Motion generation for complex robots

Nicolas Mansard
LAAS-CNRS, Toulouse
Motivation
Motivation
Motivation
Motivation

Mathematical tools for describing the movement
Mathematical tools for describing the movement

Biomechanics: Model of human body and action
Motivation

Mathematical tools for describing the movement

Biomechanics: Model of human body and action

Gaming, computer animation
Outline of the class

1. Inverse geometry

 Find a configuration …
How to construct this motion?
Outline of the class

1. Inverse geometry
 Find a configuration …

2. Inverse kinematics
 Find a velocity …
How to construct this motion?
Outline of the class

1. Inverse geometry
 Find a configuration …

2. Inverse kinematics
 Find a velocity …

3. Inverse dynamics
 Find a force …
How to construct this motion?
Outline of the class

1. Inverse geometry
 Find a configuration …

2. Inverse kinematics
 Find a velocity …

3. Inverse dynamics
 Find a force …

4. Optimal control
 Find a trajectory …
How to construct this motion?
Outline of the class

1. Inverse geometry
 Find a configuration …

2. Inverse kinematics
 Find a velocity …

3. Inverse dynamics
 Find a force …

4. Optimal control
 Find a trajectory …

5. Reinforcement learning
 Find a policy …
Flexible Muscle-Based Locomotion for Bipedal Creatures

SIGGRAPH ASIA 2013

Thomas Geijtenbeek
Michiel van de Panne
Frank van der Stappen
Outline of the class

1. Inverse geometry
 Find a configuration … Static optimization

2. Inverse kinematics
 Find a velocity … Quadratic optimization

3. Inverse dynamics
 Find a force … Constrained optimization

4. Optimal control
 Find a trajectory … Linear-quadratic regulator

5. Reinforcement learning
 Find a policy … Machine learning
Practical work
In-house robotics

- Presentation of a real humanoid robot
- Demonstration at LAAS
- Visit of the laboratory

Objectives of this part:
- Connection with a research facility
- Opportunity to see one of the two full-size humanoid robot in France (the only one working today)
Industrial conference

Francesco Ferro
PAL Robotics, Barcelona

Matthieu Masselin
Wandercraft, Paris

Sebastien Borriat
Airbus Manufacturing Research, Toulouse
Other concerns

For each three-hour session:

- “Cinema” introduction, about a lab or an experiments
 10 minutes – motivate the daily class
 Often by a LAAS (junior) researcher

- Overview of the class with powerpoint
 15 minutes – main ideas, outline, take-away message

- Black board developments
 Occasional use of video projector
 Typical media: robot movements, algorithm outputs, plots …

- Daily use of computer support
 Practical work with the software of the lab
 Based on Ubuntu 12.04/14.04 …. or a VirtualBox
Text books

- My own textbook is yet a draft
 http://homepage.laas.fr/nmansard/textbook_draft.pdf
- Featherstone 2009: rigid body dynamics
- Nocedal&Wright 2006: optimization
- Liberzon 2012: optimal control
- Muray 1990: fundamentals of robotics
- Siciliano 2010: generic robotics
Questions ?