Crocoddyl
box-ddp.cpp
1 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2021, CNRS-LAAS, University of Edinburgh
5 // Copyright note valid unless otherwise stated in individual files.
6 // All rights reserved.
8 
9 #include "crocoddyl/core/solvers/box-ddp.hpp"
10 
11 namespace crocoddyl {
12 
13 SolverBoxDDP::SolverBoxDDP(std::shared_ptr<ShootingProblem> problem)
14  : SolverDDP(problem),
15  qp_(problem->get_runningModels()[0]->get_nu(), 100, 0.1, 1e-5, 0.) {
16  allocateData();
17 
18  const std::size_t n_alphas = 10;
19  alphas_.resize(n_alphas);
20  for (std::size_t n = 0; n < n_alphas; ++n) {
21  alphas_[n] = 1. / pow(2., static_cast<double>(n));
22  }
23  // Change the default convergence tolerance since the gradient of the
24  // Lagrangian is smaller than an unconstrained OC problem (i.e. gradient = Qu
25  // - mu^T * C where mu > 0 and C defines the inequality matrix that bounds the
26  // control); and we don't have access to mu from the box QP.
27  th_stop_ = 5e-5;
28 }
29 
30 SolverBoxDDP::~SolverBoxDDP() {}
31 
32 void SolverBoxDDP::resizeData() {
33  START_PROFILER("SolverBoxDDP::resizeData");
34  SolverDDP::resizeData();
35 
36  const std::size_t T = problem_->get_T();
37  const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
38  problem_->get_runningModels();
39  for (std::size_t t = 0; t < T; ++t) {
40  const std::shared_ptr<ActionModelAbstract>& model = models[t];
41  const std::size_t nu = model->get_nu();
42  Quu_inv_[t].conservativeResize(nu, nu);
43  du_lb_[t].conservativeResize(nu);
44  du_ub_[t].conservativeResize(nu);
45  }
46  STOP_PROFILER("SolverBoxDDP::resizeData");
47 }
48 
49 void SolverBoxDDP::allocateData() {
50  SolverDDP::allocateData();
51 
52  const std::size_t T = problem_->get_T();
53  Quu_inv_.resize(T);
54  du_lb_.resize(T);
55  du_ub_.resize(T);
56  const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
57  problem_->get_runningModels();
58  for (std::size_t t = 0; t < T; ++t) {
59  const std::shared_ptr<ActionModelAbstract>& model = models[t];
60  const std::size_t nu = model->get_nu();
61  Quu_inv_[t] = Eigen::MatrixXd::Zero(nu, nu);
62  du_lb_[t] = Eigen::VectorXd::Zero(nu);
63  du_ub_[t] = Eigen::VectorXd::Zero(nu);
64  }
65 }
66 
67 void SolverBoxDDP::computeGains(const std::size_t t) {
68  START_PROFILER("SolverBoxDDP::computeGains");
69  const std::size_t nu = problem_->get_runningModels()[t]->get_nu();
70  if (nu > 0) {
71  if (!problem_->get_runningModels()[t]->get_has_control_limits() ||
72  !is_feasible_) {
73  // No control limits on this model: Use vanilla DDP
74  SolverDDP::computeGains(t);
75  return;
76  }
77 
78  du_lb_[t] = problem_->get_runningModels()[t]->get_u_lb() - us_[t];
79  du_ub_[t] = problem_->get_runningModels()[t]->get_u_ub() - us_[t];
80 
81  START_PROFILER("SolverBoxDDP::boxQP");
82  const BoxQPSolution& boxqp_sol =
83  qp_.solve(Quu_[t], Qu_[t], du_lb_[t], du_ub_[t], k_[t]);
84  START_PROFILER("SolverBoxDDP::boxQP");
85 
86  // Compute controls
87  START_PROFILER("SolverBoxDDP::Quu_invproj");
88  Quu_inv_[t].setZero();
89  for (std::size_t i = 0; i < boxqp_sol.free_idx.size(); ++i) {
90  for (std::size_t j = 0; j < boxqp_sol.free_idx.size(); ++j) {
91  Quu_inv_[t](boxqp_sol.free_idx[i], boxqp_sol.free_idx[j]) =
92  boxqp_sol.Hff_inv(i, j);
93  }
94  }
95  STOP_PROFILER("SolverBoxDDP::Quu_invproj");
96  START_PROFILER("SolverBoxDDP::Quu_invproj_Qxu");
97  K_[t].noalias() = Quu_inv_[t] * Qxu_[t].transpose();
98  STOP_PROFILER("SolverBoxDDP::Quu_invproj_Qxu");
99  k_[t] = -boxqp_sol.x;
100 
101  // The box-QP clamped the gradient direction; this is important for
102  // accounting the algorithm advancement (i.e. stopping criteria)
103  START_PROFILER("SolverBoxDDP::Qu_proj");
104  for (std::size_t i = 0; i < boxqp_sol.clamped_idx.size(); ++i) {
105  Qu_[t](boxqp_sol.clamped_idx[i]) = 0.;
106  }
107  STOP_PROFILER("SolverBoxDDP::Qu_proj");
108  }
109  STOP_PROFILER("SolverBoxDDP::computeGains");
110 }
111 
112 void SolverBoxDDP::forwardPass(double steplength) {
113  if (steplength > 1. || steplength < 0.) {
114  throw_pretty("Invalid argument: "
115  << "invalid step length, value is between 0. to 1.");
116  }
117  START_PROFILER("SolverBoxDDP::forwardPass");
118  cost_try_ = 0.;
119  xnext_ = problem_->get_x0();
120  const std::size_t T = problem_->get_T();
121  const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
122  problem_->get_runningModels();
123  const std::vector<std::shared_ptr<ActionDataAbstract> >& datas =
124  problem_->get_runningDatas();
125  for (std::size_t t = 0; t < T; ++t) {
126  const std::shared_ptr<ActionModelAbstract>& m = models[t];
127  const std::shared_ptr<ActionDataAbstract>& d = datas[t];
128  const std::size_t nu = m->get_nu();
129 
130  xs_try_[t] = xnext_;
131  m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]);
132  if (nu != 0) {
133  us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t];
134  if (m->get_has_control_limits()) { // clamp control
135  us_try_[t] = us_try_[t].cwiseMax(m->get_u_lb()).cwiseMin(m->get_u_ub());
136  }
137  m->calc(d, xs_try_[t], us_try_[t]);
138  } else {
139  m->calc(d, xs_try_[t]);
140  }
141  xnext_ = d->xnext;
142  cost_try_ += d->cost;
143 
144  if (raiseIfNaN(cost_try_)) {
145  STOP_PROFILER("SolverBoxDDP::forwardPass");
146  throw_pretty("forward_error");
147  }
148  if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) {
149  STOP_PROFILER("SolverBoxDDP::forwardPass");
150  throw_pretty("forward_error");
151  }
152  }
153 
154  const std::shared_ptr<ActionModelAbstract>& m = problem_->get_terminalModel();
155  const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData();
156  if ((is_feasible_) || (steplength == 1)) {
157  xs_try_.back() = xnext_;
158  } else {
159  m->get_state()->integrate(xnext_, fs_.back() * (steplength - 1),
160  xs_try_.back());
161  }
162  m->calc(d, xs_try_.back());
163  cost_try_ += d->cost;
164 
165  if (raiseIfNaN(cost_try_)) {
166  STOP_PROFILER("SolverBoxDDP::forwardPass");
167  throw_pretty("forward_error");
168  }
169 }
170 
171 const std::vector<Eigen::MatrixXd>& SolverBoxDDP::get_Quu_inv() const {
172  return Quu_inv_;
173 }
174 
175 } // namespace crocoddyl