Crocoddyl
fddp.cpp
1 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2022, LAAS-CNRS, University of Edinburgh
5 // Heriot-Watt University
6 // Copyright note valid unless otherwise stated in individual files.
7 // All rights reserved.
9 
10 #ifdef CROCODDYL_WITH_MULTITHREADING
11 #include <omp.h>
12 #endif // CROCODDYL_WITH_MULTITHREADING
13 
14 #include "crocoddyl/core/solvers/fddp.hpp"
15 #include "crocoddyl/core/utils/exception.hpp"
16 
17 namespace crocoddyl {
18 
19 SolverFDDP::SolverFDDP(boost::shared_ptr<ShootingProblem> problem)
20  : SolverDDP(problem), dg_(0), dq_(0), dv_(0), th_acceptnegstep_(2) {}
21 
22 SolverFDDP::~SolverFDDP() {}
23 
24 bool SolverFDDP::solve(const std::vector<Eigen::VectorXd>& init_xs,
25  const std::vector<Eigen::VectorXd>& init_us,
26  const std::size_t maxiter, const bool is_feasible,
27  const double init_reg) {
28  START_PROFILER("SolverFDDP::solve");
29  if (problem_->is_updated()) {
30  resizeData();
31  }
32  xs_try_[0] =
33  problem_->get_x0(); // it is needed in case that init_xs[0] is infeasible
34  setCandidate(init_xs, init_us, is_feasible);
35 
36  if (std::isnan(init_reg)) {
37  preg_ = reg_min_;
38  dreg_ = reg_min_;
39  } else {
40  preg_ = init_reg;
41  dreg_ = init_reg;
42  }
43  was_feasible_ = false;
44 
45  bool recalcDiff = true;
46  for (iter_ = 0; iter_ < maxiter; ++iter_) {
47  while (true) {
48  try {
49  computeDirection(recalcDiff);
50  } catch (std::exception& e) {
51  recalcDiff = false;
52  increaseRegularization();
53  if (preg_ == reg_max_) {
54  return false;
55  } else {
56  continue;
57  }
58  }
59  break;
60  }
62 
63  // We need to recalculate the derivatives when the step length passes
64  recalcDiff = false;
65  for (std::vector<double>::const_iterator it = alphas_.begin();
66  it != alphas_.end(); ++it) {
67  steplength_ = *it;
68 
69  try {
70  dV_ = tryStep(steplength_);
71  } catch (std::exception& e) {
72  continue;
73  }
75  dVexp_ = steplength_ * (d_[0] + 0.5 * steplength_ * d_[1]);
76 
77  if (dVexp_ >= 0) { // descend direction
78  if (std::abs(d_[0]) < th_grad_ || dV_ > th_acceptstep_ * dVexp_) {
79  was_feasible_ = is_feasible_;
80  setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1));
81  cost_ = cost_try_;
82  recalcDiff = true;
83  break;
84  }
85  } else { // reducing the gaps by allowing a small increment in the cost
86  // value
87  if (!is_feasible_ && dV_ > th_acceptnegstep_ * dVexp_) {
88  was_feasible_ = is_feasible_;
89  setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1));
90  cost_ = cost_try_;
91  recalcDiff = true;
92  break;
93  }
94  }
95  }
96 
97  if (steplength_ > th_stepdec_) {
98  decreaseRegularization();
99  }
100  if (steplength_ <= th_stepinc_) {
101  increaseRegularization();
102  if (preg_ == reg_max_) {
103  STOP_PROFILER("SolverFDDP::solve");
104  return false;
105  }
106  }
107  stoppingCriteria();
108 
109  const std::size_t n_callbacks = callbacks_.size();
110  for (std::size_t c = 0; c < n_callbacks; ++c) {
111  CallbackAbstract& callback = *callbacks_[c];
112  callback(*this);
113  }
114 
115  if (was_feasible_ && stop_ < th_stop_) {
116  STOP_PROFILER("SolverFDDP::solve");
117  return true;
118  }
119  }
120  STOP_PROFILER("SolverFDDP::solve");
121  return false;
122 }
123 
124 const Eigen::Vector2d& SolverFDDP::expectedImprovement() {
125  dv_ = 0;
126  const std::size_t T = this->problem_->get_T();
127  if (!is_feasible_) {
128  // NB: The dimension of vectors xs_try_ and xs_ are T+1, whereas the
129  // dimension of dx_ is T. Here, we are re-using the final element of dx_ for
130  // the computation of the difference at the terminal node. Using the access
131  // iterator back() this re-use of the final element is fine. Cf. the
132  // discussion at https://github.com/loco-3d/crocoddyl/issues/1022
133  problem_->get_terminalModel()->get_state()->diff(xs_try_.back(), xs_.back(),
134  dx_.back());
135  fTVxx_p_.noalias() = Vxx_.back() * dx_.back();
136  dv_ -= fs_.back().dot(fTVxx_p_);
137  const std::vector<boost::shared_ptr<ActionModelAbstract> >& models =
138  problem_->get_runningModels();
139 
140  for (std::size_t t = 0; t < T; ++t) {
141  models[t]->get_state()->diff(xs_try_[t], xs_[t], dx_[t]);
142  fTVxx_p_.noalias() = Vxx_[t] * dx_[t];
143  dv_ -= fs_[t].dot(fTVxx_p_);
144  }
145  }
146  d_[0] = dg_ + dv_;
147  d_[1] = dq_ - 2 * dv_;
148  return d_;
149 }
150 
152  dg_ = 0;
153  dq_ = 0;
154  const std::size_t T = this->problem_->get_T();
155  if (!is_feasible_) {
156  dg_ -= Vx_.back().dot(fs_.back());
157  fTVxx_p_.noalias() = Vxx_.back() * fs_.back();
158  dq_ += fs_.back().dot(fTVxx_p_);
159  }
160  const std::vector<boost::shared_ptr<ActionModelAbstract> >& models =
161  problem_->get_runningModels();
162  for (std::size_t t = 0; t < T; ++t) {
163  const std::size_t nu = models[t]->get_nu();
164  if (nu != 0) {
165  dg_ += Qu_[t].dot(k_[t]);
166  dq_ -= k_[t].dot(Quuk_[t]);
167  }
168  if (!is_feasible_) {
169  dg_ -= Vx_[t].dot(fs_[t]);
170  fTVxx_p_.noalias() = Vxx_[t] * fs_[t];
171  dq_ += fs_[t].dot(fTVxx_p_);
172  }
173  }
174 }
175 
176 void SolverFDDP::forwardPass(const double steplength) {
177  if (steplength > 1. || steplength < 0.) {
178  throw_pretty("Invalid argument: "
179  << "invalid step length, value is between 0. to 1.");
180  }
181  START_PROFILER("SolverFDDP::forwardPass");
182  cost_try_ = 0.;
183  xnext_ = problem_->get_x0();
184  const std::size_t T = problem_->get_T();
185  const std::vector<boost::shared_ptr<ActionModelAbstract> >& models =
186  problem_->get_runningModels();
187  const std::vector<boost::shared_ptr<ActionDataAbstract> >& datas =
188  problem_->get_runningDatas();
189  if ((is_feasible_) || (steplength == 1)) {
190  for (std::size_t t = 0; t < T; ++t) {
191  const boost::shared_ptr<ActionModelAbstract>& m = models[t];
192  const boost::shared_ptr<ActionDataAbstract>& d = datas[t];
193  const std::size_t nu = m->get_nu();
194 
195  xs_try_[t] = xnext_;
196  m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]);
197  if (nu != 0) {
198  us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t];
199  m->calc(d, xs_try_[t], us_try_[t]);
200  } else {
201  m->calc(d, xs_try_[t]);
202  }
203  xnext_ = d->xnext;
204  cost_try_ += d->cost;
205 
206  if (raiseIfNaN(cost_try_)) {
207  STOP_PROFILER("SolverFDDP::forwardPass");
208  throw_pretty("forward_error");
209  }
210  if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) {
211  STOP_PROFILER("SolverFDDP::forwardPass");
212  throw_pretty("forward_error");
213  }
214  }
215 
216  const boost::shared_ptr<ActionModelAbstract>& m =
217  problem_->get_terminalModel();
218  const boost::shared_ptr<ActionDataAbstract>& d =
219  problem_->get_terminalData();
220  xs_try_.back() = xnext_;
221  m->calc(d, xs_try_.back());
222  cost_try_ += d->cost;
223 
224  if (raiseIfNaN(cost_try_)) {
225  STOP_PROFILER("SolverFDDP::forwardPass");
226  throw_pretty("forward_error");
227  }
228  } else {
229  for (std::size_t t = 0; t < T; ++t) {
230  const boost::shared_ptr<ActionModelAbstract>& m = models[t];
231  const boost::shared_ptr<ActionDataAbstract>& d = datas[t];
232  const std::size_t nu = m->get_nu();
233  m->get_state()->integrate(xnext_, fs_[t] * (steplength - 1), xs_try_[t]);
234  m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]);
235  if (nu != 0) {
236  us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t];
237  m->calc(d, xs_try_[t], us_try_[t]);
238  } else {
239  m->calc(d, xs_try_[t]);
240  }
241  xnext_ = d->xnext;
242  cost_try_ += d->cost;
243 
244  if (raiseIfNaN(cost_try_)) {
245  STOP_PROFILER("SolverFDDP::forwardPass");
246  throw_pretty("forward_error");
247  }
248  if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) {
249  STOP_PROFILER("SolverFDDP::forwardPass");
250  throw_pretty("forward_error");
251  }
252  }
253 
254  const boost::shared_ptr<ActionModelAbstract>& m =
255  problem_->get_terminalModel();
256  const boost::shared_ptr<ActionDataAbstract>& d =
257  problem_->get_terminalData();
258  m->get_state()->integrate(xnext_, fs_.back() * (steplength - 1),
259  xs_try_.back());
260  m->calc(d, xs_try_.back());
261  cost_try_ += d->cost;
262 
263  if (raiseIfNaN(cost_try_)) {
264  STOP_PROFILER("SolverFDDP::forwardPass");
265  throw_pretty("forward_error");
266  }
267  }
268  STOP_PROFILER("SolverFDDP::forwardPass");
269 }
270 
272 
273 void SolverFDDP::set_th_acceptnegstep(const double th_acceptnegstep) {
274  if (0. > th_acceptnegstep) {
275  throw_pretty("Invalid argument: "
276  << "th_acceptnegstep value has to be positive.");
277  }
278  th_acceptnegstep_ = th_acceptnegstep;
279 }
280 
281 } // namespace crocoddyl
void set_th_acceptnegstep(const double th_acceptnegstep)
Modify the threshold used for accepting step along ascent direction.
Definition: fddp.cpp:273
double dg_
Internal data for computing the expected improvement.
Definition: fddp.hpp:109
double dv_
Internal data for computing the expected improvement.
Definition: fddp.hpp:111
double th_acceptnegstep_
Definition: fddp.hpp:112
EIGEN_MAKE_ALIGNED_OPERATOR_NEW SolverFDDP(boost::shared_ptr< ShootingProblem > problem)
Initialize the FDDP solver.
Definition: fddp.cpp:19
virtual const Eigen::Vector2d & expectedImprovement()
Return the expected improvement from a given current search direction .
Definition: fddp.cpp:124
double dq_
Internal data for computing the expected improvement.
Definition: fddp.hpp:110
double get_th_acceptnegstep() const
Return the threshold used for accepting step along ascent direction.
Definition: fddp.cpp:271
void updateExpectedImprovement()
Update internal values for computing the expected improvement.
Definition: fddp.cpp:151