|
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW | SolverIpopt (std::shared_ptr< crocoddyl::ShootingProblem > problem) |
| | Initialize the Ipopt solver.
|
| |
| virtual void | resizeData () |
| | Resizing the solver data.
|
| |
| void | set_th_stop (const double th_stop) |
| |
| void | setNumericIpoptOption (const std::string &tag, Ipopt::Number value) |
| | Set a string ipopt option.
|
| |
| void | setStringIpoptOption (const std::string &tag, const std::string &value) |
| | Set a string ipopt option.
|
| |
| bool | solve (const std::vector< Eigen::VectorXd > &init_xs=DEFAULT_VECTOR, const std::vector< Eigen::VectorXd > &init_us=DEFAULT_VECTOR, const std::size_t maxiter=100, const bool is_feasible=false, const double reg_init=1e-9) |
| | Compute the optimal trajectory \(\mathbf{x}^*_s,\mathbf{u}^*_s\) as lists of \(T+1\) and \(T\) terms.
|
| |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW | SolverAbstract (std::shared_ptr< ShootingProblem > problem) |
| | Initialize the solver.
|
| |
| double | computeDynamicFeasibility () |
| | Compute the dynamic feasibility \(\|\mathbf{f}_{\mathbf{s}}\|_{\infty,1}\) for the current guess \((\mathbf{x}^k,\mathbf{u}^k)\).
|
| |
| double | computeEqualityFeasibility () |
| | Compute the feasibility of the equality constraints for the current guess.
|
| |
| double | computeInequalityFeasibility () |
| | Compute the feasibility of the inequality constraints for the current guess.
|
| |
|
| DEPRECATED ("Use get_preg for primal-variable regularization", double get_xreg() const ;) DEPRECATED("Use get_preg for primal-variable regularization" |
| |
|
| DEPRECATED ("Use set_preg for primal-variable regularization", void set_xreg(const double xreg);) DEPRECATED("Use set_preg for primal-variable regularization" |
| |
| double | get_cost () const |
| | Return the cost for the current guess.
|
| |
| const Eigen::Vector2d & | get_d () const |
| | Return the linear and quadratic terms of the expected improvement.
|
| |
| double | get_dfeas () const |
| | Return the reduction in the feasibility.
|
| |
| double | get_dPhi () const |
| | Return the reduction in the merit function \(\Delta\Phi\).
|
| |
| double | get_dPhiexp () const |
| | Return the expected reduction in the merit function \(\Delta\Phi_{exp}\).
|
| |
| double | get_dreg () const |
| | Return the dual-variable regularization.
|
| |
| double | get_dV () const |
| | Return the reduction in the cost function \(\Delta V\).
|
| |
| double | get_dVexp () const |
| | Return the expected reduction in the cost function \(\Delta
V_{exp}\).
|
| |
| double | get_feas () const |
| | Return the total feasibility for the current guess.
|
| |
| FeasibilityNorm | get_feasnorm () const |
| | Return the type of norm used to evaluate the dynamic and constraints feasibility.
|
| |
| double | get_ffeas () const |
| | Return the dynamic feasibility for the current guess.
|
| |
| double | get_ffeas_try () const |
| | Return the dynamic feasibility for the current step length.
|
| |
| const std::vector< Eigen::VectorXd > & | get_fs () const |
| | Return the dynamic infeasibility \(\mathbf{f}_{s}\).
|
| |
| double | get_gfeas () const |
| | Return the inequality feasibility for the current guess.
|
| |
| double | get_gfeas_try () const |
| | Return the inequality feasibility for the current step length.
|
| |
| double | get_hfeas () const |
| | Return the equality feasibility for the current guess.
|
| |
| double | get_hfeas_try () const |
| | Return the equality feasibility for the current step length.
|
| |
| bool | get_is_feasible () const |
| | Return the feasibility status of the \((\mathbf{x}_s,\mathbf{u}_s)\) trajectory.
|
| |
| std::size_t | get_iter () const |
| | Return the number of iterations performed by the solver.
|
| |
| double | get_merit () const |
| | Return the merit for the current guess.
|
| |
| double | get_preg () const |
| | Return the primal-variable regularization.
|
| |
| const std::shared_ptr< ShootingProblem > & | get_problem () const |
| | Return the shooting problem.
|
| |
| double | get_steplength () const |
| | Return the step length \(\alpha\).
|
| |
| double | get_stop () const |
| | Return the stopping-criteria value computed by stoppingCriteria()
|
| |
| double | get_th_acceptstep () const |
| | Return the threshold used for accepting a step.
|
| |
| double | get_th_gaptol () const |
| | Return the threshold for accepting a gap as non-zero.
|
| |
| double | get_th_stop () const |
| | Return the tolerance for stopping the algorithm.
|
| |
| double | get_ureg () const |
| |
| const std::vector< Eigen::VectorXd > & | get_us () const |
| | Return the control trajectory \(\mathbf{u}_s\).
|
| |
| const std::vector< Eigen::VectorXd > & | get_xs () const |
| | Return the state trajectory \(\mathbf{x}_s\).
|
| |
| const std::vector< std::shared_ptr< CallbackAbstract > > & | getCallbacks () const |
| | Return the list of callback functions using for diagnostic.
|
| |
| void | set_dreg (const double dreg) |
| | Modify the dual-variable regularization value.
|
| |
| void | set_feasnorm (const FeasibilityNorm feas_norm) |
| | Modify the current norm used for computed the dynamic and constraint feasibility.
|
| |
| void | set_preg (const double preg) |
| | Modify the primal-variable regularization value.
|
| |
| void | set_th_acceptstep (const double th_acceptstep) |
| | Modify the threshold used for accepting step.
|
| |
| void | set_th_gaptol (const double th_gaptol) |
| | Modify the threshold for accepting a gap as non-zero.
|
| |
| void | set_th_stop (const double th_stop) |
| | Modify the tolerance for stopping the algorithm.
|
| |
| void | set_ureg (const double ureg) |
| |
| void | set_us (const std::vector< Eigen::VectorXd > &us) |
| | Modify the control trajectory \(\mathbf{u}_s\).
|
| |
| void | set_xs (const std::vector< Eigen::VectorXd > &xs) |
| | Modify the state trajectory \(\mathbf{x}_s\).
|
| |
| void | setCallbacks (const std::vector< std::shared_ptr< CallbackAbstract > > &callbacks) |
| | Set a list of callback functions using for the solver diagnostic.
|
| |
| void | setCandidate (const std::vector< Eigen::VectorXd > &xs_warm=DEFAULT_VECTOR, const std::vector< Eigen::VectorXd > &us_warm=DEFAULT_VECTOR, const bool is_feasible=false) |
| | Set the solver candidate trajectories \((\mathbf{x}_s,\mathbf{u}_s)\).
|
| |
|
|
| DEPRECATED ("Use preg_ for primal-variable regularization", double xreg_;) DEPRECATED("Use dreg_ for primal-variable regularization" |
| |
| std::vector< std::shared_ptr< CallbackAbstract > > | callbacks_ |
| | Callback functions.
|
| |
| double | cost_ |
| | Cost for the current guess.
|
| |
| Eigen::Vector2d | d_ |
| | LQ approximation of the expected improvement.
|
| |
| double | dfeas_ |
| | Reduction in the feasibility.
|
| |
| double | dPhi_ |
| | Reduction in the merit function computed by tryStep()
|
| |
| double | dPhiexp_ |
| | Expected reduction in the merit function.
|
| |
| double | dreg_ |
| | Current dual-variable regularization value.
|
| |
| double | dV_ |
| | Reduction in the cost function computed by tryStep()
|
| |
| double | dVexp_ |
| | Expected reduction in the cost function.
|
| |
| double | feas_ |
| | Total feasibility for the current guess.
|
| |
| enum FeasibilityNorm | feasnorm_ |
| |
| double | ffeas_ |
| | Feasibility of the dynamic constraints for the current guess.
|
| |
| double | ffeas_try_ |
| |
| std::vector< Eigen::VectorXd > | fs_ |
| | Gaps/defects between shooting nodes.
|
| |
| std::vector< Eigen::VectorXd > | g_adj_ |
| | Adjusted inequality bound.
|
| |
| double | gfeas_ |
| |
| double | gfeas_try_ |
| |
| double | hfeas_ |
| |
| double | hfeas_try_ |
| |
| bool | is_feasible_ |
| | Label that indicates is the iteration is feasible.
|
| |
| std::size_t | iter_ |
| | Number of iteration performed by the solver.
|
| |
| double | merit_ |
| | Merit for the current guess.
|
| |
| double | preg_ |
| | Current primal-variable regularization value.
|
| |
| std::shared_ptr< ShootingProblem > | problem_ |
| | optimal control problem
|
| |
| double | steplength_ |
| | < Current control regularization values
|
| |
| double | stop_ |
| | Value computed by stoppingCriteria()
|
| |
| double | th_acceptstep_ |
| | Threshold used for accepting step.
|
| |
| double | th_gaptol_ |
| | Threshold limit to check non-zero gaps.
|
| |
| double | th_stop_ |
| | Tolerance for stopping the algorithm.
|
| |
| double | tmp_feas_ |
| | Temporal variables used for computed the feasibility.
|
| |
| double | ureg_ |
| |
| std::vector< Eigen::VectorXd > | us_ |
| | Control trajectory.
|
| |
| bool | was_feasible_ |
| |
| std::vector< Eigen::VectorXd > | xs_ |
| | State trajectory.
|
| |
Ipopt solver.
This solver solves the optimal control problem by transcribing with the multiple shooting approach.
- See also
solve()
Definition at line 30 of file ipopt.hpp.