Represents a Polynomialf arbitrary order defined on the interval [tBegin, tEnd]. It follows the equation x(t) = a + b(t - t_min_) + ... + d(t - t_min_)^N, where N is the order.
More...
#include <parametric-curves/polynomial.hpp>
|
| | Polynomial (const coeff_t &coefficients, const time_t tmin, const time_t tmax) |
| | Constructor. More...
|
| |
| | Polynomial (const t_point_t &coefficients, const time_t tmin, const time_t tmax) |
| | Constructor. More...
|
| |
| | Polynomial () |
| |
| template<typename In > |
| | Polynomial (In zeroOrderCoefficient, In out, const time_t tmin, const time_t tmax) |
| | Constructor. More...
|
| |
| | ~Polynomial () |
| | Destructor. More...
|
| |
| | Polynomial (const Polynomial &other) |
| |
| virtual const point_t | operator() (const time_t &t) const |
| | Evaluation of the cubic spline at time t using horner's scheme. More...
|
| |
| virtual const point_t | derivate (const time_t &t, const std::size_t &order) const |
| | Evaluation of the derivative spline at time t. More...
|
| |
| virtual const std::size_t & | size () const |
| |
| virtual bool | setInitialPoint (const point_t &) |
| |
| virtual bool | setInitialPoint (const num_t &) |
| |
| | AbstractCurve (time_t t_min_, time_t t_max_) |
| |
| | AbstractCurve () |
| |
| virtual | ~AbstractCurve () |
| |
| virtual const point_t | operator() (const time_t &t) const=0 |
| | Evaluation of the cubic spline at time t. More...
|
| |
| virtual const point_t | derivate (const time_t &t, const std::size_t &order) const=0 |
| | Evaluation of the derivative spline at time t. More...
|
| |
| virtual const time_t | tmin () const |
| |
| virtual const time_t | tmax () const |
| |
| virtual bool | checkRange (const time_t t) const |
| |
| virtual bool | setInitialPoint (const point_t &)=0 |
| |
| virtual bool | setInitialPoint (const num_t &)=0 |
| |
| virtual bool | setTimePeriod (const time_t &traj_time_) |
| |
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
class parametriccurves::Polynomial< Numeric, Dim, Point >
Represents a Polynomialf arbitrary order defined on the interval [tBegin, tEnd]. It follows the equation x(t) = a + b(t - t_min_) + ... + d(t - t_min_)^N, where N is the order.
◆ coeff_t
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ coeff_t_ref
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ curve_abc_t
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ num_t
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ point_t
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ t_point_t
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ time_t
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ Polynomial() [1/5]
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Constructor.
- Parameters
-
| coefficients | : a reference to an Eigen matrix where each column is a coefficient, from the zero order coefficient, up to the highest order. Spline order is given by the number of the columns -1. |
| min | LOWER bound on interval definition of the spline |
| max | UPPER bound on interval definition of the spline |
◆ Polynomial() [2/5]
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Constructor.
- Parameters
-
| coefficients | : a container containing all coefficients of the spline, starting with the zero order coefficient, up to the highest order. Spline order is given by the size of the coefficients |
| min | LOWER bound on interval definition of the spline |
| max | UPPER bound on interval definition of the spline |
◆ Polynomial() [3/5]
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ Polynomial() [4/5]
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
template<typename In >
Constructor.
- Parameters
-
| zeroOrderCoefficient | : an iterator pointing to the first element of a structure containing the coefficients it corresponds to the zero degree coefficient |
| out | : an iterator pointing to the last element of a structure ofcoefficients |
| min | LOWER bound on interval definition of the spline |
| max | UPPER bound on interval definition of the spline |
◆ ~Polynomial()
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ Polynomial() [5/5]
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ derivate()
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Evaluation of the derivative spline at time t.
- Parameters
-
| t | : the time when to evaluate the spline |
| order | : order of the derivative |
| return | : the value x(t) |
◆ operator()()
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
Evaluation of the cubic spline at time t using horner's scheme.
- Parameters
-
| t | : the time when to evaluate the spine |
| return | : the value x(t) |
◆ setInitialPoint() [1/2]
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ setInitialPoint() [2/2]
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ size()
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ boost::serialization::access
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
| friend class boost::serialization::access |
|
friend |
◆ coefficients_
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ dim_
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
◆ order_
template<typename Numeric = double, Eigen::Index Dim = 3, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
The documentation for this class was generated from the following file: