pinocchio  3.3.1
A fast and flexible implementation of Rigid Body Dynamics algorithms and their analytical derivatives
rotation.hpp
1 //
2 // Copyright (c) 2019-2020 CNRS INRIA
3 //
4 
5 #ifndef __pinocchio_math_rotation_hpp__
6 #define __pinocchio_math_rotation_hpp__
7 
8 #include "pinocchio/fwd.hpp"
9 #include "pinocchio/math/matrix.hpp"
10 #include "pinocchio/math/sincos.hpp"
11 
12 #include <Eigen/Core>
13 #include <Eigen/Geometry>
14 #include <Eigen/SVD>
15 
16 namespace pinocchio
17 {
18 
25  template<typename Vector3, typename Scalar, typename Matrix3>
27  const Eigen::MatrixBase<Vector3> & axis,
28  const Scalar & cos_value,
29  const Scalar & sin_value,
30  const Eigen::MatrixBase<Matrix3> & res)
31  {
32  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Vector3, 3);
33  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix3, 3, 3);
34 
35  assert(isUnitary(axis) && "The axis is not unitary.");
36 
37  Matrix3 & res_ = PINOCCHIO_EIGEN_CONST_CAST(Matrix3, res);
38  Vector3 sin_axis = sin_value * axis;
39  Vector3 cos1_axis = (Scalar(1) - cos_value) * axis;
40 
41  Scalar tmp;
42  tmp = cos1_axis.x() * axis.y();
43  res_.coeffRef(0, 1) = tmp - sin_axis.z();
44  res_.coeffRef(1, 0) = tmp + sin_axis.z();
45 
46  tmp = cos1_axis.x() * axis.z();
47  res_.coeffRef(0, 2) = tmp + sin_axis.y();
48  res_.coeffRef(2, 0) = tmp - sin_axis.y();
49 
50  tmp = cos1_axis.y() * axis.z();
51  res_.coeffRef(1, 2) = tmp - sin_axis.x();
52  res_.coeffRef(2, 1) = tmp + sin_axis.x();
53 
54  res_.diagonal() = (cos1_axis.cwiseProduct(axis)).array() + cos_value;
55  }
56 
63  template<typename Vector3, typename Scalar, typename Matrix3>
65  const Eigen::MatrixBase<Vector3> & axis,
66  const Scalar & angle,
67  const Eigen::MatrixBase<Matrix3> & res)
68  {
69  Scalar sa, ca;
70  SINCOS(angle, &sa, &ca);
71  toRotationMatrix(axis, ca, sa, PINOCCHIO_EIGEN_CONST_CAST(Matrix3, res));
72  }
73 
79  template<typename Matrix3>
80  void normalizeRotation(const Eigen::MatrixBase<Matrix3> & rot)
81  {
82  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix3, 3, 3);
83  Matrix3 & rot_ = PINOCCHIO_EIGEN_CONST_CAST(Matrix3, rot);
84 
85  typedef typename Matrix3::Scalar Scalar;
86  enum
87  {
88  Options = PINOCCHIO_EIGEN_PLAIN_TYPE(Matrix3)::Options
89  };
90  typedef Eigen::Quaternion<Scalar, Options> Quaternion;
91  Quaternion quat(rot);
92  normalize(quat.coeffs());
93  rot_ = quat.toRotationMatrix();
94  }
95 
103  template<typename Matrix3>
104  typename PINOCCHIO_EIGEN_PLAIN_TYPE(Matrix3)
105  orthogonalProjection(const Eigen::MatrixBase<Matrix3> & mat)
106  {
107  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix3, 3, 3);
108  typedef typename PINOCCHIO_EIGEN_PLAIN_TYPE(Matrix3) ReturnType;
109 
110  typedef Eigen::JacobiSVD<Matrix3> SVD;
111  const SVD svd(mat, Eigen::ComputeFullU | Eigen::ComputeFullV);
112 
113  ReturnType res;
114  res.template leftCols<2>().noalias() =
115  svd.matrixU() * svd.matrixV().transpose().template leftCols<2>();
116  res.col(2).noalias() = res.col(0).cross(res.col(1));
117  return res;
118  }
119 } // namespace pinocchio
120 
121 #endif // #ifndef __pinocchio_math_rotation_hpp__
Main pinocchio namespace.
Definition: treeview.dox:11
void normalizeRotation(const Eigen::MatrixBase< Matrix3 > &rot)
Orthogonormalization procedure for a rotation matrix (closed enough to SO(3)).
Definition: rotation.hpp:80
bool isUnitary(const Eigen::MatrixBase< MatrixLike > &mat, const typename MatrixLike::RealScalar &prec=Eigen::NumTraits< typename MatrixLike::Scalar >::dummy_precision())
Check whether the input matrix is Unitary within the given precision.
Definition: matrix.hpp:155
Matrix3 orthogonalProjection(const Eigen::MatrixBase< Matrix3 > &mat)
Orthogonal projection of a matrix on the SO(3) manifold.
Definition: rotation.hpp:105
void normalize(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, const Eigen::MatrixBase< ConfigVectorType > &qout)
Normalize a configuration vector.
void SINCOS(const S1 &a, S2 *sa, S3 *ca)
Computes sin/cos values of a given input scalar.
Definition: sincos.hpp:27
void toRotationMatrix(const Eigen::MatrixBase< Vector3 > &axis, const Scalar &cos_value, const Scalar &sin_value, const Eigen::MatrixBase< Matrix3 > &res)
Computes a rotation matrix from a vector and values of sin and cos orientations values.
Definition: rotation.hpp:26