|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator+ (const polynomial< T, N, S, P, TP > &p1, const polynomial< T, N, S, P, TP > &p2) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator+ (const polynomial< T, N, S, P, TP > &p1, const typename polynomial< T, N, S, P, TP >::point_t &point) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator+ (const typename polynomial< T, N, S, P, TP >::point_t &point, const polynomial< T, N, S, P, TP > &p1) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator- (const polynomial< T, N, S, P, TP > &p1, const typename polynomial< T, N, S, P, TP >::point_t &point) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator- (const typename polynomial< T, N, S, P, TP >::point_t &point, const polynomial< T, N, S, P, TP > &p1) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator- (const polynomial< T, N, S, P, TP > &p1) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator- (const polynomial< T, N, S, P, TP > &p1, const polynomial< T, N, S, P, TP > &p2) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator/ (const polynomial< T, N, S, P, TP > &p1, const double k) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator* (const polynomial< T, N, S, P, TP > &p1, const double k) |
|
template<typename T , typename N , bool S, typename P , typename TP > |
polynomial< T, N, S, P, TP > | ndcurves::operator* (const double k, const polynomial< T, N, S, P, TP > &p1) |
|
Definition of a cubic spline.
- Author
- Steve T.
- Version
- 0.1
- Date
- 06/17/2013
This file contains definitions for the polynomial struct. It allows the creation and evaluation of natural smooth splines of arbitrary dimension and order