Crocoddyl
 
Loading...
Searching...
No Matches
fddp.cpp
1
2// BSD 3-Clause License
3//
4// Copyright (C) 2019-2022, LAAS-CNRS, University of Edinburgh
5// Heriot-Watt University
6// Copyright note valid unless otherwise stated in individual files.
7// All rights reserved.
9
10#ifdef CROCODDYL_WITH_MULTITHREADING
11#include <omp.h>
12#endif // CROCODDYL_WITH_MULTITHREADING
13
14#include "crocoddyl/core/solvers/fddp.hpp"
15
16namespace crocoddyl {
17
18SolverFDDP::SolverFDDP(std::shared_ptr<ShootingProblem> problem)
19 : SolverDDP(problem), dg_(0), dq_(0), dv_(0), th_acceptnegstep_(2) {}
20
21SolverFDDP::~SolverFDDP() {}
22
23bool SolverFDDP::solve(const std::vector<Eigen::VectorXd>& init_xs,
24 const std::vector<Eigen::VectorXd>& init_us,
25 const std::size_t maxiter, const bool is_feasible,
26 const double init_reg) {
27 START_PROFILER("SolverFDDP::solve");
28 if (problem_->is_updated()) {
29 resizeData();
30 }
31 xs_try_[0] =
32 problem_->get_x0(); // it is needed in case that init_xs[0] is infeasible
33 setCandidate(init_xs, init_us, is_feasible);
34
35 if (std::isnan(init_reg)) {
36 preg_ = reg_min_;
37 dreg_ = reg_min_;
38 } else {
39 preg_ = init_reg;
40 dreg_ = init_reg;
41 }
42 was_feasible_ = false;
43
44 bool recalcDiff = true;
45 for (iter_ = 0; iter_ < maxiter; ++iter_) {
46 while (true) {
47 try {
48 computeDirection(recalcDiff);
49 } catch (std::exception& e) {
50 recalcDiff = false;
51 increaseRegularization();
52 if (preg_ == reg_max_) {
53 return false;
54 } else {
55 continue;
56 }
57 }
58 break;
59 }
61
62 // We need to recalculate the derivatives when the step length passes
63 recalcDiff = false;
64 for (std::vector<double>::const_iterator it = alphas_.begin();
65 it != alphas_.end(); ++it) {
66 steplength_ = *it;
67
68 try {
69 dV_ = tryStep(steplength_);
70 } catch (std::exception& e) {
71 continue;
72 }
74 dVexp_ = steplength_ * (d_[0] + 0.5 * steplength_ * d_[1]);
75
76 if (dVexp_ >= 0) { // descend direction
77 if (std::abs(d_[0]) < th_grad_ || dV_ > th_acceptstep_ * dVexp_) {
78 was_feasible_ = is_feasible_;
79 setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1));
80 cost_ = cost_try_;
81 recalcDiff = true;
82 break;
83 }
84 } else { // reducing the gaps by allowing a small increment in the cost
85 // value
86 if (!is_feasible_ && dV_ > th_acceptnegstep_ * dVexp_) {
87 was_feasible_ = is_feasible_;
88 setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1));
89 cost_ = cost_try_;
90 recalcDiff = true;
91 break;
92 }
93 }
94 }
95
96 if (steplength_ > th_stepdec_) {
97 decreaseRegularization();
98 }
99 if (steplength_ <= th_stepinc_) {
100 increaseRegularization();
101 if (preg_ == reg_max_) {
102 STOP_PROFILER("SolverFDDP::solve");
103 return false;
104 }
105 }
106 stoppingCriteria();
107
108 const std::size_t n_callbacks = callbacks_.size();
109 for (std::size_t c = 0; c < n_callbacks; ++c) {
110 CallbackAbstract& callback = *callbacks_[c];
111 callback(*this);
112 }
113
114 if (was_feasible_ && stop_ < th_stop_) {
115 STOP_PROFILER("SolverFDDP::solve");
116 return true;
117 }
118 }
119 STOP_PROFILER("SolverFDDP::solve");
120 return false;
121}
122
123const Eigen::Vector2d& SolverFDDP::expectedImprovement() {
124 dv_ = 0;
125 const std::size_t T = this->problem_->get_T();
126 if (!is_feasible_) {
127 // NB: The dimension of vectors xs_try_ and xs_ are T+1, whereas the
128 // dimension of dx_ is T. Here, we are re-using the final element of dx_ for
129 // the computation of the difference at the terminal node. Using the access
130 // iterator back() this re-use of the final element is fine. Cf. the
131 // discussion at https://github.com/loco-3d/crocoddyl/issues/1022
132 problem_->get_terminalModel()->get_state()->diff(xs_try_.back(), xs_.back(),
133 dx_.back());
134 fTVxx_p_.noalias() = Vxx_.back() * dx_.back();
135 dv_ -= fs_.back().dot(fTVxx_p_);
136 const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
137 problem_->get_runningModels();
138
139 for (std::size_t t = 0; t < T; ++t) {
140 models[t]->get_state()->diff(xs_try_[t], xs_[t], dx_[t]);
141 fTVxx_p_.noalias() = Vxx_[t] * dx_[t];
142 dv_ -= fs_[t].dot(fTVxx_p_);
143 }
144 }
145 d_[0] = dg_ + dv_;
146 d_[1] = dq_ - 2 * dv_;
147 return d_;
148}
149
151 dg_ = 0;
152 dq_ = 0;
153 const std::size_t T = this->problem_->get_T();
154 if (!is_feasible_) {
155 dg_ -= Vx_.back().dot(fs_.back());
156 fTVxx_p_.noalias() = Vxx_.back() * fs_.back();
157 dq_ += fs_.back().dot(fTVxx_p_);
158 }
159 const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
160 problem_->get_runningModels();
161 for (std::size_t t = 0; t < T; ++t) {
162 const std::size_t nu = models[t]->get_nu();
163 if (nu != 0) {
164 dg_ += Qu_[t].dot(k_[t]);
165 dq_ -= k_[t].dot(Quuk_[t]);
166 }
167 if (!is_feasible_) {
168 dg_ -= Vx_[t].dot(fs_[t]);
169 fTVxx_p_.noalias() = Vxx_[t] * fs_[t];
170 dq_ += fs_[t].dot(fTVxx_p_);
171 }
172 }
173}
174
175void SolverFDDP::forwardPass(const double steplength) {
176 if (steplength > 1. || steplength < 0.) {
177 throw_pretty("Invalid argument: "
178 << "invalid step length, value is between 0. to 1.");
179 }
180 START_PROFILER("SolverFDDP::forwardPass");
181 cost_try_ = 0.;
182 xnext_ = problem_->get_x0();
183 const std::size_t T = problem_->get_T();
184 const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
185 problem_->get_runningModels();
186 const std::vector<std::shared_ptr<ActionDataAbstract> >& datas =
187 problem_->get_runningDatas();
188 if ((is_feasible_) || (steplength == 1)) {
189 for (std::size_t t = 0; t < T; ++t) {
190 const std::shared_ptr<ActionModelAbstract>& m = models[t];
191 const std::shared_ptr<ActionDataAbstract>& d = datas[t];
192 const std::size_t nu = m->get_nu();
193
194 xs_try_[t] = xnext_;
195 m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]);
196 if (nu != 0) {
197 us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t];
198 m->calc(d, xs_try_[t], us_try_[t]);
199 } else {
200 m->calc(d, xs_try_[t]);
201 }
202 xnext_ = d->xnext;
203 cost_try_ += d->cost;
204
205 if (raiseIfNaN(cost_try_)) {
206 STOP_PROFILER("SolverFDDP::forwardPass");
207 throw_pretty("forward_error");
208 }
209 if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) {
210 STOP_PROFILER("SolverFDDP::forwardPass");
211 throw_pretty("forward_error");
212 }
213 }
214
215 const std::shared_ptr<ActionModelAbstract>& m =
216 problem_->get_terminalModel();
217 const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData();
218 xs_try_.back() = xnext_;
219 m->calc(d, xs_try_.back());
220 cost_try_ += d->cost;
221
222 if (raiseIfNaN(cost_try_)) {
223 STOP_PROFILER("SolverFDDP::forwardPass");
224 throw_pretty("forward_error");
225 }
226 } else {
227 for (std::size_t t = 0; t < T; ++t) {
228 const std::shared_ptr<ActionModelAbstract>& m = models[t];
229 const std::shared_ptr<ActionDataAbstract>& d = datas[t];
230 const std::size_t nu = m->get_nu();
231 m->get_state()->integrate(xnext_, fs_[t] * (steplength - 1), xs_try_[t]);
232 m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]);
233 if (nu != 0) {
234 us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t];
235 m->calc(d, xs_try_[t], us_try_[t]);
236 } else {
237 m->calc(d, xs_try_[t]);
238 }
239 xnext_ = d->xnext;
240 cost_try_ += d->cost;
241
242 if (raiseIfNaN(cost_try_)) {
243 STOP_PROFILER("SolverFDDP::forwardPass");
244 throw_pretty("forward_error");
245 }
246 if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) {
247 STOP_PROFILER("SolverFDDP::forwardPass");
248 throw_pretty("forward_error");
249 }
250 }
251
252 const std::shared_ptr<ActionModelAbstract>& m =
253 problem_->get_terminalModel();
254 const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData();
255 m->get_state()->integrate(xnext_, fs_.back() * (steplength - 1),
256 xs_try_.back());
257 m->calc(d, xs_try_.back());
258 cost_try_ += d->cost;
259
260 if (raiseIfNaN(cost_try_)) {
261 STOP_PROFILER("SolverFDDP::forwardPass");
262 throw_pretty("forward_error");
263 }
264 }
265 STOP_PROFILER("SolverFDDP::forwardPass");
266}
267
269
270void SolverFDDP::set_th_acceptnegstep(const double th_acceptnegstep) {
271 if (0. > th_acceptnegstep) {
272 throw_pretty(
273 "Invalid argument: " << "th_acceptnegstep value has to be positive.");
274 }
275 th_acceptnegstep_ = th_acceptnegstep;
276}
277
278} // namespace crocoddyl
void set_th_acceptnegstep(const double th_acceptnegstep)
Modify the threshold used for accepting step along ascent direction.
Definition fddp.cpp:270
double dg_
Internal data for computing the expected improvement.
Definition fddp.hpp:106
double dv_
Internal data for computing the expected improvement.
Definition fddp.hpp:108
double th_acceptnegstep_
Definition fddp.hpp:109
virtual const Eigen::Vector2d & expectedImprovement()
Return the expected improvement from a given current search direction .
Definition fddp.cpp:123
double dq_
Internal data for computing the expected improvement.
Definition fddp.hpp:107
double get_th_acceptnegstep() const
Return the threshold used for accepting step along ascent direction.
Definition fddp.cpp:268
EIGEN_MAKE_ALIGNED_OPERATOR_NEW SolverFDDP(std::shared_ptr< ShootingProblem > problem)
Initialize the FDDP solver.
Definition fddp.cpp:18
void updateExpectedImprovement()
Update internal values for computing the expected improvement.
Definition fddp.cpp:150