18 #ifndef __math_quaternion_hpp__ 19 #define __math_quaternion_hpp__ 21 #include "pinocchio/math/fwd.hpp" 33 template<
typename D1,
typename D2>
36 const Eigen::QuaternionBase<D2> & q2)
38 typedef typename D1::Scalar Scalar;
39 const Scalar innerprod = q1.dot(q2);
40 Scalar theta = acos(innerprod);
41 const Scalar PI_value = PI<Scalar>();
44 return PI_value - theta;
58 template<
typename D1,
typename D2>
60 const Eigen::QuaternionBase<D2> & q2,
61 const typename D1::RealScalar & prec = Eigen::NumTraits<typename D1::Scalar>::dummy_precision())
63 return (q1.coeffs().isApprox(q2.coeffs(), prec) || q1.coeffs().isApprox(-q2.coeffs(), prec) );
90 typedef typename D::Scalar Scalar;
91 const Scalar N2 = q.squaredNorm();
93 const Scalar epsilon = sqrt(sqrt(Eigen::NumTraits<Scalar>::epsilon()));
94 assert(std::fabs(N2-1.) <= epsilon);
96 const Scalar alpha = ((Scalar)3 - N2) / Scalar(2);
97 const_cast <Eigen::QuaternionBase<D> &> (q).coeffs() *= alpha;
99 const Scalar M = Scalar(3) * std::pow(Scalar(1)-epsilon, ((Scalar)-Scalar(5))/Scalar(2)) / Scalar(4);
100 assert(std::fabs(q.norm() - Scalar(1)) <=
101 std::max(M * sqrt(N2) * (N2 - Scalar(1))*(N2 - Scalar(1)) / Scalar(2), Eigen::NumTraits<Scalar>::dummy_precision()));
109 typedef typename D::Scalar Scalar;
110 typedef Eigen::QuaternionBase<D> Base;
113 const Scalar u1 = (Scalar)rand() / RAND_MAX;
114 const Scalar u2 = (Scalar)rand() / RAND_MAX;
115 const Scalar u3 = (Scalar)rand() / RAND_MAX;
117 const Scalar mult1 = sqrt(Scalar(1)-u1);
118 const Scalar mult2 = sqrt(u1);
120 const Scalar PI_value = PI<Scalar>();
121 Scalar s2,c2; SINCOS(Scalar(2)*PI_value*u2,&s2,&c2);
122 Scalar s3,c3; SINCOS(Scalar(2)*PI_value*u3,&s3,&c3);
124 const_cast <Base &> (q).w() = mult1 * s2;
125 const_cast <Base &> (q).x() = mult1 * c2;
126 const_cast <Base &> (q).y() = mult2 * s3;
127 const_cast <Base &> (q).z() = mult2 * c3;
130 #endif //#ifndef __math_quaternion_hpp__
D1::Scalar angleBetweenQuaternions(const Eigen::QuaternionBase< D1 > &q1, const Eigen::QuaternionBase< D2 > &q2)
Compute the minimal angle between q1 and q2.
void uniformRandom(const Eigen::QuaternionBase< D > &q)
Uniformly random quaternion sphere.
void firstOrderNormalize(const Eigen::QuaternionBase< D > &q)
bool defineSameRotation(const Eigen::QuaternionBase< D1 > &q1, const Eigen::QuaternionBase< D2 > &q2, const typename D1::RealScalar &prec=Eigen::NumTraits< typename D1::Scalar >::dummy_precision())
Check if two quaternions define the same rotations.