#include <parametric-curves/bezier_curve.h>
|
template<typename In > |
| bezier_curve (In PointsBegin, In PointsEnd, const time_t minBound=0, const time_t maxBound=1) |
| Constructor. More...
|
|
template<typename In > |
| bezier_curve (In PointsBegin, In PointsEnd, const curve_constraints_t &constraints, const time_t minBound=0, const time_t maxBound=1) |
| Constructor This constructor will add 4 points (2 after the first one, 2 before the last one) to ensure that velocity and acceleration constraints are respected. More...
|
|
| ~bezier_curve () |
| Destructor. More...
|
|
virtual point_t | operator() (const time_t t) const |
| Evaluation of the cubic spline at time t. More...
|
|
bezier_curve_t | compute_derivate (const std::size_t order) const |
| Computes the derivative curve at order N. More...
|
|
bezier_curve_t | compute_primitive (const std::size_t order) const |
| Computes the primitive of the curve at order N. More...
|
|
virtual point_t | derivate (const time_t t, const std::size_t order) const |
| Evaluates the derivative at order N of the curve. If the derivative is to be evaluated several times, it is rather recommended to compute the derivative curve using compute_derivate. More...
|
|
point_t | evalBernstein (const Numeric u) const |
| Evaluates all Bernstein polynomes for a certain degree. More...
|
|
point_t | evalHorner (const Numeric t) const |
| Evaluates all Bernstein polynomes for a certain degree using horner's scheme. More...
|
|
const t_point_t & | waypoints () const |
|
virtual time_t | min () const |
|
virtual time_t | max () const |
|
◆ bezier_curve_t
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ cit_point_t
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ curve_constraints_t
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ num_t
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ point_t
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ t_point_t
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ time_t
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ bezier_curve() [1/2]
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
template<typename In >
Constructor.
- Parameters
-
PointsBegin,PointsEnd | : the points parametering the Bezier curve |
◆ bezier_curve() [2/2]
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
template<typename In >
Constructor This constructor will add 4 points (2 after the first one, 2 before the last one) to ensure that velocity and acceleration constraints are respected.
- Parameters
-
PointsBegin,PointsEnd | : the points parametering the Bezier curve |
constraints | : constraints applying on start / end velocities and acceleration |
◆ ~bezier_curve()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ compute_derivate()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Computes the derivative curve at order N.
- Parameters
-
order | : order of the derivative |
return | : the value x(t) |
◆ compute_primitive()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Computes the primitive of the curve at order N.
- Parameters
-
constant | : value of the primitive at t = 0 |
return | : the curve x_1(t) such that d/dt(x_1(t)) = x_1(t) |
◆ derivate()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Evaluates the derivative at order N of the curve. If the derivative is to be evaluated several times, it is rather recommended to compute the derivative curve using compute_derivate.
- Parameters
-
order | : order of the derivative |
t | : the time when to evaluate the spine |
return | : the value x(t) |
◆ evalBernstein()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Evaluates all Bernstein polynomes for a certain degree.
◆ evalHorner()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Evaluates all Bernstein polynomes for a certain degree using horner's scheme.
◆ max()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ min()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ operator()()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Evaluation of the cubic spline at time t.
- Parameters
-
t | : the time when to evaluate the spine |
return | : the value x(t) |
◆ waypoints()
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ bernstein_
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ degree_
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ maxBound_
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ minBound_
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ size_
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
The documentation for this struct was generated from the following file: