coal  3.0.1
Coal, The Collision Detection Library. Previously known as HPP-FCL, fork of FCL -- The Flexible Collision Library
details.h
Go to the documentation of this file.
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2015, Open Source Robotics Foundation
6  * Copyright (c) 2018-2019, Centre National de la Recherche Scientifique
7  * Copyright (c) 2021-2024, INRIA
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of Open Source Robotics Foundation nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
39 #ifndef COAL_SRC_NARROWPHASE_DETAILS_H
40 #define COAL_SRC_NARROWPHASE_DETAILS_H
41 
44 
45 namespace coal {
46 namespace details {
47 // Compute the point on a line segment that is the closest point on the
48 // segment to to another point. The code is inspired by the explanation
49 // given by Dan Sunday's page:
50 // http://geomalgorithms.com/a02-_lines.html
51 static inline void lineSegmentPointClosestToPoint(const Vec3s& p,
52  const Vec3s& s1,
53  const Vec3s& s2, Vec3s& sp) {
54  Vec3s v = s2 - s1;
55  Vec3s w = p - s1;
56 
57  Scalar c1 = w.dot(v);
58  Scalar c2 = v.dot(v);
59 
60  if (c1 <= 0) {
61  sp = s1;
62  } else if (c2 <= c1) {
63  sp = s2;
64  } else {
65  Scalar b = c1 / c2;
66  Vec3s Pb = s1 + v * b;
67  sp = Pb;
68  }
69 }
70 
75 inline Scalar sphereCapsuleDistance(const Sphere& s1, const Transform3s& tf1,
76  const Capsule& s2, const Transform3s& tf2,
77  Vec3s& p1, Vec3s& p2, Vec3s& normal) {
78  Vec3s pos1(tf2.transform(Vec3s(0., 0., s2.halfLength)));
79  Vec3s pos2(tf2.transform(Vec3s(0., 0., -s2.halfLength)));
80  Vec3s s_c = tf1.getTranslation();
81 
82  Vec3s segment_point;
83 
84  lineSegmentPointClosestToPoint(s_c, pos1, pos2, segment_point);
85  normal = segment_point - s_c;
86  Scalar norm(normal.norm());
87  Scalar r1 = s1.radius + s1.getSweptSphereRadius();
88  Scalar r2 = s2.radius + s2.getSweptSphereRadius();
89  Scalar dist = norm - r1 - r2;
90 
91  static const Scalar eps(std::numeric_limits<Scalar>::epsilon());
92  if (norm > eps) {
93  normal.normalize();
94  } else {
95  normal << 1, 0, 0;
96  }
97  p1 = s_c + normal * r1;
98  p2 = segment_point - normal * r2;
99  return dist;
100 }
101 
106 inline Scalar sphereCylinderDistance(const Sphere& s1, const Transform3s& tf1,
107  const Cylinder& s2, const Transform3s& tf2,
108  Vec3s& p1, Vec3s& p2, Vec3s& normal) {
109  static const Scalar eps(sqrt(std::numeric_limits<Scalar>::epsilon()));
110  Scalar r1(s1.radius);
111  Scalar r2(s2.radius);
112  Scalar lz2(s2.halfLength);
113  // boundaries of the cylinder axis
114  Vec3s A(tf2.transform(Vec3s(0, 0, -lz2)));
115  Vec3s B(tf2.transform(Vec3s(0, 0, lz2)));
116  // Position of the center of the sphere
117  Vec3s S(tf1.getTranslation());
118  // axis of the cylinder
119  Vec3s u(tf2.getRotation().col(2));
122  assert((B - A - (s2.halfLength * 2) * u).norm() < eps);
123  Vec3s AS(S - A);
124  // abscissa of S on cylinder axis with A as the origin
125  Scalar s(u.dot(AS));
126  Vec3s P(A + s * u);
127  Vec3s PS(S - P);
128  Scalar dPS = PS.norm();
129  // Normal to cylinder axis such that plane (A, u, v) contains sphere
130  // center
131  Vec3s v(0, 0, 0);
132  Scalar dist;
133  if (dPS > eps) {
134  // S is not on cylinder axis
135  v = (1 / dPS) * PS;
136  }
137  if (s <= 0) {
138  if (dPS <= r2) {
139  // closest point on cylinder is on cylinder disc basis
140  dist = -s - r1;
141  p1 = S + r1 * u;
142  p2 = A + dPS * v;
143  normal = u;
144  } else {
145  // closest point on cylinder is on cylinder circle basis
146  p2 = A + r2 * v;
147  Vec3s Sp2(p2 - S);
148  Scalar dSp2 = Sp2.norm();
149  if (dSp2 > eps) {
150  normal = (1 / dSp2) * Sp2;
151  p1 = S + r1 * normal;
152  dist = dSp2 - r1;
153  assert(fabs(dist) - (p1 - p2).norm() < eps);
154  } else {
155  // Center of sphere is on cylinder boundary
156  normal = p2 - .5 * (A + B);
157  assert(u.dot(normal) >= 0);
158  normal.normalize();
159  dist = -r1;
160  p1 = S + r1 * normal;
161  }
162  }
163  } else if (s <= (s2.halfLength * 2)) {
164  // 0 < s <= s2.lz
165  normal = -v;
166  dist = dPS - r1 - r2;
167  p2 = P + r2 * v;
168  p1 = S - r1 * v;
169  } else {
170  // lz < s
171  if (dPS <= r2) {
172  // closest point on cylinder is on cylinder disc basis
173  dist = s - (s2.halfLength * 2) - r1;
174  p1 = S - r1 * u;
175  p2 = B + dPS * v;
176  normal = -u;
177  } else {
178  // closest point on cylinder is on cylinder circle basis
179  p2 = B + r2 * v;
180  Vec3s Sp2(p2 - S);
181  Scalar dSp2 = Sp2.norm();
182  if (dSp2 > eps) {
183  normal = (1 / dSp2) * Sp2;
184  p1 = S + r1 * normal;
185  dist = dSp2 - r1;
186  assert(fabs(dist) - (p1 - p2).norm() < eps);
187  } else {
188  // Center of sphere is on cylinder boundary
189  normal = p2 - .5 * (A + B);
190  normal.normalize();
191  p1 = S + r1 * normal;
192  dist = -r1;
193  }
194  }
195  }
196 
197  // Take swept-sphere radius into account
198  const Scalar ssr1 = s1.getSweptSphereRadius();
199  const Scalar ssr2 = s2.getSweptSphereRadius();
200  if (ssr1 > 0 || ssr2 > 0) {
201  p1 += ssr1 * normal;
202  p2 -= ssr2 * normal;
203  dist -= (ssr1 + ssr2);
204  }
205 
206  return dist;
207 }
208 
213 inline Scalar sphereSphereDistance(const Sphere& s1, const Transform3s& tf1,
214  const Sphere& s2, const Transform3s& tf2,
215  Vec3s& p1, Vec3s& p2, Vec3s& normal) {
216  const coal::Vec3s& center1 = tf1.getTranslation();
217  const coal::Vec3s& center2 = tf2.getTranslation();
218  Scalar r1 = (s1.radius + s1.getSweptSphereRadius());
219  Scalar r2 = (s2.radius + s2.getSweptSphereRadius());
220 
221  Vec3s c1c2 = center2 - center1;
222  Scalar cdist = c1c2.norm();
223  Vec3s unit(1, 0, 0);
224  if (cdist > Eigen::NumTraits<Scalar>::epsilon()) unit = c1c2 / cdist;
225  Scalar dist = cdist - r1 - r2;
226  normal = unit;
227  p1.noalias() = center1 + r1 * unit;
228  p2.noalias() = center2 - r2 * unit;
229  return dist;
230 }
231 
233 inline Scalar segmentSqrDistance(const Vec3s& from, const Vec3s& to,
234  const Vec3s& p, Vec3s& nearest) {
235  Vec3s diff = p - from;
236  Vec3s v = to - from;
237  Scalar t = v.dot(diff);
238 
239  if (t > 0) {
240  Scalar dotVV = v.squaredNorm();
241  if (t < dotVV) {
242  t /= dotVV;
243  diff -= v * t;
244  } else {
245  t = 1;
246  diff -= v;
247  }
248  } else
249  t = 0;
250 
251  nearest.noalias() = from + v * t;
252  return diff.squaredNorm();
253 }
254 
256 inline bool projectInTriangle(const Vec3s& p1, const Vec3s& p2, const Vec3s& p3,
257  const Vec3s& normal, const Vec3s& p) {
258  Vec3s edge1(p2 - p1);
259  Vec3s edge2(p3 - p2);
260  Vec3s edge3(p1 - p3);
261 
262  Vec3s p1_to_p(p - p1);
263  Vec3s p2_to_p(p - p2);
264  Vec3s p3_to_p(p - p3);
265 
266  Vec3s edge1_normal(edge1.cross(normal));
267  Vec3s edge2_normal(edge2.cross(normal));
268  Vec3s edge3_normal(edge3.cross(normal));
269 
270  Scalar r1, r2, r3;
271  r1 = edge1_normal.dot(p1_to_p);
272  r2 = edge2_normal.dot(p2_to_p);
273  r3 = edge3_normal.dot(p3_to_p);
274  if ((r1 > 0 && r2 > 0 && r3 > 0) || (r1 <= 0 && r2 <= 0 && r3 <= 0)) {
275  return true;
276  }
277  return false;
278 }
279 
284 inline Scalar sphereTriangleDistance(const Sphere& s, const Transform3s& tf1,
285  const TriangleP& tri,
286  const Transform3s& tf2, Vec3s& p1,
287  Vec3s& p2, Vec3s& normal) {
288  const Vec3s& P1 = tf2.transform(tri.a);
289  const Vec3s& P2 = tf2.transform(tri.b);
290  const Vec3s& P3 = tf2.transform(tri.c);
291 
292  Vec3s tri_normal = (P2 - P1).cross(P3 - P1);
293  tri_normal.normalize();
294  const Vec3s& center = tf1.getTranslation();
295  // Note: comparing an object with a swept-sphere radius of r1 against another
296  // object with a swept-sphere radius of r2 is equivalent to comparing the
297  // first object with a swept-sphere radius of r1 + r2 against the second
298  // object with a swept-sphere radius of 0.
299  const Scalar& radius =
301  assert(radius >= 0);
302  assert(s.radius >= 0);
303  Vec3s p1_to_center = center - P1;
304  Scalar distance_from_plane = p1_to_center.dot(tri_normal);
305  Vec3s closest_point(
306  Vec3s::Constant(std::numeric_limits<Scalar>::quiet_NaN()));
307  Scalar min_distance_sqr, distance_sqr;
308 
309  if (distance_from_plane < 0) {
310  distance_from_plane *= -1;
311  tri_normal *= -1;
312  }
313 
314  if (projectInTriangle(P1, P2, P3, tri_normal, center)) {
315  closest_point = center - tri_normal * distance_from_plane;
316  min_distance_sqr = distance_from_plane * distance_from_plane;
317  } else {
318  // Compute distance to each edge and take minimal distance
319  Vec3s nearest_on_edge;
320  min_distance_sqr = segmentSqrDistance(P1, P2, center, closest_point);
321 
322  distance_sqr = segmentSqrDistance(P2, P3, center, nearest_on_edge);
323  if (distance_sqr < min_distance_sqr) {
324  min_distance_sqr = distance_sqr;
325  closest_point = nearest_on_edge;
326  }
327  distance_sqr = segmentSqrDistance(P3, P1, center, nearest_on_edge);
328  if (distance_sqr < min_distance_sqr) {
329  min_distance_sqr = distance_sqr;
330  closest_point = nearest_on_edge;
331  }
332  }
333 
334  normal = (closest_point - center).normalized();
335  p1 = center + normal * (s.radius + s.getSweptSphereRadius());
336  p2 = closest_point - normal * tri.getSweptSphereRadius();
337  const Scalar distance = std::sqrt(min_distance_sqr) - radius;
338  return distance;
339 }
340 
345 inline Scalar halfspaceDistance(const Halfspace& h, const Transform3s& tf1,
346  const ShapeBase& s, const Transform3s& tf2,
347  Vec3s& p1, Vec3s& p2, Vec3s& normal) {
348  // TODO(louis): handle multiple contact points when the halfspace normal is
349  // parallel to the shape's surface (every primitive except sphere and
350  // ellipsoid).
351 
352  // Express halfspace in world frame
353  Halfspace new_h = transform(h, tf1);
354 
355  // Express halfspace normal in shape frame
356  Vec3s n_2(tf2.getRotation().transpose() * new_h.n);
357 
358  // Compute support of shape in direction of halfspace normal
359  int hint = 0;
360  p2.noalias() =
361  getSupport<details::SupportOptions::WithSweptSphere>(&s, -n_2, hint);
362  p2 = tf2.transform(p2);
363 
364  const Scalar dist = new_h.signedDistance(p2);
365  p1.noalias() = p2 - dist * new_h.n;
366  normal.noalias() = new_h.n;
367 
368  const Scalar dummy_precision =
369  std::sqrt(Eigen::NumTraits<Scalar>::dummy_precision());
370  COAL_UNUSED_VARIABLE(dummy_precision);
371  assert(new_h.distance(p1) <= dummy_precision);
372  return dist;
373 }
374 
379 inline Scalar planeDistance(const Plane& plane, const Transform3s& tf1,
380  const ShapeBase& s, const Transform3s& tf2,
381  Vec3s& p1, Vec3s& p2, Vec3s& normal) {
382  // TODO(louis): handle multiple contact points when the plane normal is
383  // parallel to the shape's surface (every primitive except sphere and
384  // ellipsoid).
385 
386  // Express plane as two halfspaces in world frame
387  std::array<Halfspace, 2> new_h = transformToHalfspaces(plane, tf1);
388 
389  // Express halfspace normals in shape frame
390  Vec3s n_h1(tf2.getRotation().transpose() * new_h[0].n);
391  Vec3s n_h2(tf2.getRotation().transpose() * new_h[1].n);
392 
393  // Compute support of shape in direction of halfspace normal and its opposite
394  int hint = 0;
395  Vec3s p2h1 =
396  getSupport<details::SupportOptions::WithSweptSphere>(&s, -n_h1, hint);
397  p2h1 = tf2.transform(p2h1);
398 
399  hint = 0;
400  Vec3s p2h2 =
401  getSupport<details::SupportOptions::WithSweptSphere>(&s, -n_h2, hint);
402  p2h2 = tf2.transform(p2h2);
403 
404  Scalar dist1 = new_h[0].signedDistance(p2h1);
405  Scalar dist2 = new_h[1].signedDistance(p2h2);
406 
407  const Scalar dummy_precision =
408  std::sqrt(Eigen::NumTraits<Scalar>::dummy_precision());
409  COAL_UNUSED_VARIABLE(dummy_precision);
410 
411  Scalar dist;
412  if (dist1 >= dist2) {
413  dist = dist1;
414  p2.noalias() = p2h1;
415  p1.noalias() = p2 - dist * new_h[0].n;
416  normal.noalias() = new_h[0].n;
417  assert(new_h[0].distance(p1) <= dummy_precision);
418  } else {
419  dist = dist2;
420  p2.noalias() = p2h2;
421  p1.noalias() = p2 - dist * new_h[1].n;
422  normal.noalias() = new_h[1].n;
423  assert(new_h[1].distance(p1) <= dummy_precision);
424  }
425  return dist;
426 }
427 
433 inline Scalar boxSphereDistance(const Box& b, const Transform3s& tfb,
434  const Sphere& s, const Transform3s& tfs,
435  Vec3s& pb, Vec3s& ps, Vec3s& normal) {
436  const Vec3s& os = tfs.getTranslation();
437  const Vec3s& ob = tfb.getTranslation();
438  const Matrix3s& Rb = tfb.getRotation();
439 
440  pb = ob;
441 
442  bool outside = false;
443  const Vec3s os_in_b_frame(Rb.transpose() * (os - ob));
444  int axis = -1;
445  Scalar min_d = (std::numeric_limits<Scalar>::max)();
446  for (int i = 0; i < 3; ++i) {
447  Scalar facedist;
448  if (os_in_b_frame(i) < -b.halfSide(i)) { // outside
449  pb.noalias() -= b.halfSide(i) * Rb.col(i);
450  outside = true;
451  } else if (os_in_b_frame(i) > b.halfSide(i)) { // outside
452  pb.noalias() += b.halfSide(i) * Rb.col(i);
453  outside = true;
454  } else {
455  pb.noalias() += os_in_b_frame(i) * Rb.col(i);
456  if (!outside &&
457  (facedist = b.halfSide(i) - std::fabs(os_in_b_frame(i))) < min_d) {
458  axis = i;
459  min_d = facedist;
460  }
461  }
462  }
463  normal = pb - os;
464  Scalar pdist = normal.norm();
465  Scalar dist; // distance between sphere and box
466  if (outside) { // pb is on the box
467  dist = pdist - s.radius;
468  normal /= -pdist;
469  } else { // pb is inside the box
470  if (os_in_b_frame(axis) >= 0) {
471  normal = Rb.col(axis);
472  } else {
473  normal = -Rb.col(axis);
474  }
475  dist = -min_d - s.radius;
476  }
477  ps = os - s.radius * normal;
478  if (!outside || dist <= 0) {
479  // project point pb onto the box's surface
480  pb = ps - dist * normal;
481  }
482 
483  // Take swept-sphere radius into account
484  const Scalar ssrb = b.getSweptSphereRadius();
485  const Scalar ssrs = s.getSweptSphereRadius();
486  if (ssrb > 0 || ssrs > 0) {
487  pb += ssrb * normal;
488  ps -= ssrs * normal;
489  dist -= (ssrb + ssrs);
490  }
491 
492  return dist;
493 }
494 
508  const Transform3s& tf1,
509  const Halfspace& s2,
510  const Transform3s& tf2, Vec3s& p1,
511  Vec3s& p2, Vec3s& normal) {
512  Halfspace new_s1 = transform(s1, tf1);
513  Halfspace new_s2 = transform(s2, tf2);
514 
516  Vec3s dir = (new_s1.n).cross(new_s2.n);
517  Scalar dir_sq_norm = dir.squaredNorm();
518 
519  if (dir_sq_norm < std::numeric_limits<Scalar>::epsilon()) // parallel
520  {
521  if (new_s1.n.dot(new_s2.n) > 0) {
522  // If the two halfspaces have the same normal, one is inside the other
523  // and they can't be separated. They have inifinte penetration depth.
524  distance = -(std::numeric_limits<Scalar>::max)();
525  if (new_s1.d <= new_s2.d) {
526  normal = new_s1.n;
527  p1 = normal * distance;
528  p2 = new_s2.n * new_s2.d;
529  assert(new_s2.distance(p2) <=
530  Eigen::NumTraits<Scalar>::dummy_precision());
531  } else {
532  normal = -new_s1.n;
533  p1 << new_s1.n * new_s1.d;
534  p2 = -(normal * distance);
535  assert(new_s1.distance(p1) <=
536  Eigen::NumTraits<Scalar>::dummy_precision());
537  }
538  } else {
539  distance = -(new_s1.d + new_s2.d);
540  normal = new_s1.n;
541  p1 = new_s1.n * new_s1.d;
542  p2 = new_s2.n * new_s2.d;
543  }
544  } else {
545  // If the halfspaces are not parallel, they are in collision.
546  // Their distance, in the sens of the norm of separation vector, is infinite
547  // (it's impossible to find a translation which separates them)
548  distance = -(std::numeric_limits<Scalar>::max)();
549  // p1 and p2 are the same point, corresponding to a point on the
550  // intersection line between the two objects. Normal is the direction of
551  // that line.
552  normal = dir;
553  p1 = p2 =
554  ((new_s2.n * new_s1.d - new_s1.n * new_s2.d).cross(dir)) / dir_sq_norm;
555  // Sources: https://en.wikipedia.org/wiki/Plane%E2%80%93plane_intersection
556  // and https://en.wikipedia.org/wiki/Cross_product
557  }
558 
559  // Take swept-sphere radius into account
560  const Scalar ssr1 = s1.getSweptSphereRadius();
561  const Scalar ssr2 = s2.getSweptSphereRadius();
562  if (ssr1 > 0 || ssr2 > 0) {
563  p1 += ssr1 * normal;
564  p2 -= ssr2 * normal;
565  distance -= (ssr1 + ssr2);
566  }
567 
568  return distance;
569 }
570 
584  const Transform3s& tf1, const Plane& s2,
585  const Transform3s& tf2, Vec3s& p1,
586  Vec3s& p2, Vec3s& normal) {
587  Halfspace new_s1 = transform(s1, tf1);
588  Plane new_s2 = transform(s2, tf2);
589 
591  Vec3s dir = (new_s1.n).cross(new_s2.n);
592  Scalar dir_sq_norm = dir.squaredNorm();
593 
594  if (dir_sq_norm < std::numeric_limits<Scalar>::epsilon()) // parallel
595  {
596  normal = new_s1.n;
597  distance = new_s1.n.dot(new_s2.n) > 0 ? (new_s2.d - new_s1.d)
598  : -(new_s1.d + new_s2.d);
599  p1 = new_s1.n * new_s1.d;
600  p2 = new_s2.n * new_s2.d;
601  assert(new_s1.distance(p1) <= Eigen::NumTraits<Scalar>::dummy_precision());
602  assert(new_s2.distance(p2) <= Eigen::NumTraits<Scalar>::dummy_precision());
603  } else {
604  // If the halfspace and plane are not parallel, they are in collision.
605  // Their distance, in the sens of the norm of separation vector, is infinite
606  // (it's impossible to find a translation which separates them)
607  distance = -(std::numeric_limits<Scalar>::max)();
608  // p1 and p2 are the same point, corresponding to a point on the
609  // intersection line between the two objects. Normal is the direction of
610  // that line.
611  normal = dir;
612  p1 = p2 =
613  ((new_s2.n * new_s1.d - new_s1.n * new_s2.d).cross(dir)) / dir_sq_norm;
614  // Sources: https://en.wikipedia.org/wiki/Plane%E2%80%93plane_intersection
615  // and https://en.wikipedia.org/wiki/Cross_product
616  }
617 
618  // Take swept-sphere radius into account
619  const Scalar ssr1 = s1.getSweptSphereRadius();
620  const Scalar ssr2 = s2.getSweptSphereRadius();
621  if (ssr1 > 0 || ssr2 > 0) {
622  p1 += ssr1 * normal;
623  p2 -= ssr2 * normal;
624  distance -= (ssr1 + ssr2);
625  }
626 
627  return distance;
628 }
629 
642 inline Scalar planePlaneDistance(const Plane& s1, const Transform3s& tf1,
643  const Plane& s2, const Transform3s& tf2,
644  Vec3s& p1, Vec3s& p2, Vec3s& normal) {
645  Plane new_s1 = transform(s1, tf1);
646  Plane new_s2 = transform(s2, tf2);
647 
649  Vec3s dir = (new_s1.n).cross(new_s2.n);
650  Scalar dir_sq_norm = dir.squaredNorm();
651 
652  if (dir_sq_norm < std::numeric_limits<Scalar>::epsilon()) // parallel
653  {
654  p1 = new_s1.n * new_s1.d;
655  p2 = new_s2.n * new_s2.d;
656  assert(new_s1.distance(p1) <= Eigen::NumTraits<Scalar>::dummy_precision());
657  assert(new_s2.distance(p2) <= Eigen::NumTraits<Scalar>::dummy_precision());
658  distance = (p1 - p2).norm();
659 
660  if (distance > Eigen::NumTraits<Scalar>::dummy_precision()) {
661  normal = (p2 - p1).normalized();
662  } else {
663  normal = new_s1.n;
664  }
665  } else {
666  // If the planes are not parallel, they are in collision.
667  // Their distance, in the sens of the norm of separation vector, is infinite
668  // (it's impossible to find a translation which separates them)
669  distance = -(std::numeric_limits<Scalar>::max)();
670  // p1 and p2 are the same point, corresponding to a point on the
671  // intersection line between the two objects. Normal is the direction of
672  // that line.
673  normal = dir;
674  p1 = p2 =
675  ((new_s2.n * new_s1.d - new_s1.n * new_s2.d).cross(dir)) / dir_sq_norm;
676  // Sources: https://en.wikipedia.org/wiki/Plane%E2%80%93plane_intersection
677  // and https://en.wikipedia.org/wiki/Cross_product
678  }
679 
680  // Take swept-sphere radius into account
681  const Scalar ssr1 = s1.getSweptSphereRadius();
682  const Scalar ssr2 = s2.getSweptSphereRadius();
683  if (ssr1 > 0 || ssr2 > 0) {
684  p1 += ssr1 * normal;
685  p2 -= ssr2 * normal;
686  distance -= (ssr1 + ssr2);
687  }
688 
689  return distance;
690 }
691 
693 inline Scalar computePenetration(const Vec3s& P1, const Vec3s& P2,
694  const Vec3s& P3, const Vec3s& Q1,
695  const Vec3s& Q2, const Vec3s& Q3,
696  Vec3s& normal) {
697  Vec3s u((P2 - P1).cross(P3 - P1));
698  normal = u.normalized();
699  Scalar depth1((P1 - Q1).dot(normal));
700  Scalar depth2((P1 - Q2).dot(normal));
701  Scalar depth3((P1 - Q3).dot(normal));
702  return std::max(depth1, std::max(depth2, depth3));
703 }
704 
705 // Compute penetration distance and normal of two triangles in collision
706 // Normal is normal of triangle 1 (P1, P2, P3), penetration depth is the
707 // minimal distance (Q1, Q2, Q3) should be translated along the normal so
708 // that the triangles are collision free.
709 //
710 // Note that we compute here an upper bound of the penetration distance,
711 // not the exact value.
712 inline Scalar computePenetration(const Vec3s& P1, const Vec3s& P2,
713  const Vec3s& P3, const Vec3s& Q1,
714  const Vec3s& Q2, const Vec3s& Q3,
715  const Transform3s& tf1, const Transform3s& tf2,
716  Vec3s& normal) {
717  Vec3s globalP1(tf1.transform(P1));
718  Vec3s globalP2(tf1.transform(P2));
719  Vec3s globalP3(tf1.transform(P3));
720  Vec3s globalQ1(tf2.transform(Q1));
721  Vec3s globalQ2(tf2.transform(Q2));
722  Vec3s globalQ3(tf2.transform(Q3));
723  return computePenetration(globalP1, globalP2, globalP3, globalQ1, globalQ2,
724  globalQ3, normal);
725 }
726 
727 } // namespace details
728 } // namespace coal
729 
730 #endif // COAL_SRC_NARROWPHASE_DETAILS_H
Center at zero point, axis aligned box.
Definition: geometric_shapes.h:164
Capsule It is where is the distance between the point x and the capsule segment AB,...
Definition: geometric_shapes.h:381
Cylinder along Z axis. The cylinder is defined at its centroid.
Definition: geometric_shapes.h:556
Half Space: this is equivalent to the Plane in ODE. A Half space has a priviledged direction: the dir...
Definition: geometric_shapes.h:886
Infinite plane. A plane can be viewed as two half spaces; it has no priviledged direction....
Definition: geometric_shapes.h:977
Base class for all basic geometric shapes.
Definition: geometric_shapes.h:58
Center at zero point sphere.
Definition: geometric_shapes.h:238
Simple transform class used locally by InterpMotion.
Definition: transform.h:55
Vec3s transform(const Eigen::MatrixBase< Derived > &v) const
transform a given vector by the transform
Definition: transform.h:152
const Matrix3s & getRotation() const
get rotation
Definition: transform.h:110
const Vec3s & getTranslation() const
get translation
Definition: transform.h:101
Triangle stores the points instead of only indices of points.
Definition: geometric_shapes.h:108
#define COAL_UNUSED_VARIABLE(var)
Definition: fwd.hh:56
Scalar distance(const Matrix3s &R0, const Vec3s &T0, const kIOS &b1, const kIOS &b2, Vec3s *P=NULL, Vec3s *Q=NULL)
Approximate distance between two kIOS bounding volumes.
Scalar halfLength
Half Length along z axis.
Definition: geometric_shapes.h:400
Scalar distance(const Vec3s &p) const
Definition: geometric_shapes.h:1016
Vec3s n
Plane normal.
Definition: geometric_shapes.h:950
Scalar radius
Radius of the cylinder.
Definition: geometric_shapes.h:577
Scalar d
Plane offset.
Definition: geometric_shapes.h:953
Vec3s n
Plane normal.
Definition: geometric_shapes.h:1027
Scalar distance(const Vec3s &p) const
Definition: geometric_shapes.h:918
Vec3s halfSide
box side half-length
Definition: geometric_shapes.h:187
Vec3s a
Definition: geometric_shapes.h:147
Scalar signedDistance(const Vec3s &p) const
Definition: geometric_shapes.h:914
Vec3s b
Definition: geometric_shapes.h:147
Scalar radius
Radius of the sphere.
Definition: geometric_shapes.h:248
Scalar halfLength
Half Length along z axis.
Definition: geometric_shapes.h:583
Scalar getSweptSphereRadius() const
Get radius of sphere swept around the shape. This radius is always >= 0.
Definition: geometric_shapes.h:86
Vec3s c
Definition: geometric_shapes.h:147
Scalar radius
Radius of capsule.
Definition: geometric_shapes.h:394
Scalar d
Plane offset.
Definition: geometric_shapes.h:1030
Scalar segmentSqrDistance(const Vec3s &from, const Vec3s &to, const Vec3s &p, Vec3s &nearest)
the minimum distance from a point to a line
Definition: details.h:233
Scalar planePlaneDistance(const Plane &s1, const Transform3s &tf1, const Plane &s2, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
return distance between two planes
Definition: details.h:642
Scalar halfspacePlaneDistance(const Halfspace &s1, const Transform3s &tf1, const Plane &s2, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
return distance between plane and halfspace.
Definition: details.h:583
Scalar halfspaceHalfspaceDistance(const Halfspace &s1, const Transform3s &tf1, const Halfspace &s2, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
return distance between two halfspaces
Definition: details.h:507
Scalar planeDistance(const Plane &plane, const Transform3s &tf1, const ShapeBase &s, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
Definition: details.h:379
Scalar halfspaceDistance(const Halfspace &h, const Transform3s &tf1, const ShapeBase &s, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
Definition: details.h:345
Scalar sphereCylinderDistance(const Sphere &s1, const Transform3s &tf1, const Cylinder &s2, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
Definition: details.h:106
Scalar sphereCapsuleDistance(const Sphere &s1, const Transform3s &tf1, const Capsule &s2, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
Definition: details.h:75
Scalar sphereSphereDistance(const Sphere &s1, const Transform3s &tf1, const Sphere &s2, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
Definition: details.h:213
Scalar computePenetration(const Vec3s &P1, const Vec3s &P2, const Vec3s &P3, const Vec3s &Q1, const Vec3s &Q2, const Vec3s &Q3, Vec3s &normal)
See the prototype below.
Definition: details.h:693
Scalar sphereTriangleDistance(const Sphere &s, const Transform3s &tf1, const TriangleP &tri, const Transform3s &tf2, Vec3s &p1, Vec3s &p2, Vec3s &normal)
Definition: details.h:284
Scalar boxSphereDistance(const Box &b, const Transform3s &tfb, const Sphere &s, const Transform3s &tfs, Vec3s &pb, Vec3s &ps, Vec3s &normal)
Definition: details.h:433
bool projectInTriangle(const Vec3s &p1, const Vec3s &p2, const Vec3s &p3, const Vec3s &normal, const Vec3s &p)
Whether a point's projection is in a triangle.
Definition: details.h:256
Main namespace.
Definition: broadphase_bruteforce.h:44
std::array< Halfspace, 2 > transformToHalfspaces(const Plane &a, const Transform3s &tf)
Halfspace transform(const Halfspace &a, const Transform3s &tf)
Eigen::Matrix< Scalar, 3, 1 > Vec3s
Definition: data_types.h:70
double Scalar
Definition: data_types.h:68
Eigen::Matrix< Scalar, 3, 3 > Matrix3s
Definition: data_types.h:74