hpp-core 6.0.0
Implement basic classes for canonical path planning for kinematic chains.
Loading...
Searching...
No Matches
quadratic-program.hh
Go to the documentation of this file.
1// Copyright (c) 2018, Joseph Mirabel
2// Authors: Joseph Mirabel (joseph.mirabel@laas.fr)
3//
4
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9// 1. Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//
12// 2. Redistributions in binary form must reproduce the above copyright
13// notice, this list of conditions and the following disclaimer in the
14// documentation and/or other materials provided with the distribution.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
27// DAMAGE.
28
29#ifndef HPP_CORE_PATH_OPTIMIZATION_QUADRATIC_PROGRAM_HH
30#define HPP_CORE_PATH_OPTIMIZATION_QUADRATIC_PROGRAM_HH
31
32#include <hpp/core/fwd.hh>
34
35namespace hpp {
36namespace core {
39namespace pathOptimization {
62 typedef Eigen::JacobiSVD<matrix_t> Decomposition_t;
63 typedef Eigen::LLT<matrix_t, Eigen::Lower> LLT_t;
64
71 QuadraticProgram(size_type inputSize, bool useProxqp = true)
72 : H(inputSize, inputSize),
73 b(inputSize),
74 dec(inputSize, inputSize, Eigen::ComputeThinU | Eigen::ComputeThinV),
75 xStar(inputSize),
76 accuracy_(1e-4),
77 useProxqp_(useProxqp) {
78 H.setZero();
79 b.setZero();
80 bIsZero = true;
81 }
82
91 bool useProxqp = true)
92 : H(lc.PK.cols(), lc.PK.cols()),
93 b(lc.PK.cols()),
94 bIsZero(false),
95 dec(lc.PK.cols(), lc.PK.cols(),
96 Eigen::ComputeThinU | Eigen::ComputeThinV),
97 xStar(lc.PK.cols()),
98 accuracy_(1e-4),
99 useProxqp_(useProxqp) {
100 QP.reduced(lc, *this);
101 }
102
104 : H(QP.H),
105 b(QP.b),
106 bIsZero(QP.bIsZero),
107 dec(QP.dec),
108 xStar(QP.xStar),
111
113
120 void accuracy(value_type acc) { accuracy_ = acc; }
126 value_type accuracy() const { return accuracy_; }
127 void addRows(const std::size_t& nbRows) {
128 H.conservativeResize(H.rows() + nbRows, H.cols());
129 b.conservativeResize(b.rows() + nbRows, b.cols());
130
131 H.bottomRows(nbRows).setZero();
132 }
133
136
137 /*/ Compute the problem
138 * \f{eqnarray*}{
139 * \min & \frac{1}{2} * x^T H x + b^T x \\
140 * lc.J * x = lc.b
141 * \f}
142 **/
143 void reduced(const LinearConstraint& lc, QuadraticProgram& QPr) const {
144 matrix_t H_PK(H * lc.PK);
145 QPr.H.noalias() = lc.PK.transpose() * H_PK;
146 QPr.b.noalias() = H_PK.transpose() * lc.xStar;
147 if (!bIsZero) {
148 QPr.b.noalias() += lc.PK.transpose() * b;
149 }
150 QPr.bIsZero = false;
151 }
152
153 void decompose();
154
155 void solve() { xStar.noalias() = -dec.solve(b); }
156
158
161
163
171 double solve(const LinearConstraint& ce, const LinearConstraint& ci);
172
174
181
186 Eigen::VectorXi activeConstraint;
189
197};
198} // namespace pathOptimization
199} // namespace core
200} // namespace hpp
201
202#endif // HPP_CORE_PATH_OPTIMIZATION_QUADRATIC_PROGRAM_HH
void solve()
Definition quadratic-program.hh:155
vector_t xStar
Definition quadratic-program.hh:193
void reduced(const LinearConstraint &lc, QuadraticProgram &QPr) const
Definition quadratic-program.hh:143
QuadraticProgram(size_type inputSize, bool useProxqp=true)
Definition quadratic-program.hh:71
Eigen::LLT< matrix_t, Eigen::Lower > LLT_t
Definition quadratic-program.hh:63
bool useProxqp_
Definition quadratic-program.hh:196
double solve(const LinearConstraint &ce, const LinearConstraint &ci)
bool bIsZero
Definition quadratic-program.hh:179
value_type trace
Definition quadratic-program.hh:185
void accuracy(value_type acc)
Definition quadratic-program.hh:120
Eigen::VectorXi activeConstraint
Definition quadratic-program.hh:186
Eigen::JacobiSVD< matrix_t > Decomposition_t
Definition quadratic-program.hh:62
QuadraticProgram(const QuadraticProgram &QP)
Definition quadratic-program.hh:103
Decomposition_t dec
Definition quadratic-program.hh:192
QuadraticProgram(const QuadraticProgram &QP, const LinearConstraint &lc, bool useProxqp=true)
Definition quadratic-program.hh:90
value_type accuracy() const
Definition quadratic-program.hh:126
vector_t b
Definition quadratic-program.hh:178
value_type accuracy_
Definition quadratic-program.hh:195
void addRows(const std::size_t &nbRows)
Definition quadratic-program.hh:127
matrix_t H
Definition quadratic-program.hh:177
int activeSetSize
Definition quadratic-program.hh:187
LLT_t llt
Definition quadratic-program.hh:184
Definition relative-motion.hh:115
pinocchio::value_type value_type
Definition fwd.hh:174
pinocchio::vector_t vector_t
Definition fwd.hh:220
pinocchio::size_type size_type
Definition fwd.hh:173
pinocchio::matrix_t matrix_t
Definition fwd.hh:162
Definition bi-rrt-planner.hh:35
A linear constraint .
Definition linear-constraint.hh:39
matrix_t PK
Projector onto .
Definition linear-constraint.hh:139
vector_t xStar
is a particular solution.
Definition linear-constraint.hh:141
Definition quadratic-program.hh:61