10 #ifndef CROCODDYL_CORE_ACTION_BASE_HPP_
11 #define CROCODDYL_CORE_ACTION_BASE_HPP_
13 #include "crocoddyl/core/fwd.hpp"
14 #include "crocoddyl/core/state-base.hpp"
96 template <
typename _Scalar>
99 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
101 typedef _Scalar Scalar;
102 typedef typename ScalarSelector<Scalar>::type ScalarType;
106 typedef typename MathBase::VectorXs VectorXs;
120 const std::size_t nu,
const std::size_t nr = 0,
121 const std::size_t ng = 0,
const std::size_t nh = 0,
122 const std::size_t ng_T = 0,
123 const std::size_t nh_T = 0);
139 virtual void calc(
const std::shared_ptr<ActionDataAbstract>& data,
140 const Eigen::Ref<const VectorXs>& x,
141 const Eigen::Ref<const VectorXs>& u) = 0;
154 virtual void calc(
const std::shared_ptr<ActionDataAbstract>& data,
155 const Eigen::Ref<const VectorXs>& x);
169 virtual void calcDiff(
const std::shared_ptr<ActionDataAbstract>& data,
170 const Eigen::Ref<const VectorXs>& x,
171 const Eigen::Ref<const VectorXs>& u) = 0;
184 virtual void calcDiff(
const std::shared_ptr<ActionDataAbstract>& data,
185 const Eigen::Ref<const VectorXs>& x);
197 virtual bool checkData(
const std::shared_ptr<ActionDataAbstract>& data);
212 virtual void quasiStatic(
const std::shared_ptr<ActionDataAbstract>& data,
213 Eigen::Ref<VectorXs> u,
214 const Eigen::Ref<const VectorXs>& x,
215 const std::size_t maxiter = 100,
216 const Scalar tol = Scalar(1e-9));
230 const VectorXs& x,
const std::size_t maxiter = 100,
231 const Scalar tol = Scalar(1e-9));
266 const std::shared_ptr<StateAbstract>&
get_state()
const;
316 template <
class Scalar>
325 virtual void print(std::ostream& os)
const;
351 template <
class Scalar>
355 template <
typename _Scalar>
357 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
359 typedef _Scalar Scalar;
361 typedef typename MathBase::VectorXs VectorXs;
362 typedef typename MathBase::MatrixXs MatrixXs;
364 template <
template <
typename Scalar>
class Model>
367 xnext(model->get_state()->get_nx()),
368 Fx(model->get_state()->get_ndx(), model->get_state()->get_ndx()),
369 Fu(model->get_state()->get_ndx(), model->get_nu()),
371 Lx(model->get_state()->get_ndx()),
373 Lxx(model->get_state()->get_ndx(), model->get_state()->get_ndx()),
374 Lxu(model->get_state()->get_ndx(), model->get_nu()),
375 Luu(model->get_nu(), model->get_nu()),
376 g(model->get_ng() > model->get_ng_T() ? model->get_ng()
377 : model->get_ng_T()),
378 Gx(model->get_ng() > model->get_ng_T() ? model->get_ng()
380 model->get_state()->get_ndx()),
381 Gu(model->get_ng() > model->get_ng_T() ? model->get_ng()
384 h(model->get_nh() > model->get_nh_T() ? model->get_nh()
385 : model->get_nh_T()),
386 Hx(model->get_nh() > model->get_nh_T() ? model->get_nh()
388 model->get_state()->get_ndx()),
389 Hu(model->get_nh() > model->get_nh_T() ? model->get_nh()
439 #include "crocoddyl/core/action-base.hxx"
Abstract class for action model.
virtual void calc(const std::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0
Compute the next state and cost value.
virtual std::size_t get_ng() const
Return the number of inequality constraints.
void set_g_lb(const VectorXs &g_lb)
Modify the lower bound of the inequality constraints.
std::shared_ptr< StateAbstract > state_
Model of the state.
VectorXs u_lb_
Lower control limits.
VectorXs u_ub_
Upper control limits.
virtual std::size_t get_nh() const
Return the number of equality constraints.
virtual void calcDiff(const std::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
Compute the derivatives of the cost functions with respect to the state only.
virtual void print(std::ostream &os) const
Print relevant information of the action model.
void set_u_ub(const VectorXs &u_ub)
Modify the control upper bounds.
const VectorXs & get_u_ub() const
Return the control upper bound.
VectorXs g_ub_
Lower bound of the inequality constraints.
bool get_has_control_limits() const
Indicates if there are defined control limits.
std::size_t nh_T_
Number of equality terminal constraints.
virtual const VectorXs & get_g_lb() const
Return the lower bound of the inequality constraints.
void update_has_control_limits()
Update the status of the control limits (i.e. if there are defined limits)
ActionModelAbstractTpl(const ActionModelAbstractTpl< Scalar > &other)
Copy constructor.
virtual std::size_t get_nh_T() const
Return the number of equality terminal constraints.
const std::shared_ptr< StateAbstract > & get_state() const
Return the state.
std::size_t nu_
Control dimension.
virtual std::shared_ptr< ActionDataAbstract > createData()
Create the action data.
ActionModelAbstractTpl(std::shared_ptr< StateAbstract > state, const std::size_t nu, const std::size_t nr=0, const std::size_t ng=0, const std::size_t nh=0, const std::size_t ng_T=0, const std::size_t nh_T=0)
Initialize the action model.
VectorXs unone_
Neutral state.
std::size_t nr_
Dimension of the cost residual.
std::size_t nh_
Number of equality constraints.
virtual void calcDiff(const std::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0
Compute the derivatives of the dynamics and cost functions.
VectorXs quasiStatic_x(const std::shared_ptr< ActionDataAbstract > &data, const VectorXs &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
std::size_t get_nr() const
Return the dimension of the cost-residual vector.
virtual void quasiStatic(const std::shared_ptr< ActionDataAbstract > &data, Eigen::Ref< VectorXs > u, const Eigen::Ref< const VectorXs > &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
Computes the quasic static commands.
std::size_t ng_T_
Number of inequality terminal constraints.
void set_g_ub(const VectorXs &g_ub)
Modify the upper bound of the inequality constraints.
virtual std::size_t get_ng_T() const
Return the number of inequality terminal constraints.
void set_u_lb(const VectorXs &u_lb)
Modify the control lower bounds.
friend std::ostream & operator<<(std::ostream &os, const ActionModelAbstractTpl< Scalar > &model)
Print information on the action model.
virtual void calc(const std::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
Compute the total cost value for nodes that depends only on the state.
VectorXs g_lb_
Lower bound of the inequality constraints.
virtual const VectorXs & get_g_ub() const
Return the upper bound of the inequality constraints.
const VectorXs & get_u_lb() const
Return the control lower bound.
std::size_t ng_
Number of inequality constraints.
std::size_t get_nu() const
Return the dimension of the control input.
virtual bool checkData(const std::shared_ptr< ActionDataAbstract > &data)
Checks that a specific data belongs to this model.
Manage the individual constraint models.
Abstract class for the state representation.
VectorXs xnext
evolution state
MatrixXs Fx
Jacobian of the dynamics w.r.t. the state .
MatrixXs Fu
Jacobian of the dynamics w.r.t. the control .
VectorXs h
Equality constraint values.
MatrixXs Luu
Hessian of the cost w.r.t. the control .
VectorXs g
Inequality constraint values.
VectorXs Lx
Jacobian of the cost w.r.t. the state .
MatrixXs Lxx
Hessian of the cost w.r.t. the state .
VectorXs Lu
Jacobian of the cost w.r.t. the control .