10 #ifndef CROCODDYL_CORE_CONTROL_BASE_HPP_
11 #define CROCODDYL_CORE_CONTROL_BASE_HPP_
13 #include "crocoddyl/core/fwd.hpp"
47 template <
typename _Scalar>
51 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
53 typedef _Scalar Scalar;
57 typedef typename MathBase::VectorXs VectorXs;
58 typedef typename MathBase::MatrixXs MatrixXs;
67 const std::size_t nu);
78 const std::shared_ptr<ControlParametrizationDataAbstract>& data,
79 const Scalar t,
const Eigen::Ref<const VectorXs>& u)
const = 0;
92 const std::shared_ptr<ControlParametrizationDataAbstract>& data,
93 const Scalar t,
const Eigen::Ref<const VectorXs>& u)
const = 0;
100 virtual std::shared_ptr<ControlParametrizationDataAbstract>
createData();
111 const std::shared_ptr<ControlParametrizationDataAbstract>& data,
112 const Scalar t,
const Eigen::Ref<const VectorXs>& w)
const = 0;
124 const Eigen::Ref<const VectorXs>& w_ub,
125 Eigen::Ref<VectorXs> u_lb,
126 Eigen::Ref<VectorXs> u_ub)
const = 0;
142 const std::shared_ptr<ControlParametrizationDataAbstract>& data,
143 const Eigen::Ref<const MatrixXs>& A, Eigen::Ref<MatrixXs> out,
144 const AssignmentOp op = setto)
const = 0;
146 virtual MatrixXs multiplyByJacobian_J(
147 const std::shared_ptr<ControlParametrizationDataAbstract>& data,
148 const Eigen::Ref<const MatrixXs>& A,
const AssignmentOp op = setto)
const;
165 const std::shared_ptr<ControlParametrizationDataAbstract>& data,
166 const Eigen::Ref<const MatrixXs>& A, Eigen::Ref<MatrixXs> out,
167 const AssignmentOp op = setto)
const = 0;
169 virtual MatrixXs multiplyJacobianTransposeBy_J(
170 const std::shared_ptr<ControlParametrizationDataAbstract>& data,
171 const Eigen::Ref<const MatrixXs>& A,
const AssignmentOp op = setto)
const;
177 const std::shared_ptr<ControlParametrizationDataAbstract>& data);
182 template <
class Scalar>
192 virtual void print(std::ostream& os)
const;
210 template <
typename _Scalar>
212 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
214 typedef _Scalar Scalar;
216 typedef typename MathBase::VectorXs VectorXs;
217 typedef typename MathBase::MatrixXs MatrixXs;
219 template <
template <
typename Scalar>
class Model>
221 :
w(model->get_nw()),
223 dw_du(model->get_nw(), model->get_nu()) {
241 #include "crocoddyl/core/control-base.hxx"
243 CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS(
245 CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT(
Abstract class for the control trajectory parametrization.
std::size_t nw_
Control dimension.
virtual void calcDiff(const std::shared_ptr< ControlParametrizationDataAbstract > &data, const Scalar t, const Eigen::Ref< const VectorXs > &u) const =0
Get the value of the Jacobian of the control with respect to the parameters.
virtual void calc(const std::shared_ptr< ControlParametrizationDataAbstract > &data, const Scalar t, const Eigen::Ref< const VectorXs > &u) const =0
Get the value of the control at the specified time.
virtual void multiplyJacobianTransposeBy(const std::shared_ptr< ControlParametrizationDataAbstract > &data, const Eigen::Ref< const MatrixXs > &A, Eigen::Ref< MatrixXs > out, const AssignmentOp op=setto) const =0
Compute the product between the transpose of the derivative of the control input with respect to the ...
virtual bool checkData(const std::shared_ptr< ControlParametrizationDataAbstract > &data)
Checks that a specific data belongs to this model.
virtual void print(std::ostream &os) const
Print relevant information of the control model.
ControlParametrizationModelAbstractTpl(const std::size_t nw, const std::size_t nu)
Initialize the control dimensions.
virtual void multiplyByJacobian(const std::shared_ptr< ControlParametrizationDataAbstract > &data, const Eigen::Ref< const MatrixXs > &A, Eigen::Ref< MatrixXs > out, const AssignmentOp op=setto) const =0
Compute the product between the given matrix A and the derivative of the control input with respect t...
std::size_t nu_
Control parameters dimension.
std::size_t get_nw() const
Return the dimension of the control inputs.
virtual void convertBounds(const Eigen::Ref< const VectorXs > &w_lb, const Eigen::Ref< const VectorXs > &w_ub, Eigen::Ref< VectorXs > u_lb, Eigen::Ref< VectorXs > u_ub) const =0
Convert the bounds on the control inputs w to bounds on the control parameters u.
virtual std::shared_ptr< ControlParametrizationDataAbstract > createData()
Create the control-parametrization data.
friend std::ostream & operator<<(std::ostream &os, const ControlParametrizationModelAbstractTpl< Scalar > &model)
Print information on the control model.
virtual void params(const std::shared_ptr< ControlParametrizationDataAbstract > &data, const Scalar t, const Eigen::Ref< const VectorXs > &w) const =0
Update the control parameters u for a specified time t given the control input w.
std::size_t get_nu() const
Return the dimension of control parameters.
VectorXs w
value of the differential control
VectorXs u
value of the control parameters