Crocoddyl
 
Loading...
Searching...
No Matches
box-qp.cpp
1
2// BSD 3-Clause License
3//
4// Copyright (C) 2019-2022, University of Edinburgh, Heriot-Watt University
5// Copyright note valid unless otherwise stated in individual files.
6// All rights reserved.
8
9#include "crocoddyl/core/solvers/box-qp.hpp"
10
11#include <iostream>
12
13#include "crocoddyl/core/utils/exception.hpp"
14
15namespace crocoddyl {
16
17BoxQP::BoxQP(const std::size_t nx, const std::size_t maxiter,
18 const double th_acceptstep, const double th_grad, const double reg)
19 : nx_(nx),
20 maxiter_(maxiter),
21 th_acceptstep_(th_acceptstep),
22 th_grad_(th_grad),
23 reg_(reg),
24 fold_(0.),
25 fnew_(0.),
26 x_(nx),
27 xnew_(nx),
28 g_(nx),
29 dx_(nx),
30 xo_(nx),
31 dxo_(nx),
32 qo_(nx),
33 Ho_(nx, nx) {
34 // Check if values have a proper range
35 if (0. >= th_acceptstep && th_acceptstep >= 0.5) {
36 std::cerr << "Warning: th_acceptstep value should between 0 and 0.5"
37 << std::endl;
38 }
39 if (0. > th_grad) {
40 std::cerr << "Warning: th_grad value has to be positive." << std::endl;
41 }
42 if (0. > reg) {
43 std::cerr << "Warning: reg value has to be positive." << std::endl;
44 }
45
46 // Initialized the values of vectors
47 x_.setZero();
48 xnew_.setZero();
49 g_.setZero();
50 dx_.setZero();
51 xo_.setZero();
52 dxo_.setZero();
53 qo_.setZero();
54 Ho_.setZero();
55
56 // Reserve the space and compute alphas
57 solution_.x = Eigen::VectorXd::Zero(nx);
58 solution_.clamped_idx.reserve(nx_);
59 solution_.free_idx.reserve(nx_);
60 const std::size_t n_alphas_ = 10;
61 alphas_.resize(n_alphas_);
62 for (std::size_t n = 0; n < n_alphas_; ++n) {
63 alphas_[n] = 1. / pow(2., static_cast<double>(n));
64 }
65}
66
68
69const BoxQPSolution& BoxQP::solve(const Eigen::MatrixXd& H,
70 const Eigen::VectorXd& q,
71 const Eigen::VectorXd& lb,
72 const Eigen::VectorXd& ub,
73 const Eigen::VectorXd& xinit) {
74 if (static_cast<std::size_t>(H.rows()) != nx_ ||
75 static_cast<std::size_t>(H.cols()) != nx_) {
76 throw_pretty("Invalid argument: "
77 << "H has wrong dimension (it should be " +
78 std::to_string(nx_) + "," + std::to_string(nx_) + ")");
79 }
80 if (static_cast<std::size_t>(q.size()) != nx_) {
81 throw_pretty(
82 "Invalid argument: " << "q has wrong dimension (it should be " +
83 std::to_string(nx_) + ")");
84 }
85 if (static_cast<std::size_t>(lb.size()) != nx_) {
86 throw_pretty(
87 "Invalid argument: " << "lb has wrong dimension (it should be " +
88 std::to_string(nx_) + ")");
89 }
90 if (static_cast<std::size_t>(ub.size()) != nx_) {
91 throw_pretty(
92 "Invalid argument: " << "ub has wrong dimension (it should be " +
93 std::to_string(nx_) + ")");
94 }
95 if (static_cast<std::size_t>(xinit.size()) != nx_) {
96 throw_pretty(
97 "Invalid argument: " << "xinit has wrong dimension (it should be " +
98 std::to_string(nx_) + ")");
99 }
100
101 // We need to enforce feasible warm-starting of the algorithm
102 for (std::size_t i = 0; i < nx_; ++i) {
103 x_(i) = std::max(std::min(xinit(i), ub(i)), lb(i));
104 }
105
106 // Start the numerical iterations
107 for (std::size_t k = 0; k < maxiter_; ++k) {
108 solution_.clamped_idx.clear();
109 solution_.free_idx.clear();
110 // Compute the Cauchy point and active set
111 g_ = q;
112 g_.noalias() += H * x_;
113 for (std::size_t j = 0; j < nx_; ++j) {
114 const double gj = g_(j);
115 const double xj = x_(j);
116 const double lbj = lb(j);
117 const double ubj = ub(j);
118 if ((xj == lbj && gj > 0.) || (xj == ubj && gj < 0.)) {
119 solution_.clamped_idx.push_back(j);
120 } else {
121 solution_.free_idx.push_back(j);
122 }
123 }
124
125 // Compute the search direction as Newton step along the free space
126 nf_ = solution_.free_idx.size();
127 nc_ = solution_.clamped_idx.size();
128 Eigen::VectorBlock<Eigen::VectorXd> xf = xo_.head(nf_);
129 Eigen::VectorBlock<Eigen::VectorXd> xc = xo_.tail(nc_);
130 Eigen::VectorBlock<Eigen::VectorXd> dxf = dxo_.head(nf_);
131 Eigen::VectorBlock<Eigen::VectorXd> qf = qo_.head(nf_);
132 Eigen::Block<Eigen::MatrixXd> Hff = Ho_.topLeftCorner(nf_, nf_);
133 Eigen::Block<Eigen::MatrixXd> Hfc = Ho_.topRightCorner(nf_, nc_);
134 for (std::size_t i = 0; i < nf_; ++i) {
135 const std::size_t fi = solution_.free_idx[i];
136 qf(i) = q(fi);
137 xf(i) = x_(fi);
138 for (std::size_t j = 0; j < nf_; ++j) {
139 Hff(i, j) = H(fi, solution_.free_idx[j]);
140 }
141 for (std::size_t j = 0; j < nc_; ++j) {
142 const std::size_t cj = solution_.clamped_idx[j];
143 xc(j) = x_(cj);
144 Hfc(i, j) = H(fi, cj);
145 }
146 }
147 if (reg_ != 0.) {
148 Hff.diagonal().array() += reg_;
149 }
150 Hff_inv_llt_.compute(Hff);
151 const Eigen::ComputationInfo& info = Hff_inv_llt_.info();
152 if (info != Eigen::Success) {
153 throw_pretty("backward_error");
154 }
155 solution_.Hff_inv.setIdentity(nf_, nf_);
156 Hff_inv_llt_.solveInPlace(solution_.Hff_inv);
157 qf.noalias() += Hff * xf;
158 if (nc_ != 0) {
159 qf.noalias() += Hfc * xc;
160 }
161 dxf = -qf;
162 Hff_inv_llt_.solveInPlace(dxf);
163 dx_.setZero();
164 for (std::size_t i = 0; i < nf_; ++i) {
165 dx_(solution_.free_idx[i]) = dxf(i);
166 g_(solution_.free_idx[i]) = -qf(i);
167 }
168
169 // Try different step lengths
170 fold_ = 0.5 * x_.dot(H * x_) + q.dot(x_);
171 for (std::vector<double>::const_iterator it = alphas_.begin();
172 it != alphas_.end(); ++it) {
173 double steplength = *it;
174 for (std::size_t i = 0; i < nx_; ++i) {
175 xnew_(i) =
176 std::max(std::min(x_(i) + steplength * dx_(i), ub(i)), lb(i));
177 }
178 fnew_ = 0.5 * xnew_.dot(H * xnew_) + q.dot(xnew_);
179 if (fold_ - fnew_ > th_acceptstep_ * g_.dot(x_ - xnew_)) {
180 x_ = xnew_;
181 break;
182 }
183 }
184
185 // Check convergence
186 if (qf.lpNorm<Eigen::Infinity>() <= th_grad_) {
187 solution_.x = x_;
188 return solution_;
189 }
190 }
191 solution_.x = x_;
192 return solution_;
193}
194
195const BoxQPSolution& BoxQP::get_solution() const { return solution_; }
196
197std::size_t BoxQP::get_nx() const { return nx_; }
198
199std::size_t BoxQP::get_maxiter() const { return maxiter_; }
200
201double BoxQP::get_th_acceptstep() const { return th_acceptstep_; }
202
203double BoxQP::get_th_grad() const { return th_grad_; }
204
205double BoxQP::get_reg() const { return reg_; }
206
207const std::vector<double>& BoxQP::get_alphas() const { return alphas_; }
208
209void BoxQP::set_nx(const std::size_t nx) {
210 nx_ = nx;
211 x_.conservativeResize(nx);
212 xnew_.conservativeResize(nx);
213 g_.conservativeResize(nx);
214 dx_.conservativeResize(nx);
215 xo_.conservativeResize(nx);
216 dxo_.conservativeResize(nx);
217 qo_.conservativeResize(nx);
218 Ho_.conservativeResize(nx, nx);
219}
220
221void BoxQP::set_maxiter(const std::size_t maxiter) { maxiter_ = maxiter; }
222
223void BoxQP::set_th_acceptstep(const double th_acceptstep) {
224 if (0. >= th_acceptstep && th_acceptstep >= 0.5) {
225 throw_pretty(
226 "Invalid argument: " << "th_acceptstep value should between 0 and 0.5");
227 }
228 th_acceptstep_ = th_acceptstep;
229}
230
231void BoxQP::set_th_grad(const double th_grad) {
232 if (0. > th_grad) {
233 throw_pretty("Invalid argument: " << "th_grad value has to be positive.");
234 }
235 th_grad_ = th_grad;
236}
237
238void BoxQP::set_reg(const double reg) {
239 if (0. > reg) {
240 throw_pretty("Invalid argument: " << "reg value has to be positive.");
241 }
242 reg_ = reg;
243}
244
245void BoxQP::set_alphas(const std::vector<double>& alphas) {
246 double prev_alpha = alphas[0];
247 if (prev_alpha != 1.) {
248 std::cerr << "Warning: alpha[0] should be 1" << std::endl;
249 }
250 for (std::size_t i = 1; i < alphas.size(); ++i) {
251 double alpha = alphas[i];
252 if (0. >= alpha) {
253 throw_pretty("Invalid argument: " << "alpha values has to be positive.");
254 }
255 if (alpha >= prev_alpha) {
256 throw_pretty(
257 "Invalid argument: " << "alpha values are monotonously decreasing.");
258 }
259 prev_alpha = alpha;
260 }
261 alphas_ = alphas;
262}
263
264} // namespace crocoddyl
void set_reg(const double reg)
Modify the regularization value.
Definition box-qp.cpp:238
void set_th_grad(const double th_grad)
Modify the gradient tolerance threshold.
Definition box-qp.cpp:231
const BoxQPSolution & get_solution() const
Return the stored solution.
Definition box-qp.cpp:195
double get_th_grad() const
Return the gradient tolerance threshold.
Definition box-qp.cpp:203
const BoxQPSolution & solve(const Eigen::MatrixXd &H, const Eigen::VectorXd &q, const Eigen::VectorXd &lb, const Eigen::VectorXd &ub, const Eigen::VectorXd &xinit)
Compute the solution of bound-constrained QP based on Newton projection.
Definition box-qp.cpp:69
std::size_t get_maxiter() const
Return the maximum allowed number of iterations.
Definition box-qp.cpp:199
void set_maxiter(const std::size_t maxiter)
Modify the maximum allowed number of iterations.
Definition box-qp.cpp:221
~BoxQP()
Destroy the Projected-Newton QP solver.
Definition box-qp.cpp:67
void set_nx(const std::size_t nx)
Modify the decision vector dimension.
Definition box-qp.cpp:209
EIGEN_MAKE_ALIGNED_OPERATOR_NEW BoxQP(const std::size_t nx, const std::size_t maxiter=100, const double th_acceptstep=0.1, const double th_grad=1e-9, const double reg=1e-9)
Initialize the Projected-Newton QP for bound constraints.
Definition box-qp.cpp:17
const std::vector< double > & get_alphas() const
Return the stack of step lengths using by the line-search procedure.
Definition box-qp.cpp:207
void set_alphas(const std::vector< double > &alphas)
Modify the stack of step lengths using by the line-search procedure.
Definition box-qp.cpp:245
void set_th_acceptstep(const double th_acceptstep)
Modify the acceptance step threshold.
Definition box-qp.cpp:223
double get_th_acceptstep() const
Return the acceptance step threshold.
Definition box-qp.cpp:201
double get_reg() const
Return the regularization value.
Definition box-qp.cpp:205
std::size_t get_nx() const
Return the decision vector dimension.
Definition box-qp.cpp:197
Box QP solution.
Definition box-qp.hpp:29
std::vector< size_t > free_idx
Free space indexes.
Definition box-qp.hpp:52
Eigen::MatrixXd Hff_inv
Inverse of the free space Hessian.
Definition box-qp.hpp:50
Eigen::VectorXd x
Decision vector.
Definition box-qp.hpp:51
std::vector< size_t > clamped_idx
Clamped space indexes.
Definition box-qp.hpp:53