5 #ifndef __pinocchio_math_quaternion_hpp__ 6 #define __pinocchio_math_quaternion_hpp__ 8 #ifndef PINOCCHIO_DEFAULT_QUATERNION_NORM_TOLERANCE_VALUE 9 #define PINOCCHIO_DEFAULT_QUATERNION_NORM_TOLERANCE_VALUE 1e-8 12 #include "pinocchio/math/fwd.hpp" 13 #include "pinocchio/math/comparison-operators.hpp" 14 #include "pinocchio/math/matrix.hpp" 15 #include "pinocchio/math/sincos.hpp" 16 #include "pinocchio/utils/static-if.hpp" 18 #include <boost/type_traits.hpp> 19 #include <Eigen/Geometry> 33 template<
typename D1,
typename D2>
36 const Eigen::QuaternionBase<D2> & q2)
38 typedef typename D1::Scalar Scalar;
39 const Scalar innerprod = q1.dot(q2);
40 Scalar theta = math::acos(innerprod);
41 static const Scalar PI_value = PI<Scalar>();
43 theta = internal::if_then_else(internal::LT, innerprod, Scalar(0),
58 template<
typename D1,
typename D2>
60 const Eigen::QuaternionBase<D2> & q2,
61 const typename D1::RealScalar & prec = Eigen::NumTraits<typename D1::Scalar>::dummy_precision())
63 return (q1.coeffs().isApprox(q2.coeffs(), prec) || q1.coeffs().isApprox(-q2.coeffs(), prec) );
90 typedef typename D::Scalar Scalar;
91 const Scalar N2 = q.squaredNorm();
93 const Scalar epsilon = sqrt(sqrt(Eigen::NumTraits<Scalar>::epsilon()));
95 assert(static_leq::op(math::fabs(N2-1.), epsilon));
97 const Scalar alpha = ((Scalar)3 - N2) / Scalar(2);
98 PINOCCHIO_EIGEN_CONST_CAST(D,q).coeffs() *= alpha;
100 const Scalar M = Scalar(3) * math::pow(Scalar(1)-epsilon, ((Scalar)-Scalar(5))/Scalar(2)) / Scalar(4);
101 assert(static_leq::op(math::fabs(q.norm() - Scalar(1)),
102 math::max(M * sqrt(N2) * (N2 - Scalar(1))*(N2 - Scalar(1)) / Scalar(2), Eigen::NumTraits<Scalar>::dummy_precision())));
107 template<
typename Derived>
110 typedef typename Derived::Scalar Scalar;
113 const Scalar u1 = (Scalar)rand() / RAND_MAX;
114 const Scalar u2 = (Scalar)rand() / RAND_MAX;
115 const Scalar u3 = (Scalar)rand() / RAND_MAX;
117 const Scalar mult1 = sqrt(Scalar(1)-u1);
118 const Scalar mult2 = sqrt(u1);
120 static const Scalar PI_value = PI<Scalar>();
121 Scalar s2,c2;
SINCOS(Scalar(2)*PI_value*u2,&s2,&c2);
122 Scalar s3,c3;
SINCOS(Scalar(2)*PI_value*u3,&s3,&c3);
124 PINOCCHIO_EIGEN_CONST_CAST(Derived,q).w() = mult1 * s2;
125 PINOCCHIO_EIGEN_CONST_CAST(Derived,q).x() = mult1 * c2;
126 PINOCCHIO_EIGEN_CONST_CAST(Derived,q).y() = mult2 * s3;
127 PINOCCHIO_EIGEN_CONST_CAST(Derived,q).z() = mult2 * c3;
133 template<typename Scalar, bool value = boost::is_floating_point<Scalar>::value>
134 struct quaternionbase_assign_impl;
136 template<Eigen::DenseIndex i>
137 struct quaternionbase_assign_impl_if_t_negative
139 template<
typename Scalar,
typename Matrix3,
typename QuaternionDerived>
140 static inline void run(Scalar t,
141 Eigen::QuaternionBase<QuaternionDerived> & q,
144 using pinocchio::math::sqrt;
146 Eigen::DenseIndex j = (i+1)%3;
147 Eigen::DenseIndex k = (j+1)%3;
149 t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
150 q.coeffs().coeffRef(i) = Scalar(0.5) * t;
152 q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
153 q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
154 q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
158 struct quaternionbase_assign_impl_if_t_positive
160 template<
typename Scalar,
typename Matrix3,
typename QuaternionDerived>
161 static inline void run(Scalar t,
162 Eigen::QuaternionBase<QuaternionDerived> & q,
165 using pinocchio::math::sqrt;
167 t = sqrt(t + Scalar(1.0));
168 q.w() = Scalar(0.5)*t;
170 q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
171 q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
172 q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
176 template<
typename Scalar>
177 struct quaternionbase_assign_impl<Scalar, true>
179 template<
typename Matrix3,
typename QuaternionDerived>
180 static inline void run(Eigen::QuaternionBase<QuaternionDerived> & q,
183 using pinocchio::math::sqrt;
185 Scalar t = mat.trace();
187 quaternionbase_assign_impl_if_t_positive::run(t,q,mat);
190 Eigen::DenseIndex i = 0;
191 if (mat.coeff(1,1) > mat.coeff(0,0))
193 if (mat.coeff(2,2) > mat.coeff(i,i))
197 quaternionbase_assign_impl_if_t_negative<0>::run(t,q,mat);
199 quaternionbase_assign_impl_if_t_negative<1>::run(t,q,mat);
201 quaternionbase_assign_impl_if_t_negative<2>::run(t,q,mat);
208 template<
typename D,
typename Matrix3>
209 void assignQuaternion(Eigen::QuaternionBase<D> & quat,
210 const Eigen::MatrixBase<Matrix3> & R)
212 internal::quaternionbase_assign_impl<typename Matrix3::Scalar>::run(PINOCCHIO_EIGEN_CONST_CAST(D,quat),
224 template<
typename Quaternion>
225 inline bool isNormalized(
const Eigen::QuaternionBase<Quaternion> & quat,
226 const typename Quaternion::Coefficients::RealScalar & prec =
227 Eigen::NumTraits< typename Quaternion::Coefficients::RealScalar >::dummy_precision())
235 #endif //#ifndef __pinocchio_math_quaternion_hpp__ bool defineSameRotation(const Eigen::QuaternionBase< D1 > &q1, const Eigen::QuaternionBase< D2 > &q2, const typename D1::RealScalar &prec=Eigen::NumTraits< typename D1::Scalar >::dummy_precision())
Check if two quaternions define the same rotations.
D1::Scalar angleBetweenQuaternions(const Eigen::QuaternionBase< D1 > &q1, const Eigen::QuaternionBase< D2 > &q2)
Compute the minimal angle between q1 and q2.
void firstOrderNormalize(const Eigen::QuaternionBase< D > &q)
bool isNormalized(const Eigen::MatrixBase< VectorLike > &vec, const typename VectorLike::RealScalar &prec=Eigen::NumTraits< typename VectorLike::Scalar >::dummy_precision())
Check whether the input vector is Normalized within the given precision.
void SINCOS(const S1 &a, S2 *sa, S3 *ca)
Computes sin/cos values of a given input scalar.
void uniformRandom(const Eigen::QuaternionBase< Derived > &q)
Uniformly random quaternion sphere.
Main pinocchio namespace.
bool isNormalized(const Eigen::QuaternionBase< Quaternion > &quat, const typename Quaternion::Coefficients::RealScalar &prec=Eigen::NumTraits< typename Quaternion::Coefficients::RealScalar >::dummy_precision())
Check whether the input quaternion is Normalized within the given precision.