This class computes the gains for preview control for a given discrete system. The discrete system is defined by three matrix A, b, c such as : More...
#include <PreviewControl/OptimalControllerSolver.hh>
Public Member Functions | |
OptimalControllerSolver (Eigen::MatrixXd &A, Eigen::MatrixXd &b, Eigen::MatrixXd &c, double Q, double R, unsigned int Nl) | |
~OptimalControllerSolver () | |
void | ComputeWeights (unsigned int Mode) |
void | DisplayWeights () |
void | GetF (Eigen::MatrixXd &LF) |
void | GetK (Eigen::MatrixXd &LK) |
Static Public Attributes | |
static const unsigned int | MODE_WITHOUT_INITIALPOS = 1 |
static const unsigned int | MODE_WITH_INITIALPOS = 0 |
Protected Types | |
typedef Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > | MatrixRXd |
Protected Member Functions | |
bool | GeneralizedSchur (MatrixRXd &A, MatrixRXd &B, Eigen::VectorXd &alphar, Eigen::VectorXd &alphai, Eigen::VectorXd &beta, MatrixRXd &L, MatrixRXd &R) |
Protected Attributes | |
MatrixRXd | m_A |
MatrixRXd | m_b |
MatrixRXd | m_c |
double | m_Q |
double | m_R |
MatrixRXd | m_K |
MatrixRXd | m_F |
int | m_Nl |
This class computes the gains for preview control for a given discrete system. The discrete system is defined by three matrix A, b, c such as :
\begin{eqnarray*} {\bf x}_{k+1} & =& {\bf A} x_k + {\bf b} u_k \\ p_k &=& {\bf cx}_k\\ \end{eqnarray*}
The optimal critera considered here is :
\[ J = \sum^{\infty}_{j=1} \{ Q(p^{ref}_j -p_j)^2 + Ru_j^2 \} \]
where \( Q \) and \( R \) are also given as inputs.
the solution is then:
\begin{eqnarray*} u_j = - {\bf K}x_k + [ f_1, f_2, \cdots, f_N] \left[ \begin{matrix} p^{ref}_{k+1} \\ \vdots \\ p^{ref}_{k+N} \end{matrix} \right] \end{eqnarray*}
\begin{eqnarray*} {\bf K} & \equiv & (R + {\bf b}^T{\bf Pb})^{-1}{\bf b}^T{\bf PA} \\ K_p(i) & \equiv & (R + {\bf b}^T{\bf Pb})^{-1}{\bf b}^T({\bf A}- {\bf bK})^{T*(i-1)}{\bf c}^TQ \ \ \end{eqnarray*}
where \( {\bf P} \) is solution of the following Riccati equation:
\[ {\bf P} = {\bf A}^T {\bf PA} + {\bf c}^TQ{\bf c} - {\bf A}^T{\bf Pb}(R + {\bf b}^T{\bf Pb})^{-1}{\bf b}^T{\bf PA} \]
The resolution of the Riccati equation is taken from Laub1979, and is based on a Schur form .
To suppress the problem of the initial CoM position, we can reformulate the discrete problem by posing the following:
\begin{eqnarray*} \begin{matrix} {\bf x}^*_{k+1} &= \widetilde{\bf A} {\bf x}^*_{k} + \widetilde{\bf b}\Delta u_k \ \ p_k &= \widetilde{\bf c}{\bf x}^*_{k} \end{matrix} \end{eqnarray*}
with
\begin{eqnarray*} \Delta u_k \equiv u_k - u_{k-1} & \Delta {\bf x}_k \equiv {\bf x}_k - {\bf x}_{k-1}\ \ {\bf x}_k \equiv \left[ \begin{matrix} p_k\\ \Delta {\bf x}_k \end{matrix} \right] \end{eqnarray*}
The augmented system is then
\begin{eqnarray*} \widetilde{\bf A} &\equiv & \left[ \begin{matrix} 1 & {\bf cA} \\ {\bf 0} & {\bf A} \\ \end{matrix} \right] \\ \tilde{\bf b} & \equiv & \left[ \begin{matrix} {\bf cb} \\ {\bf c} \end{matrix} \right] \\ \tilde{\bf c} & \equiv & [ 1 \; 0 \; 0 \; 0] \\ \end{eqnarray*}
with the following cost function:
\[ J = \sum^{\infty}_{j=1} \{ Q(p^{ref}_j -p_j)^2 + R \Delta u_j^2 \} \]
the solution is then:
\begin{eqnarray*} u_j = - K_1 \sum_{i=0}^k e(i) - {\bf K}_2 x(k) - \sum_{j=1}^{N_L} K_p(j)p^{ref}_j(k+j) \end{eqnarray*}
where
\begin{eqnarray*} \left[ \begin{matrix} K_1 \\ {\bf K}_2 \\ \end{matrix} \right]= \widetilde{\bf K} \end{eqnarray*}
Alan J. Laub A Schur method for solving Algebraic Riccati Equations, IEEE Transaction on Automatic Control, Vol AC-24, No.6 December 1979
|
protected |
OptimalControllerSolver::OptimalControllerSolver | ( | Eigen::MatrixXd & | A, |
Eigen::MatrixXd & | b, | ||
Eigen::MatrixXd & | c, | ||
double | Q, | ||
double | R, | ||
unsigned int | Nl | ||
) |
A constructor
OptimalControllerSolver::~OptimalControllerSolver | ( | ) |
Destructor.
void OptimalControllerSolver::ComputeWeights | ( | unsigned int | Mode | ) |
Compute the weights Following the mode, there is a the inclusion of the P matrix inside the weights.
void OptimalControllerSolver::DisplayWeights | ( | ) |
Display the weights
|
protected |
void OptimalControllerSolver::GetF | ( | Eigen::MatrixXd & | LF | ) |
To take matrix F aka the weights of the preview window .
void OptimalControllerSolver::GetK | ( | Eigen::MatrixXd & | LK | ) |
To take matrix K, aka the weight of the other part of the command
|
protected |
The matrices needed for the dynamical system such as
\begin{eqnarray*} {\bf x}_{k+1} & =& {\bf A} x_k + {\bf b} u_k \\ p_k &=& {\bf cx}_k\\ \end{eqnarray*}
|
protected |
|
protected |
|
protected |
|
protected |
The weights themselves
|
protected |
The size of the window for the preview
|
protected |
The coefficent of the index criteria:
\[ J = \sum^{\infty}_{j=1} \{ Q(p^{ref}_j -p_j)^2 + Ru_j^2 \} \]
|
protected |
|
static |
|
static |