10 #ifndef CROCODDYL_MULTIBODY_ACTUATIONS_FLOATING_BASE_HPP_
11 #define CROCODDYL_MULTIBODY_ACTUATIONS_FLOATING_BASE_HPP_
13 #include "crocoddyl/core/actuation-base.hpp"
14 #include "crocoddyl/multibody/fwd.hpp"
15 #include "crocoddyl/multibody/states/multibody.hpp"
34 template <
typename _Scalar>
38 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
41 typedef _Scalar Scalar;
46 typedef typename MathBase::VectorXs VectorXs;
47 typedef typename MathBase::MatrixXs MatrixXs;
58 state->get_pinocchio()
60 state->get_pinocchio()->existJointName(
"root_joint")
61 ? state->get_pinocchio()->getJointId(
"root_joint")
74 virtual void calc(
const std::shared_ptr<Data>& data,
75 const Eigen::Ref<const VectorXs>& ,
76 const Eigen::Ref<const VectorXs>& u)
override {
77 if (
static_cast<std::size_t
>(u.size()) !=
nu_) {
79 "Invalid argument: " <<
"u has wrong dimension (it should be " +
80 std::to_string(
nu_) +
")");
82 data->tau.tail(
nu_) = u;
93 virtual void calcDiff(
const std::shared_ptr<Data>& data,
94 const Eigen::Ref<const VectorXs>& ,
95 const Eigen::Ref<const VectorXs>& )
override {
97 virtual void calcDiff(
const std::shared_ptr<Data>&,
98 const Eigen::Ref<const VectorXs>& ,
99 const Eigen::Ref<const VectorXs>& )
override {
102 assert_pretty(data->dtau_dx.isZero(),
"dtau_dx has wrong value");
103 assert_pretty(MatrixXs(data->dtau_du).isApprox(dtau_du_),
104 "dtau_du has wrong value");
107 virtual void commands(
const std::shared_ptr<Data>& data,
108 const Eigen::Ref<const VectorXs>&,
109 const Eigen::Ref<const VectorXs>& tau)
override {
110 if (
static_cast<std::size_t
>(tau.size()) !=
state_->get_nv()) {
112 "Invalid argument: " <<
"tau has wrong dimension (it should be " +
113 std::to_string(
state_->get_nv()) +
")");
115 data->u = tau.tail(
nu_);
120 const Eigen::Ref<const VectorXs>&,
121 const Eigen::Ref<const VectorXs>&)
override {
124 const Eigen::Ref<const VectorXs>&,
125 const Eigen::Ref<const VectorXs>&)
override {
128 assert_pretty(MatrixXs(data->Mtau).isApprox(Mtau_),
"Mtau has wrong value");
138 std::shared_ptr<StateMultibody> state =
139 std::static_pointer_cast<StateMultibody>(
state_);
140 std::shared_ptr<Data> data =
141 std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(),
this);
142 const std::size_t root_joint_id =
143 state->get_pinocchio()->existJointName(
"root_joint")
144 ? state->get_pinocchio()->getJointId(
"root_joint")
146 const std::size_t nfb = state->get_pinocchio()->joints[root_joint_id].nv();
147 data->dtau_du.diagonal(-nfb).setOnes();
148 data->Mtau.diagonal(nfb).setOnes();
149 for (std::size_t i = 0; i < nfb; ++i) {
150 data->tau_set[i] =
false;
153 dtau_du_ = data->dtau_du;
159 template <
typename NewScalar>
163 ReturnType ret(std::static_pointer_cast<StateType>(
164 state_->template cast<NewScalar>()));
173 virtual void print(std::ostream& os)
const override {
174 os <<
"ActuationModelFloatingBase {nu=" <<
nu_
175 <<
", nv=" <<
state_->get_nv() <<
"}";
191 CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS(
Abstract class for the actuation-mapping model.
std::shared_ptr< StateAbstract > state_
Model of the state.
std::size_t nu_
Dimension of joint torque inputs.
Floating-base actuation model.
std::shared_ptr< StateAbstract > state_
Model of the state.
virtual void calc(const std::shared_ptr< Data > &data, const Eigen::Ref< const VectorXs > &, const Eigen::Ref< const VectorXs > &u) override
Compute the floating-base actuation signal from the joint-torque input .
virtual std::shared_ptr< Data > createData() override
Create the floating-base actuation data.
virtual void commands(const std::shared_ptr< Data > &data, const Eigen::Ref< const VectorXs > &, const Eigen::Ref< const VectorXs > &tau) override
Compute the joint torque input from the generalized torques.
virtual void torqueTransform(const std::shared_ptr< Data > &data, const Eigen::Ref< const VectorXs > &, const Eigen::Ref< const VectorXs > &) override
Compute the torque transform from generalized torques to joint torque inputs.
ActuationModelFloatingBaseTpl(std::shared_ptr< StateMultibody > state)
Initialize the floating-base actuation model.
std::size_t nu_
Dimension of joint torque inputs.
virtual void calcDiff(const std::shared_ptr< Data > &data, const Eigen::Ref< const VectorXs > &, const Eigen::Ref< const VectorXs > &) override
Compute the Jacobians of the floating-base actuation function.
virtual void print(std::ostream &os) const override
Print relevant information of the joint-effort residual.
State multibody representation.