wk (21)

where x∗
k−1 is the optimal solution for the k − 1 first

levels, and Zk−1 is the null space of the levels 2 to
k − 1. The solution in the canonical basis after the
kth QP is set to x∗

k = x∗
k−1 + Zk−1z

∗
k. The Zk basis

is computed from Zk−1 and a singular value decom-
position (SVD) of (AkZk−1).

If the first level is empty (or equivalently, if the
bounds are wide enough for never being activated),
this method is equivalent to (12). The global work-
ing scheme of the method [De Lasa et al., 2010] is the
same as [Kanoun et al., 2011] since both rely on a
cascade of QP computed successively for each level of
the hierarchy. The method of [De Lasa et al., 2010]
is faster since each QP is smaller than the previous
one (the dimension of zk decreases with k), while
each QP of [Kanoun et al., 2011] was bigger than the
previous ones (the number of constraints increases).
The method of [De Lasa et al., 2010] requires an ad-
ditional SVD, but this could be avoided since the
SVD or an equivalent decomposition is already com-
puted when solving the corresponding QP.

However, both methods [Kanoun et al., 2011] and
[De Lasa et al., 2010] have the same intrinsic prob-
lem due to the nature of the underlying active search
algorithm. Basically, it searches for the set of active
constraints that holds as equality at the optimum.
At each new QP of the cascade, the optimal active

5

set may be completely different. The active search
may then activate and deactivate a constraint sev-
eral times when moving along the cascade and the
succession of all these iterative processes appears to
be very inefficient in the end.

Typical examples of this situation are given in Sec-
tion 6. Consider a humanoid robot that should keep
its center of mass inside the support polygon, put its
right hand in the front and its left hand far in the
back: when solving the right-hand constraint, the
center of mass will saturate in the front, which ac-
tivates the corresponding constraint. The front con-
straint is then deactivated when the left-hand con-
straint brings the center of mass on the back, while
the back of the support polygon becomes active. The
back constraint may even be deactivated if a last level
is added that regulates the robot posture.

1.7 Directions and objectives

By minimizing successively ‖w1‖, ‖w2‖ until ‖wp‖,
the above approaches end up with a sequence of op-
timal objectives

{

‖w∗
1‖, ‖w

∗
2‖, . . . , ‖w

∗
p‖
}

which is it-
self minimal with respect to a lexicographic order: it
is not possible to decrease an objective ‖wk‖ with-
out increasing an objective ‖wj‖ with higher pri-
ority (j < k). Considering a hierarchy between
these objectives or a lexicographic order appear to
be synonyms. The above approaches can therefore be
summarized as a lexicographic multi-objective least-
squares quadratic problem, looking for

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} (22)

subject to ∀k = 1 : p, Akx ≤ bk + wk

Using this formulation, the hierarchical quadratic
program (HQP) appears more clearly as a single
problem. In this paper, we propose to keep this
unity in the resolution scheme, by providing a solver
that considers all the priority levels at the same time,
which appears to be much more efficient. Moreover,
the monolithic resolution also enables us to warm-
start the solver, which is very important to enables
fast resolution when it is used to compute a control

law. Beside fast computation, it also enables the al-
gorithm to guarantee the convergence time (real-time
answer), which is also very important in control.

Our solver is based on the active-set method, where
an activation loop iteratively computes the optimum
of a sub-problem considering only equalities. In Sec-
tion 2, we then focus on equality-only and describe
a hiearchical resolution scheme, equivalent to the
very classical robotics [Siciliano and Slotine, 1991]
method but up to ten times more efficient. The hi-
erarchical active-set algorithm is then described in
Section 3. In Section 4, we consider more specifically
the continuation property of the hierarchical prob-
lem, which is important if it used in a control frame-
work, and we explained how this property can be
used to obtain fast computations using warm-start.
The method efficiency is demonstrated by generating
whole body movements on a humanoid robot using
IK. The robotics setup is described in Section 5. Fi-
nally, the solver is compared in this context to our
implementation of the concurrent methods, and is
proven to be much more efficient in practice.

2 Equality hierarchical
quadratic program

We propose in this section a method to solve a
hierarchy of linear equality in the least-square
sense. This resolution of the primal optimum
of this problem equivalent to iterative solution
proposed in [Siciliano and Slotine, 1991] using the
task redundancy [Liégeois, 1977], upon which many
robotics control schemes are based [Chiaverini, 1997,
Baerlocher and Boulic, 2004, Sian et al., 2005,
Khatib et al., 2008, Berenson et al., 2011], to cite
a few. We propose an original decomposition that
encompasses the hierarchy among the constraints.
Using the best expertise of numerical mathematics,
this decomposition provides a very fast computation
of the primal.

We also provide an expression and an algorithm for
the dual optimum, which is less used in robotics. A
rough approximation of it for hierarchy of constraints
was proposed in [Mansard and Chaumette, 2007].

6

The dual can quantify the involvement of each con-
straint to the primal optimum, and is very useful to
predict which constraint could be relaxed, for ex-
ample in the active-set algorithm. In simple case
like joint limits [Raunhardt and Boulic, 2007], it was
used to relax a saturated constraint.

The optimality conditions are first expressed in
Sec. 2.1, upon which the decomposition dedicated to
hierarchical problem is built Sec. 2.3. The primal
then dual optimums are finally expressed in Sec. 2.4
and 2.5 respectively.

2.1 Optimality conditions

At first, we consider an equality-only hierarchical
quadratic least-square program (eHQP). It is writ-
ten as a set of p eQP: at level k, the QP to be solved
is written:

min
xk,wk

‖wk‖ (23)

subject to Akxk = bk + wk (24)

Ak−1xk = bk−1 + w∗
k−1 (25)

where Ak−1, bk−1 and w∗
k−1 are the matrix and vec-

tors composed of the stacked quantities of levels 1 to
k−1 (by convention, they are empty matrix and vec-
tors for k − 1 = 0). w∗

k−1 is the fixed value obtained
from the previous QP. The optimality conditions of
this problem are

wk = Akxk − bk (26)

Ak−1xk = bk−1 + w∗
k−1 (27)

λk = wk (28)

AT
k−1λk = −AT

kwk (29)

where λk and λk are the Lagrange multipliers corre-
sponding respectively to (25) and (24).

The two first lines give the condition to compute
the primal optimum. From (28), we see that w is
indeed at the same time a primal and a dual variable.
The last equation gives the condition to compute the
dual optimum.

2.2 Complete orthogonal decomposi-
tion

In the first level, (25) and (27) are empty. The
primal optimum is computed by minimizing w1 in
(26), that is to say by a classical pseudo-inverse of
A1. The pseudo-inverse can be computed by per-
forming a complete rank revealing decomposition. In
robotics a SVD is often chosen. Alternatively, a
complete orthogonal decomposition (COD) can be
used1 [Golub and Van Loan, 1996]:

A1 =
[

V1 U1

]

[

0 0
L1 0

]

[

Y1 Z1

]T
= U1L1Y

T
1

(30)
where W1 =

[

V1 U1

]

and
[

Y1 Z1

]

are two or-
thonormal matrices, U1 being a basis of the range
space of A1, Z1 of its kernel and L1 is a lower tri-
angular matrix whose diagonal is strictly nonzero. If
the first level (A1, b1) is feasible, then A1 is full row
rank and U1 is the identity (V1 is empty). In that
case, (30) is the QR decomposition of AT

1 (or LQ
decomposition of A1).

The pseudo-inverse of A1 now only implies the eas-
ily computable inversion of L1:

A+
1 =

[

Y1 Z1

]

[

0 L−1
1

0 0

]

[

V1 U1

]T
= Y1L

−1
1 UT

1

(31)
The optimal solution x∗

1 is obtained by

x∗
1 = A+

1 b1 = Y1L
−1
1 UT

1 b1 (32)

Rather than computing the explicit pseudo-inverse,
the optimum should be computed by realizing a for-
ward substitution of L1 on UT

1 b1.
The corresponding slack variable is:

w∗
1 = A1x

∗
1 − b1 = U1U

T
1 b1 − b1 = −V1V

T
1 b1 (33)

1The COD is cheaper to compute than the SVD. The al-
gorithms to compute it involve a rather simple sequence of
basic transformations and are known to be nearly as robust as
the algorithms computing the SVD (and much easier to imple-
ment). As a matter of fact, the conditioning advantage of the
SVD over the COD will come into play when we are so close
to singularity compared to the machine precision that the sit-
uation already is problematic from a robotics point of view.
It is one of the classical ways to solve rank deficient quadratic
least-squares problems [Björck, 1996].

7

2.3 Hierarchical complete orthogonal
decomposition

Consider now the second level of the hierarchy (23)
(k = 2). As in Sec. 1.4, condition (27) can be rewrit-
ten using (32) and (33) as:

x2 = x∗
1 + Z1z2 (34)

where z2 is any parameter of the null space of A1.
Condition (26) is then written:

w2 = (A2Z1)z2 − (b2 −A2x
∗
1) (35)

=
[

A2Y1 A2Z1

]

[

Y T
1 x∗

1

z2

]

− b2 (36)

because Y1Y
T
1 x∗

1 = x∗
1. The matrix A2 is in fact

separated in two parts along the Y1, Z1 basis: the
first part A2Y1 corresponds to the coupling between
the two first levels. The corresponding part of the
parameter space has already been used for the level
1 and cannot be used here. The second part A2Z1

corresponds to the free space that can be used to
solve the second level.
The optimums x∗

2 and w∗
2 are obtained by perform-

ing the pseudo-inverse of A2Z1 using its COD:

(A2Z1) =
[

V2 U2

]

[

0 0
L2 0

]

[

Ỹ2 Z̃2

]T
(37)

The basis W2 =
[

V2 U2

]

provides a decomposition
of the image space of A2 along its range space and the
orthogonal to it. The basis

[

Y2 Z2

]

= Z1

[

Ỹ2 Z̃2

]

is in fact another basis of the null space of A1 that
also provides a separation of the kernel of A2. In
particular, Z2 is a basis of the null space of both A1

and A2 that can be used to perform the third level.
The optimum x∗

2 is finally:

x∗
2 = x∗

1 + Z1(A2Z1)
+(b2 −A2x

∗
1) + Z2z3 (38)

= x∗
1 + Y2L

−1
2 UT

2 (b2 −A2x
∗
1) + Z2z3 (39)

=
[

Y1 Y2 Z2

]





Y T
1 x∗

1

Y T
2 x̃∗

2

z3



 (40)

where x̃∗
2 = Y2L

−1
2 UT

2 (b2 −A2x
∗
1) is the contribution

of the second level to the optimum and z3 is any

parameter of the null space Z2 used to perform the
following levels. The optimum w∗

2 is directly obtained
using (36). This can be written using the two basis
V2, U2 and Y1, Y2, Z2:

w∗
2 =

[

V2 U2

]

[

N2 0 0
M2 L2 0

]





Y T
1 x∗

1

Y T
2 x∗

2

z3



− b2 (41)

with M2 = UT
2 A2Y1 and N2 = V T

2 A2Y1 the coupled
parts of A2 corresponding respectively to its feasi-
ble space U2 and its orthogonal, and using Y T

2 x̃∗
2 =

Y T
2 x∗

2.

In (41) a decomposition of the matrix A2 appears,
that can be written generically for any k ≥ 2:

Ak =
[

Vk Uk

]

[

Nk 0 0
Mk Lk 0

]

[

Y k−1 Yk Zk

]T

(42)

= WkHkY
T
k (43)

with Nk = V T
k AkY k−1, Mk = UT

k AkY k−1, Y k−1 =
[

Y1 . . . Yk−1

]

and Hk =

[

Nk 0
Mk Lk

]

.

Stacking all the decompositions (42) for the k first
levels, a single decomposition of Ak is recursively ob-
tained by:

[

Ak−1

Ak

]

=

[

W k−1 0
0 Wk

]





Hk−1 0 0
Nk 0 0
Mk Lk 0



 [Y k−1 Yk Zk]
T

= W kHkY
T
k (44)

The complete form for the p levels is finally:







A1

...
Ap






=







W1

. . .

Wp









































0 0 0 0 0

L1
0 0 0 0

N2

M2

0 0 0 0

L2
0 0 0

...
...

...
...

Np

Mp

0 0

Lp
0



































Y T

8

with Y =
[

Y p Zp

]

.
If all the levels are feasible, all the matrices Ak

and AkZk−1 are full row rank and all the Nk matri-
ces are empty. In this case, the decomposition is a
COD of Ap. If there is no conflict between the levels,
all the Nk are zero. In this case, it is only a matter
of row permutations to turn the above decomposition
into a perfect COD of the matrix Ap, involving an in-
vertible lower triangular matrix. This decomposition,
which has been designed to enforce a strict hierarchy
between different priority levels, looks close to a clas-
sical COD and is indeed a COD in particular cases.
For this reason, we propose to call this decomposition
a Hierarchical Complete Orthogonal Decomposition
(HCOD) of the matrix Ap.
The HCOD reveals a lot of information about the

structure of the problem. In particular, algorithmic
singularities [Chiaverini, 1997] appear in the zeros
above each Lk. The kinematic singularities corre-
sponds to zero row in the Nk. Conflicts between tasks
can be quantified by looking at large columns in the
Nk: for a singular level k, a large column in Nk indi-
cates which lower level should be relaxed to leave the
singularity of level k. The redundancy of the whole
problem is described by the last column of zeros and
then can be used through Zp. And, as with the SVD,
small values on the diagonal of the Lk indicate the
proximity of a singularity. All the indicators can be
used when solving a control problem to diagnose and
improve the behavior of the controller.

2.4 Primal optimum and hierarchical
inverse

2.4.1 Computing x∗
p

We have seen in (39) that the primal optimum of the
second level x∗

2 is directly computed from H2 and x∗
1.

Using the same reasoning, the optimum of level k,
given by (12), is computed using Hk:

x∗
k = x∗

k−1+YkL
−1
k UT

k (bk −Akx
∗
k−1)+Zkzk+1 (45)

The least norm solution for x∗
k is obtained for every

zi+1 = 0, what we suppose from now on. As ob-
served in this equation, the optimum of each level
k is computed using the level k of the HCOD and

the optimum of level k− 1. By recurrence, x∗
p can be

computed directly using the HCOD, by reformulating
(45) in the following way:

x∗
p = A‡

pbp (46)

where A‡
p is defined by a matrix recursion:

A
‡
k =

[

(I − YkL
−1
k UT

k Ak)A
‡
k−1 YkL

−1
k UT

k

]

(47)

Or more simply, with the HCOD:

A‡
p = Y p H

‡
p W

T
p (48)

with

H
‡
k =

[

H
‡
k−1 0 0

−L−1
k MkH

‡
k−1 0 L−1

k

]

(49)

Matrix A‡
p respects three of the four Moore-Penrose

conditions used to define the pseudo-inverse (as
shown in App. B.1). It has been designed to enforce a
strict hierarchy between different priority levels and
looks close to a pseudo-inverse. For this reason, we
propose to call this matrix the hierarchical inverse of
the matrix Ap.

2.4.2 Optimum structure

The optimum is structured by layer, following the
hierarchy of problems. This structure is more evident
when the optimum is computed in the Y basis. The
primal optimum in the Y basis is denoted y∗

k
= Y T

k x
∗
k.

The contribution x∗
k−x∗

k−1 of the level k to the primal

optimum is denoted y∗k = Y T
k (x∗

k − x∗
k−1) (= Y T

k x∗
k

since Y T
k x∗

k−1 = 0). Then (45) can be rewritten as:

y∗
k
=

[

y∗
k−1

y∗k

]

(50)

where y∗k = L−1
k (UT

k bk−Mky
∗

k−1
). Each component k

of the optimum vector y∗
p
= (y∗1 , . . . , y

∗
p) corresponds

to the contribution of the level k of the hierarchy. The
study of y∗

p
is thus very informative to understand the

obtained x∗
p: for example the hierarchy levels that

induce large contributions in x∗
p directly appear in

y∗
p
.

9

Algorithm 1 Primal eHQP

1: function eHQP primal(Ap, bp)
2: Input: HCOD of Ap, bp
3: Output: x∗

p, w
∗
p minimizing (23)

4: y∗
0
:= []

5: for k in 1:p do

6: e = UT
k bk −Mky

∗

k−1

7: w∗
k = Vk(Nky

∗

k−1
− V T

k bk)

8: e := L−1
k e

9: y∗
k
:= [y∗

k−1
; e]

10: end for

11: x∗
p = Y py

∗

p
, w∗

p = (w∗
1 , ..., w

∗
p)

12: return x∗
p, w

∗
p

As said above, the primal optimum is equivalent
to the solution computed by the iterative projection
in [Siciliano and Slotine, 1991]. This clearly appears
in (45), with YkL

−1
k UT

k being the projected Jaco-
bian. The similarities are less evident in (49), but the
HCOD interestingly reveals a sparsity, that is used
in Alg. 1 to reduce the amount of computation. The
optimum in the HCOD basis y∗

p
also reveals some

information about the hierarchical structure of the
problem: the levels with the high participation in the
whole problem appear as large coefficient of y∗

p
. On

the robot, this can be used to understand the output
control and if necessary change the behavior of the
robot by removing or damping some of the tasks.

2.4.3 Computing the w∗
p

For each level k, the slack variable is directly obtained
from x∗

k using (26). By replacing Ak byWkHkY
T
k and

x∗
k by (50), we obtain:

w∗
k = VkNky

∗

k−1
− VkV

T
k bk (51)

= VkV
T
k (Akx

∗
k−1 − bk) (52)

The algorithm to compute x∗
p and w∗

p is summa-
rized in Alg. 1.

2.5 Transposed hierarchical inverse
and dual optimum

2.5.1 Dual expression

At level k, the dual optimum is given by (29), recalled
here:

AT
k−1λk = −AT

kwk

A solution (the least-square one) to this second opti-
mality condition can be obtained with the transpose
of the hierarchical inverse:

λk = −A
‡T
k−1A

T
kw

∗
k (53)

A quick proof is given in App. B.1. For each level
k, there is a multiplier λk that corresponds to all
the level of higher priority. There is no real sense in
stacking the multipliers of each level. They can be
summarized under a matrix structure:

Λp =



















w∗
1

1λ2
1λ3 . . . 1λp−1

1λp

w∗
2

2λ3 . . . 2λp−1
2λp

w∗
3 . . . 3λp−1

3λp

...
...

w∗
p−1

p−1λp

w∗
p



















(54)

where jλk (j < k) denotes the components of the
multipliers λk of the level k for the constraints of
level j and the empty spaces for j > k express the
absence of multipliers on above levels.

The matrix Λp gives another way to look at
the interactions between tasks, thanks to a classi-
cal result of perturbation and sensitivity analysis
(see [Boyd and Vandenberghe, 2004], chapter 5.6):
the bigger an element of jλk is (in absolute value),
the more a further violation of the corresponding con-
straint would decrease ‖wk‖. Thus, big elements in
Λp indicate strong incompatibilities between tasks.
On the contrary, for compatible tasks j, k, jλk = 0.

2.5.2 Dual computation

There is no direct formulation to compute the whole
Λp. Alternatively, the multipliers of each level have
to be computed iteratively. The solution (53) gives
the matrix formulation of the Lagrange multipliers

10

of level k. To compute the multipliers, it is more
efficient to avoid the explicit computation of the hi-
erarchical transpose inverse. Using (47), (53) can be
rewritten:

λk =







1λk

...
k−1λk






=

[

−A
‡T
k−2(A

T
kw

∗
k +AT

k−1
k−1λk)

−Uk−1L
−T
k−1Y

T
k−1A

T
kw

∗
k

]

(55)
By recurrence, the components jλk of the multipliers
of level k can be computed starting from j = k − 1
down to 1.

jλk = −UjL
−T
j Y T

j

(

k−1
∑

i=j+1

AT
i

iλk+AT
kw

∗
k

)

(56)

Using the HCOD structure of the AT
i

iλk, the sum
on the right part can be computed for a reduced cost.
The algorithm is given in Alg. 2. The cumulative vari-
able ρ is used to propagate the recursion across the
k levels. At the end of any iteration j, the following
property is respected:

ρ(j) = Y T
j

(

k−1
∑

i=j+1

AT
i

iλk +AT
kw

∗
k

)

(57)

In line #7, ρ(j+1) is separated in two parts following

the separation of Aj+1 =

[

Aj

Aj+1

]

. The first part of

the vector is used to satisfy (57) while the second
part gives jλk using (56).

While the primal algorithm 1 computes the primal
optima x and w for all the levels at the same time, the
dual algorithm 2 can only achieve the computation
of w and λ for one level at a time. Both algorithms
can compute w naturally. If both are used, then a
choice has to be made on where to really perform the
computation of w∗.

2.6 Conclusion

We provide two algorithms to compute the pri-
mal and dual optima of a eHQP problem. Both
are based on the HCOD. This decomposition is
adapted to the hierarchical structure, which spare

Algorithm 2 Dual eHQP of level k

1: function eHQP dual(Ap, bp, x
∗, k)

2: Input: HCOD of Ap, bp, Primal optimum x∗,
level k

3: Output: w∗
k and λk satisfying (26) and (29)

4: e = Nky
∗

k
− Vkbk

5: w∗
k = Vke

6: ρ = −NT
k e

7: for j=k-1 downto 1 do

8:

[

ρ

ρ

]

:= ρ

9: r := L−T
j ρ

10: jλk := Ujr

11: ρ := ρ−MT
j r

12: end for

13: return w∗
k, λk

many computations that are necessary in the clas-
sical iterative methods used in robotics, such as
[Siciliano and Slotine, 1991]. Based on the COD, the
method does not produce any significant drawback,
in particular in term of numerical robustness. Using
the eHQP resolution, we now propose a dedicated
hierarchical active-set algorithm.

3 Inequality hierarchical
quadratic program

In this section, we devise an algorithm for solv-
ing the hierarchical problem (22) subject to in-
equality constraints (iHQP). We derived this algo-
rithm from the classical primal active set method
for QP [Nocedal and Wright, 2006]. This choice for
this class of methods is motivated by the need to
use warm start in our robotic context of paramet-
ric problems (see next section), and is made avail-
able by the fact we have at hand, with the HCOD,
a decomposition that is cheaply updatable, and thus
perfectly adapted. The active sets of all the hierar-
chical levels are computed at the same time, so that
we avoid the unnecessary iterations encountered in
[Kanoun et al., 2011, De Lasa et al., 2010].

11

3.1 Definitions and preliminary re-
marks

For a given x, a constraint a, b, with a a row vector
is satisfied if ax ≤ b, violated if ax > b and saturated

if ax = b. Active set methods stem from the fol-
lowing remark: at the optimum of the optimization
problem, some inequality constraints hold as equal-
ity constraints. Those are the constraints prevent-
ing to go closer to the unconstraint minimum. They
are said to be active at the optimum. The other
constraints (coined inactive) are irrelevant for de-
termining the solution. Would we knew in advance
the optimal active set S∗, i.e. the indices of active
constraints at the optimum, we would only need to
solve the associated eQP obtained by selecting the
constraints indexed by S∗ to solve the iQP. An ac-
tive set method works with a set S of active con-
straints. At each iteration, the corresponding eQP is
solved, and depending on the result, the active set is
modified by activating a violated constraint or deac-
tivating one whose Lagrange multiplier is negative.
See [Nocedal and Wright, 2006] for details.

Adaptating the method for iHQP is done through
the following changes:

• using our eHQP solver instead of the eQP, ob-
viously, to find the hierarchical optimum for a
given active set,

• iterating on the number of levels to compute the
Lagrange multipliers, since they cannot be com-
puted for all the levels at the same time,

• taking advantage of the specific role of the wi

variables to simplify the computations.

For the two first points, we trivially adapt Alg. 1
and Alg. 2 to work only with the active constraints
and denote them by eHQP primal(Ap, bp,S) and
eHQP dual(Ap, bp,S). With the use of the eHQP
solver we can process all the levels together and there-
fore only need one active-set, to the contrary of meth-
ods based on a sequence of QP [Kanoun et al., 2011,
De Lasa et al., 2010] which use an active set for each
QP.

The third point requires more explanations and is
based on two observations: (i) at the optimum, the
components of the wk corresponding to the inactive
constraints (we name them inactive slack variables

or inactive slacks for short) are equal to 0, and (ii)
when solving the eHQP for a given active set, only
the value of the active slacks are relevant. At an
iteration i of our active search, we can thus take

w
(i)
k,r = Ak,rx

(i) − bk,r if the rth constraint of level

k is active, where Xk,r refers to the rth row of Xk,

and w
(i)
k,r = 0 otherwise. At each iteration, the wk are

thus completely determined by x(i) and the current
active set, therefore we do not need to keep track of
them. In particular, we can compute the step lengths
by taking only x into accounts, and perform the steps
only on x.

With this choice of wk, some constraints might be
inactive and violated at first. Our algorithm readily
detects these constraints and activates them.

3.2 Hierarchical active search

Our hierarchical active search algorithm, HQP, is
summarized in Alg. 3 and detailed below.

3.2.1 Algorithm organization

The proposed algorithm is composed of two loops: an
inner loop that first enforces then maintains the prop-
erty that all the constraints should be activated or

satisfied. And an outer loop that explores all the lev-
els in ascending order to search for the corresponding
optimal active set. The inner loop itself is composed
of two sets of instructions: the first one (lines #7 to
#16) concerns the activation of needed constraints,
while the second one (lines #17 to #26) deals with
the deactivation to obtain the optimal active set.

3.2.2 Initialization

The algorithm starts with an initial guess S(0) of the
active set of all the levels. It does not need an initial
parameter x(0) since none of the levels (even the first
one) is guaranteed to be feasible. It then starts with
the arbitrary value x(0) = 0.

12

3.2.3 Step length and activation

The active-search then maintains a value of the pa-
rameter x(i) and the active set S(i). At each inner
iteration, the algorithm first computes the optimum
x(∗i) of eHQP associated to S(i). The current param-
eter is then moved toward x(∗i):

x(i+1) = x(i) + τ(x(∗i) − x(i)) (58)

where τ is the biggest fraction of the step that can be
taken without violating any satisfied constraints. It
is the minimum of the step allowed by each individual
constraint:

τ = min

(

min
k,r

τk,r, 1

)

(59)

with τk,r =

{

bk,r−Ak,rx
(i)

Ak,r(x(∗i)−x(i))
if Ak,rx

(i) ≤ bk,r

1 otherwise

The constraint with the smallest τk,r ≤ 1 is satu-
rated by the step (58) and is activated. If several
constraints correspond to the minimum τ , only one
of them should be arbitrarily activated.
Depending on the initial guess S(0) and the corre-

sponding eHQP optimum, some of the inactive con-
straints may be violated. In that case, the activation
loop will eventually make some full steps τ = 1, while
each time adding one violated constraint into the ac-
tive set. The number of activation steps is bounded
by the number of rows of Ap. At the end of these
steps, all the constraints should be activated or sat-

isfied. This property is then maintained throughout
all the following iterations.

3.2.4 Positivity of the multipliers and deac-

tivation

Eventually, a full step (τ = 1), possibly trivial
(x(∗i) = x(i)), will be taken without activating any
constraint. The Lagrange multipliers for the current
level k are then computed (it was not necessary to
test them before). The active set is optimal with re-
spect to the current level if no multiplier component
is strictly negative. Otherwise, the constraint corre-
sponding to the lowest component is deactivated, and
a new inner iteration is started.

If the active set is optimal for the current level k
we can distinguish between the strongly active con-
straints for which the corresponding Lagrange multi-
pliers are strictly positive and the weakly active con-
straints with a multiplier equal to 0. As observed
in [Kanoun et al., 2011], strongly active constraints
cannot be deactivated at a next level. To enforce
this, the strongly active constraints are locked, as
in [Kanoun et al., 2011].

In summary, the outer loop explores each level
starting from the first one. At each level, it com-
putes the multipliers. If a constraint is strictly neg-
ative and does not correspond to a strictly positive
component of the multipliers of the previous levels, it
is deactivated. When no more constraint needs to be
deactivated, the constraints corresponding to strictly
positive components of the multipliers are stored in
the set F of locked constraints.

3.2.5 Algorithm termination and proof of

convergence

The algorithm stops after p outer iterations have
been completed. Each outer iteration k finishes when
there are no more constraint to activate or deactivate,
which induces that ‖wk‖ is optimal and will not be
changed anymore. Upon termination, the active set
is such that all the constraints are active or satisfied,
and it is optimal for each of the levels.

The termination of the whole algorithm is ensured
by the fact that each outer loop k terminates, as
proved in App. B.2.

3.3 Lexicographic optimization

The algorithm deactivates a constraint if there exists
a level k for which the component of the multiplier
corresponding to the constraint is negative, while it
is zero for all the multipliers of level j < k. Consider
the matrix Λp in (54). A constraint is deactivated iff

the corresponding row of Λp has one strictly negative
component on column k preceded by only zeros for
the columns j < k. In other words, the row is smaller
than zero in the lexicographic sense:

[

0 ... 0 −α × × ... ×
]

≺ 0 (60)

13

Algorithm 3 Hierarchical active search

1: Input: Initial guess S(0)

2: Output: x∗ minimizing (22)
3: x = 0 ; S = S(0)

4: F = ∅
5: for k = 1 : p do

6: repeat

7: −−Compute the next optimum−−
8: x∗ = eHQP primal (Ap, bp,S)

9: −−Compute the step length using (59)−−
10: τ ,activate,cst = step length(Ap, bp, x, x

∗)
11: x := x+ τ(x∗ − x)

12: −−If necessary, increase the active set−−
13: if activate then

14: S := S
⋃

{cst}
15: continue

16: end if

17: −−If necessary, decrease the active set−−
18: w, λ = eHQP dual (Ap, bp, x, k,S)
19: λF := 0
20: ν, cst = min{λ,w}
21: if ν < 0 then

22: S := S \ {cst}
23: continue

24: else

25: F := S
⋃

{cst, λcst > 0}
⋃

{cst, wcst > 0}
26: break

27: end if

28: until not activate and ν > 0
29: end for

30: return x∗ := x

With this notation, Alg. 3 can be rewritten as a clas-
sical active set search, using a lexicographic test on
Λp instead on lines #18-#19. If the lexicographical
formulation is simpler, the more explicit Alg. 3 re-
mains more efficient from a computational point of
view since it avoids computing the whole Λp at each
iteration.

3.4 Least-norm solution

The eHQP algorithm gives the least-square solution
among all the solutions of same cost, when zp+1 is
set to 0. However, this is not the case of the iHQP
since some constraints might be uselessly active. In-
deed, there is no mechanism to deactivate the weakly
active constraints. To force their deactivation, an ar-
tificial last level can be added by setting Ap+1 = I

and bp+1 = 0 that is to say x = 0. This constraint will
always be rank deficient, but its satisfaction at best
in the least-square sense ensures that the optimal ac-
tive set is unique and the the returned optimum is
the least-square one.

3.5 Implementation details and com-
plexity

We note Ap(S) the matrix whose lines are the lines of
Ap corresponding to active constraints. The costlier
operation in the algorithm is the computation of
the HCOD of Ap(S) in eHQP primal, which is in

O(n3). All other operations (computation of x∗,
step (58), computation of (λk, wk) for one level) are
then performed in O(n2). Computing this decompo-
sition from scratch at every inner loop is therefore
out of question. Fortunately, the decomposition be-
ing based on the COD, rank-1 updates can be done
cheaply: the addition or removal of a line at any po-
sition in Ap(S), corresponding to a the activation or
deactivation of a constraint implies a change in the
decomposition that is done in O(n2). The correct
way to implement the algorithm is therefore to com-
pute only once the HCOD, at the first iteration, then
to update it at each change of the active set. Details
of the update process and complexity costs are given
in [Escande et al., 2013].

As any numerical scheme, the algorithm needs the
settings of tolerances, two in our case, for rank de-
termination and constraint violation. We set both to
square root of the machine precision.

A complete and well-documented implementa-
tion of the active-set solver is provided as an
example using the MATLAB language in the
attached documents (see Appendix A). A
more efficient implementation using C++ is pro-

14

vided in the open-source project StackOfTasks
http://github.com/stack)of)tasks/soth.

3.6 Conclusion

Based on the hierarchical decomposition, we have
proposed an active-search algorithm that solves the
iHQP problem. On the contrary to the cascade of QP
used in [Kanoun et al., 2011, De Lasa et al., 2010],
this algorithm computes the active set of all the level
of the hierarchy at the same time. It thus solves the
complete hierarchical problem at once, avoiding the
back-and-forth effects encountered with cascades and
sparing the cost of computation.

4 Parametric optimization

The major recognized interest of hierarchical opti-
mization in robotics is in control, for IK and ID. In
these contexts, the problem definition (matrices A

and vectors b) only varies slightly from one control
cycle to the other. We can then use the solution
computed at a given cycle to reduce the complex-
ity of the search at the next cycle. This is known
as warm-starting in optimization. For that we first
need to show that the optimum continuously evolves
with the problem definition, by defining a parametric
hierarchical problem.

4.1 Parametric problem definition

We consider that HQP, that varies continuously with
respect to a given parameter t:

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} . (61)

subject to ∀k = 1 : p, Ak(t)x ≤ bk(t) + wj

with Ak(t) and bk(t) continuous function of a real pa-
rameter t ∈ R. This problem is denoted by HQP(t).
We study the continuity of the two functions:

O : t → O(t) = {x, ∀x′, Apx 4 Apx
′} (62)

x∗ : t → x∗(t) = min
x∈O(t)

{‖x‖} (63)

where b1 4 b2 denotes the lexicographic order cor-
responding to the hierarchy. O(t) is the optimal set
of the HQP(t) and x∗(t) is the least-norm element of
O(t) (unique since O(t) is convex).

4.2 Continuity of the parametric op-
timum

For a given t, we note S∗(t) the optimal active set of
HQP(t) corresponding to x∗(t) with no weakly active
constraint. As t evolves, some constraints are added
or removed from S∗(t). Since there is a finite num-
ber of constraints, this happens at discrete instants,
between which S∗(t) is constant. In fact S∗(t) is con-
stant almost everywhere.

On each interval where S∗(t) is constant, HQP(t)
is equivalent to the much studied equality-constraints
only hierarchical problem, and therefore its solu-
tion x∗(t) is continuous everywhere but when passing
through a singularity [Ben-Israel and Greville, 2003].
Note that the discontinuity only occurs at the in-
stant the singularity appears or disappears (instants
of rank change of an AkZk−1). We name such an
instant singularity instant.

We are left with the study of continuity at the in-
stants of active-set changes. Denoting by x∗

S(t) the
least-norm optimum of the eHQP associated to the
active set S, the following theorem ensures the con-
tinuity of the solution everywhere but at singularity
instants:

Theorem 4.1. At a given t0, if t → x∗
S∗

t0

(t) is con-

tinuous, then x∗(t) is continuous.

Its proof only needs to consider instants
of active-set changes and is formally given
in [Escande et al., 2013]. It is based on the
fact that if such an instant t0 is not also a singularity
instant, a constraint activated or deactivated at
t0 is weakly active and thus does not disturb the
optimum at t0 whether it is active or not. The
optimum being continuous before and after t0, the
continuity is obtained.

The only sources of discontinuity are therefore the
rank change in AkZk−1, as in the equality-constraint
only case.

15

This continuity result is inherent to the prob-
lem (61) and fully independent of the way to solve
it. We now show how to take advantage of it with
our solver.

4.3 Warm start and real-time imple-
mentation

On-board a robot, the solver is used at discretized
times t,t+1,... Thanks to the continuity, the optimum
of time t nearly satisfies the feasible constraints of
time t + 1. A good initial guess for the active set of
time t+ 1 is thus the optimal active set of time t. In
most of the cases, this is enough to reach the optimum
in a single iteration. From time to time, the active
set changes: in most cases few additional activations
and deactivations are sufficient. However, one cannot
guarantee the number of necessary iterations to reach
the optimum. In particular, a minor modification
of one optimum can trigger a cascade of activations-
deactivations in pathological cases.
The warm start improves the efficiency of the

solver. However, we cannot yet guarantee that the
solver answers in a bounded number of iterations. It
is however possible to force the solver to stop after an
arbitrary number N of iterations, which enforces the
real-time property. Thanks to the continuity prop-
erty, the obtained final point x(N) is at a distance to
the optimum x∗ proportional to the sampling of the
control, which guarantee a good behavior in practice.
If the optimal active set was not reached at t+1, the
search will restart at t+ 2 from the intermediary ac-
tive set obtained after the N iterations of time t+1.

By using the previous active set as a warm start
and bounding the number of iterations, the solver will
find the optimum within the bounded number of iter-
ations in most of the case, and otherwise will respect
the real-time constraint by spreading the search of
the optimal active set over several iterations.
The fast and real-time properties are obtained

thanks to the continuity of the optimum and to
the monolithic structure of the active-set algorithm,
that consider only one active set candidate for
all the levels simultaneously. On the opposite, it
would not possible to adapt the warm start to a

cascade resolution like in [Kanoun et al., 2011] and
[De Lasa et al., 2010].

5 Hierarchical inverse kinemat-
ics

We first discuss quickly a possible use of the HQP
solver. Then we expose the robotics setup that has
been used in the next section, implementing IK for
a humanoid robot. An important aspect is to prove
the stability of the controller. The theoretical result
is expressed in Sec. 5.2 and the main lines of the proof
are given. The IK scheme is then used in the next
section to validate the interest of our approach.

As explained above, the hierarchical formulation
has been used in robotics for IK and ID. IK is
straight-forward, since the solver variable is the
robot velocity. In ID, the main variables are
the joint torques but the robot acceleration and
the external contact forces have also to be consid-
ered [Collette et al., 2007]. On a robotics point of
view, IK is more limited (many constraints of the
robot such as actuator limits or humanoid balance)
cannot be expressed properly. However, it is also
more widely used and easier to understand. To limit
the context of this paper, we focus on IK here. Hi-
erarchical ID with the same solver is discussed in
[Saab et al., 2013].

5.1 Robotic setup

The solver has been tested to perform an IK with
the HRP-2 robot, in simulation and on the real plat-
form. The robot has 36 DOF whose first six are not
actuated. When considering only the kinematics, a
classical solution is to replace the underactuation by
a contact constraint of equivalent size, typically con-
straining the six parameters of position and orienta-
tion of one contacting foot. The underactuation is
then resolved while the dynamic of the robot is neg-
ligible. All the HQP solved in the following have a
parameter size n = 36. The robot is controlled at
200Hz.

Two types of tasks are considered. The first type
aims at regulating to 0 an error depending on the

16

robot configuration. The task function is then given
by:

e(q,Ω) = s(q)− s∗(Ω) (64)

where the task function e depends on the robot con-
figuration and other parameters of the universe Ω as
an error between a current measurement s(q) and a
desired value of it s∗. The functions used in the fol-
lowing are the end-effectors position and orientation
of the right hand erh, left hand elh and feet erf , elf .
Both feet are controlled together on the ground by
stacking the two last tasks efeet = (erf , elf). The
center of mass (COM) is controlled to a given point
by ecom. The orientation of one vector attached to
the robot (for example, having the hand around a
stick but able to rotate around the stick axis) is con-
trolled by regulating the cross product:

eθ = u(q)× u∗(Ω) (65)

where u is the vector attached to the robot to
be placed on u∗. More details about these clas-
sical task functions can be found in [Sentis, 2007,
Kanoun, 2009]. The regulation of the error is real-
ized by a proportional correction ė∗ = −κe, κ > 0.
The linear constraint is finally:

Jq̇ = ė∗ −
∂e

∂Ω
Ω̇ (66)

where J = ∂e
∂q

is the robot task Jacobian.
The second type of tasks defines a bound on a func-

tion of the robot configuration:

el(Ω) ≤ e(q) ≤ eu(Ω) (67)

This constraint is homogeneous to the configuration.
The linear constraint is obtained by the first-order
Taylor approximation:

κ

∆t
(el(Ω)− e(q)) ≤ Jq̇ ≤

κ

∆t
(eu(Ω)− e(q)) (68)

where κ is the time horizon (in number of
control iterations) used as a gain modifier
[Faverjon and Tournassoud, 1987].
Several task functions e can be used to obtain var-

ious behaviors. The joint-limit task ejl bounds the
robot configuration q by a set of fixed value. The

task esupp keeps the COM in the support polygon.
The field-of-view (FOV) task efov considers the pro-
jection of an object on the image plane and bounds
it by the image border. The collision avoidance is
enforced by the task ecoll by imposing the distance
between a body of the robot and an object to be
positive. In that case, the pair of bodies and object
to check has to be specified (no systematic collision
checking was performed here, it should be consid-
ered in the future [Stasse et al., 2008]). Once more,
details about these classical functions can be found
in [Sentis, 2007, Kanoun, 2009].

By construction, the IK problem, with or without
priority, is subject to singularity. In the neighbor-
hood of a singular point, the diagonals of the Lk ma-
trices become low (as explained in Sec. 2.3), which
raises undesirable high values during their inversion.
This is the same problem encountered in any other
IK scheme and our solver is not more sensible to this.
Three solutions can be considered. It is possible to
regularize the problem, for example by adapting the
classical Tikhonov regularization classically used as a
damping term for each level. Or a coercive bound can
be enforced on the robot velocity, or even better, on
the acceleration. This can be seen as a regularization
of the dual. Finally, during the execution, the HCOD
can be used to diagnose the near-singular tasks and
remove them.

5.2 Stability

More abstractly, the HQP constraints can be written
by a set of p tasks:

ėk = Jkq̇ (69)

∀k ∈ SI , ėk ≤ bk (70)

∀k ∈ SE , ėk = ė∗k (71)

where SI

⋃

SE is a partition of the set {1 . . . p} of the
p first integers: SI are the task levels that are defined
by a limit bk and SE are the task constraints to fol-
low a given velocity ė∗k. We denote by eE the stack
of all equality constraints and by JE the associated
jacobian.

We suppose that all the equality tasks are stable
(i.e. ekė

∗
k < 0) and that 0 is an acceptable solution

17

for all the tasks of SI , i.e. ∀k ∈ Si, bk > 0. In this
section, we briefly prove that the use of a HQP keeps
the same properties of control stability than in other
classical IK approaches.

Theorem 5.1. The hierarchical IK control law is

stable in the sense of Lyapunov. It is asymptotically

stable iff JE is full row rank and none of the equality-

constraint levels of the HCOD are rank deficient.

It is possible to demonstrate that the control
scheme described here is stable, based on the same
kind of reasoning as with the continuity. The proof
is included in [Escande et al., 2013]. The idea is the
following: if the attractor region is inside the poly-
tope defined by the inequality constraints, then the
control is stable using the well-known results of the
task-function approach [Samson et al., 1991]. If it is
outside, then the inequality constraints limit the mo-
tion (and prevent asymptotical stability) but do not
destabilize it.

6 Results: simulation and ex-
periments

We first present in Sec. 6.1 a set of timing results
obtained with random problems out of any robotics
application to compare our solver with previous ap-
proaches. The IK scheme presented in the previous
section is then used to generate three movements in
simulation and on the real robot HRP-2. In each
case, our solver is compared to the solvers proposed
in [Kanoun et al., 2011] and [De Lasa et al., 2010].

The computations have been performed on a
2.3GHz Intel Core 7 CPU (same CPU specification
for the simulation and for the robot computer). It
was not possible to try all the movement on the
robot since some of the resolution methods are too
slow and cannot offer real-time guarantee. The first
movements are then shown in simulation only. The
last movement is performed on the real robot. An
overview of the solver performances is given in Ta-
ble 1.

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of levels

C
om

pu
ta

tio
n

tim
e

(s
)

M

p

M
z

M
H

Fig. 2: Computation time for the eHQP plotted with re-
spect to the number of level p. The problems are ran-
domly selected with same dimension (n = 100, m =
150, r = 80). The HCOD is approximately ten times
faster than the classical iteration projection proposed in
[Siciliano and Slotine, 1991].

6.1 Computation time

First, we quickly compare the efficiency of our solver
on generic problems. The problem definitions in this
subsection (matrix A and vector b) are randomly shot
with the same dimension and rank. However, the
problem rows are distributed into an arbitrary num-
ber of priority levels. We measure the algorithm ef-
ficiency with respect to the number of levels, first
without then with inequalities.

6.1.1 Equality-only HQP

We first experimentally check the computation
time needed to compute the primal optimum of a
eHQP using three methods: the classical iterative-
projection proposed in [Siciliano and Slotine, 1991]
and recalled in (10) (MP for short); the im-
plicit projections using successive basis, proposed in
[Escande et al., 2010] and recalled in (12) (MZ for
short); and using the HCOD proposed in this paper
(MH for short).

We randomly selected 1000 hierarchical problems
with same dimension (n = 100, m = 150) and same
total rank (r =

∑

ri = 80) but with number of levels
and distribution among the levels varying from p = 1
to p = 26. The measured computation times are

18

0 5 10 15 20 25
0

20

40

60

80

100

Levels

N
b

of
 u

pg
ra

de

Cascade QP

HQP solver

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

Levels

C
om

pu
ta

tio
n

tim
e

(s
)

Cascade QP

HQP solver

Fig. 3: Number of active-set iterations and computation
time for the iHQP resolution using a cascade of QP. Both
costs in time and in number of algorithm iterations in-
crease with p for the cascade of QP and remain constant
for the HQP solver.

presented in Fig. 2.

The HCOD implies much faster computation (ap-
proximately ten times faster than MP which is the
most classically used; typically less than 1ms is
needed for this size of problem). It is also faster than
MZ since only one basis is used, which enables the
processor to optimize better repetitive product oper-
ations.

Interestingly, the cost increases for small p with all
the methods. This is due to the time spent in han-
dling trade off in conflicts, that the hierarchy just
avoids by definition. With more levels, the conflicts
are more likely to be divided into several priority lev-
els, which decreases the computation cost.

6.1.2 Active-set search

Similarly, the hierarchical active search Alg. 3
is compared to the cascade of QP used in

[Kanoun et al., 2011]2. The results are shown in
Fig. 3. As described in Section 1.6, the number of
cycle in the active-set search increases with the num-
ber p of levels when using a cascade of QP. It remains
constant with the HQP. The measured computation
time follows the same evolution. Typically for 6-8
levels (which is the number of levels that will be used
in the following), the cascade takes twice the time
needed by the HQP to converge.

6.2 Simulation A: grasping using con-
ditional visual guidance

6.2.1 Setup

The robot has to grasp a point object while keeping
its balance and respecting its joint limits. During
the task, the robot tries to keep the object in its
FOV and, if possible, to keep its COM into a small
2cm-wide band inside its support polygon to obtain
a well-balanced posture (ebal). The task order is then
ejl ≺ efeet ≺ esupp ≺ erh ≺ efov ≺ ebal. The robot
motion is summarized by Figures 4 to 10. The ob-
tained motion as well as the two motions obtained
in the next two sections is recorded in the attached
video (see App. A).

The ball is moved in four different places as shown
in Fig. 4: first in front of the robot, in an easily reach-
able position; then far in the left, so that the robot
has to bend to reach it; the ball is put back to the
initial position before putting it to a far right po-
sition that is not reachable while keeping the COM
inside the support polygon. At the first ball posi-
tion, the two last tasks are respected: the ball is in-
side the FOV and the COM is in the central band.
The second ball position is further away and requires
to the robot to importantly bend to reach it. The
COM cannot be kept inside the central band while
satisfying all the other tasks. Relaxing the least-
priority COM task enables to satisfy efov and erh.
The higher-priority COM task is respected, that en-
sures the robot balance. The ball is then placed back
in front of the robot: the COM comes back to the

2We cannot compare the HQP with [De Lasa et al., 2010]
for this setup because this last method does not handle the
problems tested here. A comparison is proposed in Sec. 6.3.

19

(t=2s) Ball in front (t=5s) Far left (t=7s) Front (t=10.4s) Far right

Fig. 4: Top row: snapshots of the robot motion. Bottom row: corresponding COM projection in the support polygon
(view from underside, the COM position is depicted by the small disk, each rectangle depict one of the foot, the central
rectangle shows the area for ebal). Each snapshot is captured at the end of a motion sequence. The FOV is displayed
by the 4 lines passing by the center of the image projection.

0 1 2 3 4 5 6 7 8 9 10

jl e

feet e

suppe

rh e

fove

com e

Time (s)

Front Far left Front Far right
Active

Violated

Saturation

Fig. 5: Simulation A: task sequence, listed by priority
from bottom to top. The tasks are specifically marked
when they become violated. The hierarchy appears through
the violation order: the least-priority tasks are relaxed
first in case of conflicts. The number of saturated joint
limits is displayed in the ejl row.

0 1 2 3 4 5 6 7 8 9 10

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

C
O

M
 p

os
iti

on
 (

m
)

 Com X−pos

Com Y−pos

Inner limit

Outer limit

Fig. 6: Simulation A: position of the COM wrt the inner
and outer limits. The COM has to remain into the outer
limits to ensure the balance of the robot, and should be
kept if possible inside the central band (inner limits) to
obtain a balanced robot posture.

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

Time (s)

N
or

m
al

iz
ed

 im
ag

e
po

si
tio

n

 Image X−pos

Image Y−pos

Limits

Fig. 7: Simulation A: position of the object projection
in the image plane wrt the FOV limits. When the ball is
moved outside the FOV, efov brings it back into the FOV
limits. At T = 0s, 2s, 5s and 7s, the ball is artificially
moved out of the FOV and the robot brings it back follow-
ing the task reference. The robot loses the ball at T = 9.8s
due to a conflict with the tasks having priority.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 jo
in

t p
os

iti
on

R.hip

L.hip

L.knee

Chest

Neck

R.shoulder

Fig. 8: Simulation A: normalized joint positions.

20

central band while all the other tasks are kept satis-
fied. The last position is unreachable while keeping
the COM in the support polygon. All the tasks from
the least-priority one are successively relaxed until
the minimal distance to the ball is finally reached: at
the final position, the COM is outside of the central
band, on the border of the support polygon, and the
ball is outside the FOV. This is a typical case of inter-
est of the hierarchy: a proper behavior is ensured by
the tasks having priority (balance, joint limits) while
the optional objectives are satisfied at best.

6.2.2 Results

The task sequence is given in Fig. 5. In the begin-
ning of each motion sequence (when the ball is just
moved), the visibility constraint (67) might be vio-
lated without the FOV task (68) being violated: the
control is simply bringing the ball inside the FOV
boundaries according to the task definition. The task
becomes violated when (68) cannot be fulfilled. De-
tails about the COM and FOV satisfaction are given
in Figures 6 and 7. At the beginning of the third
motion sequence, the COM is outside of the central
band. It is brought back to this zone after 0.2 sec-
onds. Similarly, at the beginning of each sequence,
the ball is outside of the FOV and is quickly brought
back. At time T = 4s, the COM is at the central-
band limit when several joints reach their limits (see
Fig. 8). This reduces the available DOF for the grasp
task, and then for ebal, which has to be relaxed: the
COM leaves the central band. Similarly, at T = 9s,
the COM is on the border of the band. The activa-
tion of some joint limits once more drives the COM
outside of the central band. At T = 9.5s, some DOF
of the grasp task erh collapse because of a kinematic
singularity. The freed DOF can then be used by the
least-priority tasks and this leads first the X coordi-
nate of the COM to leave the central band, then the
ball to leave the FOV. The COM quickly escapes the
central band, until it finally reaches the second COM
bound imposed by esupp. The limitation of the COM
causes the violation of erh: the robot then stops as
close as possible to the ball. Some typical trajectories
of the joints are shown in Fig. 8: the limits are al-
ways respected. The number of active constraints for

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Time (s)

N
b

of
 a

ct
iv

e
in

eq
ua

lit
ie

s

Fig. 9: Simulation A: number of active inequalities at
each control cycle.

all levels together (i.e. the size of the optimal active
set) is displayed in Fig. 9.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
N

b
up

da
te

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

x 10
−3

Time (s)

C
om

pu
ta

tio
n

tim
e

(s
)

Cascade QP
HQP
HQP warmstart

Fig. 10: Simulation A: Number of algorithm itera-
tions and computation time when using a cascade of QP
[Kanoun et al., 2011] and using the HQP without and
with warm start.

6.2.3 Computation cost

We compare in Fig. 10 the cascade resolution pro-
posed in [Kanoun et al., 2011] with our method us-
ing an empty initial guess and using a warm start
as proposed in Sec. 4.3. First, the number of itera-
tions in the active search loop is much higher with a
cascade of QP than using the proposed HQP solver.
The number of iterations in the active search is very
similar to the number of active constraints at the op-

21

timum, as can be seen by comparing Fig. 9 to Fig. 10-
(top). Our solver barely needs any deactivation to
find the optimal active set. This is not the case when
using a cascade of QP, which needs more than twice
as many iterations to reach the optimal active set.
As expected, the number of iterations is even lower
using a proper warm start: in that case, the active
search only iterates when a new boundary is reached.
The maximal number of iterations is 6 (at the first it-
eration after the change of the ball position at T=7),
the mean number is 0.03 and in 97.6% of the case,
the active search converges without any update. As
shown in Sec. 3.5, the computation time depends on
the number of active constraints and of active-search
iterations. Since there is nearly no iteration, the time
with warm start in Fig. 10 depends only on Fig. 9 and
has the same shape. For the two other, the influence
of the number of iterations is more important, and
the time graph shape is similar to the graph of num-
ber of iterations.
Using the HQP and the warm start, an average

of 0.56ms of computation is needed. Our algorithm
is three times faster than a cascade of QP and is
5-6 times faster is using a warm start. Moreover,
the numerical behavior is improved by limiting the
number of iteration in the search loop.

6.3 Simulation B: opening a valve

The previous movement cannot be generated using
the method presented in [De Lasa et al., 2010] since
inequality tasks were considered without the main
priority. We now consider a less complex example
that this method can handle, with all the inequal-
ity constraints feasible and at the top priority. The
robot has to open a valve by manipulating a wheel.
The motion is composed of two parts: the robot first
manipulates the wheel using one hand, then rotates
the wheel using both hands with successive re-grasps.
During the motion, the robot has to avoid a block lo-
cated on its left, and to keep its COM inside the sup-
port polygon. When grasping the wheel, the robot
has to look at it; when rotating the wheel, it has to
look at a manometer located on its left. The first
movement (left-arm manipulation) is summarized in
Figures 11 to 14. The second movement (both-arm

(t=5.0s) (t=5.5s) (t=6.3s)

Fig. 11: Simulation B-1: Snapshots of the first move-
ment: the robot uses only its left hand to manipulate the
wheel. The three snapshots are captured during the wheel
rotation for three angles of 0, 2π

3
and 4π

3
.

manipulation) is summarized in Figures 15 to 20.
The comparison of the computation times for both
movements is given in Fig. 21.

1 2 3 4 5 6 7 8

jl e

 suppe

fove

coll e

Rlh e

Tlh e

time (s)

3D 2D

Grasp Turn

Fig. 12: Simulation B-1: Task sequences of the first
movement. The wheel is rotated of two complete loops.
For the four inequality tasks, the number of active con-
straints during the motion is plotted for each level.

6.3.1 First movement

Snapshots of the first motion are shown in Fig. 11.
The task sequence is detailed in Fig. 12. The con-
straints are the joint limits, the support polygon, the
FOV and the distance of the left elbow and shoul-
der to the left obstacle. The left-hand task is di-

22

vided into the translation eTlh and rotation eRlh com-
ponents. During the approach, both the left-hand
rotation and translation are controlled. When the
robot rotates the wheel, the rotation of the hand
around the wheel axis is let free and only two de-
grees of rotation are controlled. The hierarchy is
ejl ≺ esupp ≺ efov ≺ ecoll ≺ efeet ≺ eTlh ≺ eRlh.
The four first tasks are compatible during all the
movement and can be considered to be of equal prior-
ity (which makes the method of [De Lasa et al., 2010]
possible to handle them).
The number of active constraints for the four first

levels is shown in Fig. 12. The total number of
active inequalities is given in Fig. 13. When the
robot is on the left side of the wheel, the obstacle
strongly constraints it, which raises the number of
active constraints: two peaks appear for each loop
of the wheel. The distances of the shoulder and el-
bow to the obstacle are given in Fig. 14. The arm
comes close to collision when the robot approaches
the wheel: the constraints are saturated to prevent
it. The constraints are then deactivated when the
robot goes away from the obstacle. When the robot
starts to rotate the wheel, the constraints become
once more active. Since the motion is not holo-
nomic [Zanchettin and Rocco, 2012] (in particular,
there is no posture task), the motion realized for each
loop is different: during the second loop, the elbow
constraint remains saturated.

6.3.2 Second movement

The robot then uses its second arm to ease the manip-
ulation of the wheel. The motion is more constrained
since both hands are bound to the wheel. Snapshots
of the motion are given in Fig. 15. The task sequence

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

Time (s)

N
b

of
 a

ct
iv

e
in

eq
ua

lit
ie

s

Fig. 13: Simulation B-1: Number of active inequalities
during the first movement.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

Time (s)

D
is

ta
nc

e
(m

)

Shoulder

Elbow

Fig. 14: Simulation B-1: distance to the obstacle during
the first movement. The obstacle is on the way between
the left-arm initial position and the wheel: the two con-
straints of the shoulder and the elbow become active at
T = 1.1s and T = 1.2s. They are deactivated later during
the grasping phase, at T = 2s and T = 2.1s. At each
loop of the wheel, the left arm comes close to the obstacle,
between T = 4s and T = 5s, and a second time between
T = 5.7s and T = 7s.

is given in Fig. 16: each hand first reaches an arbi-
trary pre-grasp position before grasping the wheel.
During the approach, the three rotations are con-
trolled, while the rotation along the tangential axis to
the wheel is left free during the manipulation. The
distance to the obstacle is plotted in Fig. 17. The
constraint becomes active at the end of the motion.
The joint position with respect to the limit is shown
in Fig. 18. Contrary to the previous simulation, the
joints do not systematically remain on the exact lim-
its since the robot is moving to follow the rotation of
the wheel. The number of active constraints is given
in Fig. 19. The number of active constraints increases
with the complexity of the task. It reaches its maxi-
mum just before the robot starts to move the wheel
(see Fig. 15-left, the robot is bent on the right with
many apparent saturations). It then decreases when
the robot stands straight (see Fig. 15-middle), and
increases again at the end of the motion (see Fig. 15-
right). Finally, the conditioning number of the left-
and right-hand tasks is shown in Fig. 20. The con-
ditioning number evolves both continuously with the
changes in the Jacobians and discretely at each con-
straint activation.

6.3.3 Computation times

The computation time and corresponding number of
iterations of the active set are plotted in Fig. 21.
Using a warm start of the HQP, the active search
loop converges without any update in 97.5% of the

23

(t=13.5s) (t=14.5s) (t=16.5s)

Fig. 15: Simulation B-2: Snapshots of the second move-
ment: the robot uses both hands to manipulate the wheel.
For the sake of clarity, the environment is not displayed.

9 10 11 12 13 14 15 16

jl e

 suppe

fove

coll e

Rrh e

Trh e

Rlh e

Tlh e

time (s)

3D 2D

Approach Grasp Turn

3D 2D

Approach Grasp Turn

Fig. 16: Simulation B-2: Task sequence of the second
movement: the plots show the grasping phase (from T =
9s to T = 13.5s) and a rotation of 2π

3
. For the four

inequality tasks, the number of active constraints during
the motion is plotted for each levels.

9 10 11 12 13 14 15 16

0

0.05

0.1

0.15

0.2

Time (s)

D
is

ta
nc

e
(m

)

Shoulder

Elbow

Fig. 17: Simulation B-2: Distance to the obstacle.

9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 jo
in

t p
os

iti
on

 L.hip

Chest

R.shoulder

L.shoulder

L.elbow

Fig. 18: Simulation B-2: Normalized joint positions dur-
ing the second movement.

9 10 11 12 13 14 15 16
0

2

4

6

8

10

Time (s)

N
b

of
 a

ct
iv

e
in

eq
ua

lit
ie

s

Fig. 19: Simulation B-2: Number of active inequalities
during the second movement.

14 14.5 15 15.5 16 16.5
0

0.05

0.1

0.15

0.2

0.25

Time (s)

C
on

di
tio

ni
ng

Left hand
Right Hand

Fig. 20: Simulation B-2: Conditioning number of the
hand tasks when both hands are moving the wheel. The
vertical dot lines show the inequality activations. The
conditioning number evolves both continuously with the
changes in the Jacobians and discretely at each constraint
activation.

24

0 5 10 15 20 25
0

5

10

15

20

25

30

N
b

up
da

te

0 5 10 15 20 25
0

1

2

3

4
x 10

−3

Time (s)

C
om

pu
ta

tio
n

tim
e

(s
)

De Lasa
Warm start
real time

Fig. 21: Simulation B: Number of algorithm itera-
tions and computation time with the method proposed in
[De Lasa et al., 2010], using our approach using a warm
start and using a warm start and a bound on the number
of active-set iteration (real-time).

cases. The mean number of iterations is 0.035 and
the maximum is 9. The mean of computation time is
0.9ms. The peaks of number of iterations correspond
to peaks of computation time. When 9 iterations are
needed, the algorithm takes 1.6ms to converge. This
shows that the active set is not real time: it is not
possible to predict how many iterations are needed
to reach the optimum and, even if the mean is below
1ms, a control frequency of 1kHz is not possible.

As proposed in Sec. 4.3, it is possible to arbitrarily
limit the number of iterations to enforce a determin-
istic convergence time. The active-set was bound to
maximum one update at each control cycle. When a
second update is requested, the algorithm quits with-
out even computing the dual optimum. The peaks
of computation disappear. In exchange, the number
of control cycles without update decreases to 96.6%.
There is no perceptible changes in the robot behavior,
since, due to the continuity properties, the obtained
sub-optimum is very close to the solution.

Since the only inequalities are at the first levels of
the hierarchy and are always compatible, the solver
proposed in [De Lasa et al., 2010] can be used to gen-
erate the motion. As already noticed with the cas-
cade of QP, the active search needs many iterations
to find the optimal active set (up to 30, with a mean

at 4.7). However, since each QP solved in the cascade
is very small, the number of iterations only slightly
impacts the computation cost. The convergence is
slower than with the HQP (the mean is 1.3ms), but
there is less peak than with our solver. The max-
imum is 2.6ms. The computation time is however
always higher than for our solver.

6.4 Experiment C: grasping with pos-
ture constraints

This experiment is executed by the real HRP-2 robot.
The robot has to grasp a point object while looking at
it and avoiding its joint limits and the collisions with
the environment. Three tasks are set at the least-
priority levels to enforce the use of the upper limbs
of the robot: the task elegs is regulating the joint po-
sitions of the legs to the reference initial position; the
task echest is regulating the orientation of the chest
to keep it vertical, using (65). Finally, the last task
eup is blocking the upper part of the robot (chest,
arms and neck). This kind of behavior using only the
necessary limbs to perform an action was proposed
in [Ee et al., 2007] using dedicated geometrical com-
putations. The hierarchy is ejl ≺ ecoll ≺ esupp ≺
erh ≺ efov ≺ elegs ≺ echest ≺ eup. The motion is
summarized by Figures 22 to 27.

The ball is moved in three different positions, as
shown in Fig. 22: first close in front of the robot,
then at the height of the waist and finally on the
ground behind a small box. The grasping task is fi-
nally removed when the last position is reached. The
task sequence is shown in Fig. 23. When the ball is
close enough, only the least-priority task eup is vio-
lated, and the robot is grasping the ball using only its
right arm. The neck and the left arm are marginally
used, respectively for the FOV task and support task.
When the ball is placed at the second position, it is
out of the reach of the arm alone. The task elegs is
violated at the end of the grasping motion. When the
ball is on the ground, it is not possible to grasp it with
the chest being vertical. The task echest is violated
at the end of the motion to reach the ball. Finally,
the task erh is removed. The three tasks elegs, echest
and eup are then feasible, and the robot goes back
naturally to its initial position.

25

(t=2.1s) (t=4.2s) (t=7.3s)

Fig. 22: Experiment C: Snapshots of the robot move-
ment.

1 2 3 4 5 6 7 8 9 10

jl e

coll e

suppe

rh e

fov e

 cheste

 legs e

up e

time (s)

 Up Medium Low

 Active

Violated

Saturation

Fig. 23: Experiment C: Task sequence.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Time (s)

T
as

k
er

ro
r

no
rm

 (
m

 a
nd

 r
ad

)

e
rh

e
chest

e
legs

e
up

Fig. 24: Experiment C: Norm of the task errors.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Time (s)

D
is

ta
nc

e
(m

)

 R.wrist

L.hand

Fig. 25: Experiment C: Distance to the obstacle.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 jo
in

t p
os

iti
on

R.hip

R.knee

L.ankle

Chest

Neck

R.shoulder

Fig. 26: Experiment C: Normalized joint positions.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

Time (s)

N
b

up
da

te
s

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

N
b

of
 a

ct
iv

e
in

eq
ua

lit
ie

s

Fig. 27: Experiment C: Number of active inequalities
and updates.

26

The errors of the four tasks are given in Fig. 24
and illustrate very well the hierarchical order: the
task erh has priority over the three other ones, and
is always accomplished: the error exponentially con-
verges as imposed. The task eup is violated first, and
its error is the most important. The task elegs is vi-
olated then, while the task echest is violated at the
end, and keeps the lowest error value.
The activation of the limits is synthesized on

Fig. 23. Some examples of activations are given in
Figures 25 and 26. The left hand is moving backward
to ensure the robot balance, and is quickly blocked
by the task preventing the collision with the wall sit-
uated behind the robot. The right hand avoids a
collision with the box when going to the third target
position. Both collision constraints are deactivated
when the robot moves back to the initial pose. Some
joints limits of the legs are saturated when the robot
goes for the second target position, and many limits
are saturated when reaching the third target.
Finally, the number of active inequality con-

straints, and the number of iterations of the active-
search loop are given in Fig. 27. As previously, the
active set of the previous control cycle is used as
warm start and reduces the number of iterations of
the loop. The maximum number of iterations is 7
and is reached when the task erh is removed from
the hierarchy. In average, 0.035 iterations and 0.6ms
are needed at each control cycle, and 97.8% of the
cycles are resolved without extra iteration. The tim-
ing scores are summarized on Table 1. For this last
experiment, only the real-time version of the HQP
was run by the physical robot, the other scores being
obtained off line on a similar computer.

The Table 1 summarizes the computa-
tion performances obtained by the solvers of
[Kanoun et al., 2011], [De Lasa et al., 2010] and
our solver (without warm-start, with warm-start
and with real-time). Our solver is much faster
than the two previous ones. Moreover, the eas-
ily warm-started unified active-set loop increases
the difference. We compute a solution five time
faster than [Kanoun et al., 2011] in any case and
two to three time faster on the examples that
[De Lasa et al., 2010] is able to solve. Finally, our

algorithm induces a much lower number of active-set
iterations, which yields a better numerical behavior.

7 Conclusion

In this paper, we have proposed a generic solu-
tion to resolve a hierarchical least-square quadratic
program defined by equality or inequality con-
straints. When only equalities are set, our reso-
lution method comes back to the classical state-
of-the-art solutions [Siciliano and Slotine, 1991] but
is up to ten times faster. When the problem en-
compasses inequality constraints, a true hierarchy
is solved with inequalities at any level. The res-
olution loop keeps a low number of iterations by
using a unified active-set algorithm, in contrast to
the cascades of QP used in [Kanoun et al., 2011,
De Lasa et al., 2010]. Using a proper construction
of the active-set search, our resolution method is
five time faster than [Kanoun et al., 2011]; it is
more generic than [De Lasa et al., 2010] (enabling
the solver to take into account inequalities at any
stage of the hierarchy) while being two times faster.
The solver performs real-time resolution of humanoid
whole-body problems at 200Hz on a classical personal
computer and no specific hardware tuning.

This is the first time that hierarchical problems of
this complexity are solved in real time on a real robot.

In the future, we will try to reduce the computation
cost by predicting the future constraint activations.
The solver was only applied to inverse the robot kine-
matics, but the dynamics could be handled as well.
Only a simple obstacle-avoidance scheme was set up,
and a proper link with a complete collision checker
should be studied. Finally, the continuity of the con-
trol scheme is not ensured when adding or removing
a task from the hierarchy, which is needed before be-
ing able to apply it as a basic solution on our robots.
Openings to other kind of problems, such as those
solved by a walking pattern generator, is also an im-
portant perspective.

27

Kanoun De Lasa HQP HQP warm-start HQP real-time
Simu. A

Visual grasp 2.08 (19) NR 0.82 (4.2) 0.45 (.02) 0.43 (.02)
Simu. B

Pipe gate 2.78 (17.6) 1.34 (4.7) 0.95 (2.6) 0.69 (.04) 0.67 (.03)
Exp. C

Floor grasp 2.99 (18) NR 0.92 (3.5) 0.63 (.03) 0.62 (.03)

Average 2.61 (18.2) NR 0.89 (3.4) 0.59 (.03) 0.58 (.03)

Table 1: Time scores for the three movements, in milliseconds. Secondary score between parenthesis is the average
number of iterations after the first one. Non Relevant (NR) is indicated when the method does not apply.

Acknowledgments

This work was supported by grants from the
RobotHow.cog EU CEC project, Contract
No. 288533 under the 7th Research program
(www.robohow.eu), and French PSPC Romeo-2.

A Multimedia Extensions

Ext. Type Description

1 Video The movement sequences pre-
sented in the section 6.

2 Code Exemplary MATLAB code of
the proposed HQP sovler.

B Intermediate proofs

B.1 Proof of (53)

The four Moore-Penrose conditions are used to de-
fined the pseudo-inverse A+ of A:

AA+A = A (72)

A+AA+ = A+ (73)

AA+ is symmetric (74)

A+A is symmetric (75)

The matrix A‡
p defined in Sec. 2.4 always respects

(72), (73) and (75). If all the N1...Nk are zero (that is
to say if no level conflicts with the above hierarchy),
the fourth property (74) is also respected. In that

case, A‡
p is strictly the pseudo-inverse of Ap. In gen-

eral, A‡
p respects only three of the four properties of

Moore-Penrose. This matrix is a reflexive generalized
inverse of Ap.

In particular, the derivation of the last property
(75) gives:

A‡
pAp = Y pY

T
p =

p
∑

k=1

YkY
T
k (76)

using H‡
pHp = I (by recurrence). Using this equality,

we can verify that the multiplier exhibited in (53)
satisfies the condition (29). Setting λk and w∗

k in
(29) and using (76), we obtain:

AT
k−1λk = −AT

k−1A
‡T
k−1A

T
kw

∗
k = −Y k−1Y

T
k−1A

T
kw

∗
k

This last form is equal to AT
kw

∗
k since, from (42) and

(51), we have:

AT
kw

∗
k = Y k−1N

T
k (Nky

∗

k−1
− V T

k bk) (77)

B.2 Algorithm 3 termination

We prove here that each outer loop of Algorithm 3
terminates. We note m the total number of con-
straints, and w = (‖w1‖ , · · · , ‖wp‖).

The first outer iteration (k = 1) begins with a se-
quence of activations (at most m) until all the con-
straints are active or satisfied. There is no deactiva-
tion before this, and the property is always verified

28

after. All outer iterations have then the same behav-
ior. Let us consider the k-th loop: the steps (58) are
such that ‖wk‖ is non-increasing: x(∗i) is computed
so that w decreases, and ‖w1‖ , · · · , ‖wk−1‖ are con-
stant.

Whenever an activation occurs, the constraint is
activated with the corresponding slack variable equal
to zero since it was feasible, so that ‖wk‖ does not
increase.

When a constraint is deactivated at iteration i, two
cases occur: if it is the r-th constraint of level k,
the slack wk,r is strictly negative since it also the
Lagrange multiplier of the constraint, then wk,r will
be set to zero by the deactivation, yielding a strict
decrease of ‖wk‖. Otherwise, the deactivated con-
straint belongs to a level l < k. It was selected for
deactivation because it prevents ‖wk‖ to decrease.
Then, either the next step will decrease ‖wk‖, or
x(∗i+1) = x(i+1), meaning that another constraint
needs to be immediately deactivated. This can hap-
pen only a finite number of time (bounded by the
number of weakly active constraints at levels 1..k−1)
before a non-zero step is taken that strictly decreases
‖wk‖.
Any of the two deactivation cases occurs after the

optimal ‖wk‖ has been reach for the current active
set, and yields a strict decrease of ‖wk‖ inducing that
the algorithm will never go back to this active set
since ‖wk‖ will never increase. Since there are a fi-
nite number of possible active sets, the outer loop is
bound terminates.

References

[Antonelli and Chiaverini, 1998] Antonelli, G. and Chi-
averini, S. (1998). Task-priority redundancy resolution
for underwater vehicle-manipulator systems. In IEEE
Int. Conf. on Robotics and Automation (ICRA’98),
Leuven, Belgium.

[Antonelli and Chiaverini, 2006] Antonelli, G. and Chi-
averini, S. (2006). Kinematic control of platoons
of autonomous vehicles. IEEE Trans. on Robotics,
22(6):1285–1292.

[Baerlocher and Boulic, 2004] Baerlocher, P. and Boulic,
R. (2004). An inverse kinematic architecture enforcing

an arbitrary number of strict priority levels. The Visual
Computer, 6(20):402–417.

[Behringer, 1977] Behringer, F. (1977). Lexicographic
quasiconcave multiobjective programming. Zeitschrift
für Operations Research, pages 103–116.

[Ben-Israel and Greville, 2003] Ben-Israel, A. and Gre-
ville, T. (2003). Generalized inverses: theory and ap-
plications. CMS Books in Mathematics. Springer, 2nd
edition.

[Berenson et al., 2011] Berenson, D., Srinivasa, S., and
Kuffner, J. (2011). Task space regions: A framework
for pose-constrained manipulation planning. Int. Jour-
nal of Robotics Research, 30(12):1435–1460.

[Björck, 1996] Björck, A. (1996). Numerical Methods for
Least Squares Problems. SIAM.

[Bouyarmane and Kheddar, 2011] Bouyarmane, K. and
Kheddar, A. (2011). Multi-contact stances planning
for multiple agents. In IEEE Int. Conf. on Robotics
and Automation (ICRA’11), Shangai, China.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vanden-
berghe, L. (2004). Convex Optimization. Cambridge
University Press.

[Chang and Dubey, 1995] Chang, T. and Dubey, R.
(1995). A weighted least-norm solution based scheme
for avoiding joints limits for redundant manipulators.
IEEE Trans. on Robotics and Automation, 11(2):286–
292.

[Chaumette and Marchand, 2001] Chaumette, F. and
Marchand, E. (2001). A redundancy-based iterative
scheme for avoiding joint limits: Application to visual
servoing. IEEE Trans. on Robotics and Automation,
17(5):719–730.

[Chiaverini, 1997] Chiaverini, S. (1997). Singularity-
robust task-priority redundancy resolution for real-
time kinematic control of robot manipulators. IEEE
Trans. on Robotics and Automation, 13(3):398–410.

[Chiaverini et al., 2008] Chiaverini, S., Oriolo, G., and
Walker, I. (2008). Kinematically redundant manipula-
tors. In Siciliano, B. and Khatib, O., editors, Handbook
of Robotics, page 245268. Springer-Verlag.

[Collette et al., 2007] Collette, C., Micaelli, A., Andriot,
C., and Lemerle., P. (2007). Dynamic balance control
of humanoids for multiple grasps and noncoplanar fric-
tional contacts. In IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoid’07), Pittsburgh, USA.

29

[De Lasa et al., 2010] De Lasa, M., Mordatch, I., and
Hertzmann, A. (2010). Feature-based locomotion con-
trollers. In ACM SIGGRAPH’10.

[De Schutter and Van Brussel, 1988] De Schutter, J. and
Van Brussel, H. (1988). Compliant robot motion i. a
formalism for specifying compliant motion tasks. Int.
Journal of Robotics Research, 7(4):3–17.

[Decré et al., 2009] Decré, W., Smits, R., Bruyninckx,
H., and De Schutter, J. (2009). Extending itasc to
support inequality constraints and non-instantaneous
task specification. In IEEE Int. Conf. on Robotics and
Automation (ICRA’09), Kobe, Japan.

[Ee et al., 2007] Ee, N., Yokoi, K., Kajita, S., and Tanie,
K. (2007). Whole-body motion generation integrat-
ing operator’s intention and robot’s autonomy in con-
trolling humanoid robots. IEEE Trans. on Robotics,
23(4):763–775.

[Escande et al., 2010] Escande, A., Mansard, N., and
Wieber, P.-B. (2010). Fast resolution of hierarchized
inverse kinematics with inequality constraints. In IEEE
Int. Conf. on Robotics and Automation (ICRA’10),
Anchorage, USA. (preliminary version of this journal
paper).

[Escande et al., 2013] Escande, A., Mansard, N., and
Wieber, P.-B. (2013). Hierarchical quadratic pro-
graming: companion report. Technical report, LAAS-
CNRS. http://projects.laas.fr/gepetto/escande ijrr13.

[Faverjon and Tournassoud, 1987] Faverjon, B. and
Tournassoud, P. (1987). A local based approach for
path planning of manipulators with a high num-
ber of degrees of freedom. In IEEE Int. Conf. on
Robotics and Automation (ICRA’87), volume 4, pages
1152–1159, Atlanta, USA.

[Garcia-Aracil et al., 2005] Garcia-Aracil, N., Malis, E.,
Aracil-Santonja, R., and Perez-Vidal, C. (2005). Con-
tinuous visual servoing despite the changes of visibility
in image features. IEEE Trans. on Robotics, 21(6):415–
421.

[Gienger et al., 2006] Gienger, M., Janben, H., and Go-
erick, C. (2006). Exploiting task intervals for whole
body robot control. In IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS’06), Beijin, China.

[Golub and Van Loan, 1996] Golub, G. and Van Loan,
C. (1996). Matrix computations, chapter 5.5: The rank-
deficient LS problem. John Hopkins University Press,
3rd edition.

[Hanafusa et al., 1981] Hanafusa, H., Yoshikawa, T., and
Nakamura, Y. (1981). Analysis and control of articu-
lated robot with redundancy. In IFAC, 8th Triennal
World Congress, volume 4, pages 1927–1932, Kyoto,
Japan.

[Herdt et al., 2010] Herdt, A., Diedam, H., Wieber, P.,
Dimitrov, D., Mombaur, K., and Diehl, M. (2010). On-
line walking motion generation with automatic footstep
placement. Advanced Robotics, 24(5-6):719–737.

[Hofmann et al., 2009] Hofmann, A., Popovic, M., and
Herr, H. (2009). Exploiting angular momentum to en-
hance bipedal center-of-mass control. In IEEE Int.
Conf. on Robotics and Automation (ICRA’09), Kobe,
Japan.

[Isermann, 1982] Isermann, H. (1982). Linear lexico-
graphic optimization. Operations Research Spektrum,
4:223–228.

[Kanoun, 2009] Kanoun, O. (2009). Contribution à la
plannification de mouvements pour robots humanöıdes
(in English). PhD thesis, Univ. Toulouse, Toulouse,
France.

[Kanoun et al., 2011] Kanoun, O., Lamiraux, F., and
Wieber, P.-B. (2011). Kinematic control of redundant
manipulators: generalizing the task priority frame-
work to inequality tasks. IEEE Trans. on Robotics,
27(4):785–792.

[Khatib, 1986] Khatib, O. (1986). Real-time obstacle
avoidance for manipulators and mobile robots. Int.
Journal of Robotics Research, 5(1):90–98.

[Khatib, 1987] Khatib, O. (1987). A unified approach for
motion and force control of robot manipulators: The
operational space formulation. International Journal
of Robotics Research, 3(1):43–53.

[Khatib et al., 2008] Khatib, O., Sentis, L., and Park, J.
(2008). A unified framework for whole-body humanoid
robot control with multiple constraints and contacts. In
European Robotics Symposium, pages 303–312, Prague,
Czech Republic.

[Khatib et al., 1996] Khatib, O., Yokoi, K., Chang, K.,
Ruspini, D., Holmberg, R., and Casal, A. (1996). Ve-
hicle/arm coordination and multiple mobile manipula-
tor decentralized cooperation. In IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’96), Osaka,
Japan.

[Lee et al., 2012] Lee, J., Mansard, N., and Park, J.
(2012). Intermediate desired value approach for task

30

transition of robots in kinematic control. IEEE Trans-
action on Robotics, 28(6):1260 – 1277.

[Li et al., 2012] Li, T., Kermorgant, O., and Krupa, A.
(2012). Maintaining visibility constraints during tele-
echography with ultrasound visual servoing. In IEEE
Int. Conf. on Robotics and Automation (ICRA’12),
Saint Paul, USA.

[Liégeois, 1977] Liégeois, A. (1977). Automatic supervi-
sory control of the configuration and behavior of multi-
body mechanisms. IEEE Trans. on Systems, Man and
Cybernetics, 7(12):868–871.

[Mansard and Chaumette, 2007] Mansard, N. and
Chaumette, F. (2007). Task sequencing for sensor-
based control. IEEE Trans. on Robotics, 23(1):60–72.

[Mansard and Chaumette, 2009] Mansard, N. and
Chaumette, F. (2009). Directional redundancy. IEEE
Transaction on Automatic Control, 54(6):1179–1192.

[Mansard et al., 2009] Mansard, N., Khatib, O., and
Kheddar, A. (2009). A unified approach to integrate
unilateral constraints in the stack of tasks. IEEE
Transaction on Robotics, 25(3).

[Mansard et al., 2007] Mansard, N., Stasse, O.,
Chaumette, F., and Yokoi, K. (2007). Visually-
guided grasping while walking on a humanoid robot.
In IEEE Int. Conf. on Robotics and Automation
(ICRA’07), Roma, Italia.

[Marchand and Hager, 1998] Marchand, E. and Hager,
G. (1998). Dynamic sensor planning in visual servo-
ing. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS’98), Leuven, Belgium.

[Mordatch et al., 2012] Mordatch, I., Todorov, E., and
Popović, Z. (2012). Discovery of complex behaviors
through contact-invariant optimization. In ACM SIG-
GRAPH’12, Los Angeles, USA.

[Nelson and Khosla, 1995] Nelson, B. and Khosla, P.
(1995). Strategies for increasing the tracking region
of an eye-in-hand system by singularity and joint
limits avoidance. Int. Journal of Robotics Research,
14(3):255–269.

[Nenchev, 1989] Nenchev, D. (1989). Redundancy reso-
lution through local optimization: A review. Journal
of Robotic Systems, 6(6):769–798.

[Nocedal and Wright, 2006] Nocedal, J. andWright, S. J.
(2006). Numerical Optimization. Springer, New York,
2nd edition.

[Park and Khatib, 2006] Park, J. and Khatib, O. (2006).
Contact consistent control framework for humanoid
robots. In IEEE Int. Conf. on Robotics and Automa-
tion (ICRA’06), Orlando, USA.

[Pham and Nakamura, 2012] Pham, Q. and Nakamura,
Y. (2012). Affine trajectory deformation for redundant
manipulators. In rss12, Sydney, Australia. Best Paper
Award.

[Raunhardt and Boulic, 2007] Raunhardt, D. and
Boulic, R. (2007). Progressive clamping. In IEEE Int.
Conf. on Robotics and Automation (ICRA’07), Roma,
Italy.

[Remazeilles et al., 2006] Remazeilles, A., Mansard, N.,
and Chaumette, F. (2006). Qualitative visual ser-
voing: application to the visibility constraint. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS’06), Beijing, China.

[Saab et al., 2013] Saab, L., Ramos, O., Mansard, N.,
Souères, P., and Fourquet, J.-Y. (2013). Dynamic
whole-body motion generation under rigid contacts
and other unilateral constraints. IEEE Transaction on
Robotics, 29(2):346–362.

[Salini et al., 2009] Salini, J., Barthélemy, S., and
Bidaud, P. (2009). Lqp controller design for generic
whole body motion. In IEEE Int. Conf. on Robotics
and Automation (ICRA’09), Kobe, Japan.

[Samson et al., 1991] Samson, C., Le Borgne, M., and
Espiau, B. (1991). Robot Control: the Task Function
Approach. Clarendon Press, Oxford, United Kingdom.

[Sentis, 2007] Sentis, L. (2007). Synthesis and Control
of Whole-Body Behaviors in Humanoid Systems. PhD
thesis, Stanford University, USA.

[Sian et al., 2005] Sian, N., Yokoi, K., Kajita, S., Kane-
hiro, F., and Tanie, K. (2005). A switching command-
based whole-body operation method for humanoid
robots. IEEE/ASME Transactions on Mechatronics,
10(5):546–559.

[Siciliano and Slotine, 1991] Siciliano, B. and Slotine, J.-
J. (1991). A general framework for managing mul-
tiple tasks in highly redundant robotic systems. In
IEEE Int. Conf. on Advanced Robotics (ICAR’91),
Pisa, Italy.

[Stasse et al., 2008] Stasse, O., Escande, A., Mansard,
N., Miossec, S., Evrard, P., and Kheddar, A. (2008).
Real-time (self)-collision avoidance task on a HRP-2
humanoid robot. In IEEE Int. Conf. on Robotics and
Automation (ICRA’08), Pasadena, USA.

31

[Sung et al., 1996] Sung, Y., Cho, D., and Chung, M.
(1996). A constrained optimization approach to re-
solving manipulator redundancy. Journal of robotic
systems, 13(5):275–288.

[Wensing and Orin, 2013] Wensing, P. and Orin, D.
(2013). Generation of dynamic humanoid behav-
iors through task-space control with conic optimiza-
tion. In IEEE Int. Conf. on Robotics and Automation
(ICRA’13), Karlsruhe, Germany.

[Whitney, 1972] Whitney, D. (1972). The mathematics
of coordinated control of prosthetic arms and manip-
ulators. Trans. ASME Journal of Dynamic System,
Measures and Control, 94:303–309.

[Yoshikawa, 1985] Yoshikawa, T. (1985). Manipulability
of robotic mechanisms. Int. Journal of Robotics Re-
search, 4(2):3–9.

[Zanchettin and Rocco, 2012] Zanchettin, A. and Rocco,
P. (2012). A general user-oriented framework for holo-
nomic redundancy resolution in robotic manipulators
using task augmentation. IEEE Trans. on Robotics,
28(2):514–521.

32

