pinocchio  3.3.1
A fast and flexible implementation of Rigid Body Dynamics algorithms and their analytical derivatives
eigenvalues.hpp
1 //
2 // Copyright (c) 2022-2024 INRIA
3 //
4 
5 #ifndef __pinocchio_math_eigenvalues_hpp__
6 #define __pinocchio_math_eigenvalues_hpp__
7 
8 #include "pinocchio/math/fwd.hpp"
9 #include <Eigen/Core>
10 
11 namespace pinocchio
12 {
13 
16  template<typename _Vector>
18  {
19  typedef typename PINOCCHIO_EIGEN_PLAIN_TYPE(_Vector) Vector;
20  typedef typename Vector::Scalar Scalar;
21 
22  explicit PowerIterationAlgoTpl(
23  const Eigen::DenseIndex size, const int max_it = 10, const Scalar rel_tol = Scalar(1e-8))
24  : principal_eigen_vector(size)
25  , lowest_eigen_vector(size)
26  , max_it(max_it)
27  , it(0)
28  , rel_tol(rel_tol)
29  , eigen_vector_prev(size)
30  {
31  reset();
32  }
33 
34  template<typename MatrixLike>
35  void run(const MatrixLike & mat)
36  {
37  PINOCCHIO_CHECK_INPUT_ARGUMENT(max_it >= 1);
38  PINOCCHIO_CHECK_INPUT_ARGUMENT(rel_tol > Scalar(0));
39  Scalar eigenvalue_est = principal_eigen_vector.norm();
40 
41  for (it = 0; it < max_it; ++it)
42  {
43  const Scalar eigenvalue_est_prev = eigenvalue_est;
44  principal_eigen_vector /= eigenvalue_est;
45  eigen_vector_prev = principal_eigen_vector;
46  principal_eigen_vector.noalias() = mat * eigen_vector_prev;
47 
48  eigenvalue_est = principal_eigen_vector.norm();
49 
50  convergence_criteria = math::fabs(eigenvalue_est_prev - eigenvalue_est);
51  if (check_expression_if_real<Scalar, false>(
52  convergence_criteria
53  <= rel_tol * math::max(math::fabs(eigenvalue_est_prev), math::fabs(eigenvalue_est))))
54  break;
55  }
56 
57  largest_eigen_value = eigenvalue_est;
58  }
59 
60  template<typename MatrixLike, typename VectorLike>
61  void run(const MatrixLike & mat, const Eigen::PlainObjectBase<VectorLike> & eigenvector_est)
62  {
63  principal_eigen_vector = eigenvector_est;
64  run(mat);
65  }
66 
67  template<typename MatrixLike>
68  void lowest(const MatrixLike & mat, const bool compute_largest = true)
69  {
70  PINOCCHIO_CHECK_INPUT_ARGUMENT(max_it >= 1);
71  PINOCCHIO_CHECK_INPUT_ARGUMENT(rel_tol > Scalar(0));
72 
73  if (compute_largest)
74  run(mat);
75 
76  Scalar eigenvalue_est = lowest_eigen_vector.norm();
77 
78  for (it = 0; it < max_it; ++it)
79  {
80  const Scalar eigenvalue_est_prev = eigenvalue_est;
81  lowest_eigen_vector /= eigenvalue_est;
82  eigen_vector_prev = lowest_eigen_vector;
83  lowest_eigen_vector.noalias() = mat * eigen_vector_prev;
84  lowest_eigen_vector -= largest_eigen_value * eigen_vector_prev;
85 
86  eigenvalue_est = lowest_eigen_vector.norm();
87 
88  convergence_criteria = math::fabs(eigenvalue_est_prev - eigenvalue_est);
89  if (check_expression_if_real<Scalar, false>(
90  convergence_criteria
91  <= rel_tol * math::max(math::fabs(eigenvalue_est_prev), math::fabs(eigenvalue_est))))
92  break;
93  }
94 
95  lowest_eigen_value = largest_eigen_value - eigenvalue_est;
96  }
97 
98  template<typename MatrixLike, typename VectorLike>
99  void lowest(
100  const MatrixLike & mat,
101  const Eigen::PlainObjectBase<VectorLike> & largest_eigenvector_est,
102  const Eigen::PlainObjectBase<VectorLike> & lowest_eigenvector_est,
103  const bool compute_largest = true)
104  {
105  principal_eigen_vector = largest_eigenvector_est;
106  lowest_eigen_vector = lowest_eigenvector_est;
107  lowest(mat, compute_largest);
108  }
109 
110  void reset()
111  {
112  const Scalar normalized_value = Scalar(1) / math::sqrt(Scalar(principal_eigen_vector.size()));
113  principal_eigen_vector.fill(normalized_value);
114  lowest_eigen_vector.fill(normalized_value);
115 
116  largest_eigen_value = std::numeric_limits<Scalar>::min();
117  lowest_eigen_value = std::numeric_limits<Scalar>::max();
118  }
119 
120  Vector principal_eigen_vector;
121  Vector lowest_eigen_vector;
122  Scalar largest_eigen_value;
123  Scalar lowest_eigen_value;
124  int max_it;
125  int it;
126  Scalar rel_tol;
127  Scalar convergence_criteria;
128 
129  protected:
130  Vector eigen_vector_prev;
131  }; // struct PowerIterationAlgoTpl
132 
137  template<typename MatrixLike, typename VectorLike>
139  const MatrixLike & mat,
140  const Eigen::PlainObjectBase<VectorLike> & _eigenvector_est,
141  const int max_it = 10,
142  const typename MatrixLike::Scalar rel_tol = 1e-8)
143  {
144  PowerIterationAlgoTpl<VectorLike> algo(mat.rows(), max_it, rel_tol);
145  algo.run(mat, _eigenvector_est.derived());
146  _eigenvector_est.const_cast_derived() = algo.principal_eigen_vector;
147  }
148 
152  template<typename MatrixLike>
153  Eigen::Matrix<typename MatrixLike::Scalar, MatrixLike::RowsAtCompileTime, 1>
155  const MatrixLike & mat, const int max_it = 10, const typename MatrixLike::Scalar rel_tol = 1e-8)
156  {
157  typedef Eigen::Matrix<typename MatrixLike::Scalar, MatrixLike::RowsAtCompileTime, 1> Vector;
158  PowerIterationAlgoTpl<Vector> algo(mat.rows(), max_it, rel_tol);
159  algo.run(mat);
160  return algo.principal_eigen_vector;
161  }
162 
167  template<typename MatrixLike, typename VectorLike1, typename VectorLike2>
169  const MatrixLike & mat,
170  const Eigen::PlainObjectBase<VectorLike1> & largest_eigenvector_est,
171  const Eigen::PlainObjectBase<VectorLike2> & lowest_eigenvector_est,
172  const bool compute_largest = true,
173  const int max_it = 10,
174  const typename MatrixLike::Scalar rel_tol = 1e-8)
175  {
176  PowerIterationAlgoTpl<VectorLike1> algo(mat.rows(), max_it, rel_tol);
177  algo.lowest(
178  mat, largest_eigenvector_est.derived(), lowest_eigenvector_est.derived(), compute_largest);
179  largest_eigenvector_est.const_cast_derived() = algo.principal_eigen_vector;
180  lowest_eigenvector_est.const_cast_derived() = algo.lowest_eigen_vector;
181  }
182 
186  template<typename MatrixLike>
187  Eigen::Matrix<typename MatrixLike::Scalar, MatrixLike::RowsAtCompileTime, 1>
189  const MatrixLike & mat,
190  const bool compute_largest = true,
191  const int max_it = 10,
192  const typename MatrixLike::Scalar rel_tol = 1e-8)
193  {
194  typedef Eigen::Matrix<typename MatrixLike::Scalar, MatrixLike::RowsAtCompileTime, 1> Vector;
195  PowerIterationAlgoTpl<Vector> algo(mat.rows(), max_it, rel_tol);
196  algo.lowest(mat, compute_largest);
197  return algo.lowest_eigen_vector;
198  }
199 
204  template<typename VectorLike>
205  typename VectorLike::Scalar
206  retrieveLargestEigenvalue(const Eigen::MatrixBase<VectorLike> & eigenvector)
207  {
208  return eigenvector.norm();
209  }
210 } // namespace pinocchio
211 
212 #endif // #ifndef __pinocchio_math_eigenvalues_hpp__
Main pinocchio namespace.
Definition: treeview.dox:11
void computeLargestEigenvector(const MatrixLike &mat, const Eigen::PlainObjectBase< VectorLike > &_eigenvector_est, const int max_it=10, const typename MatrixLike::Scalar rel_tol=1e-8)
Compute the lagest eigenvector of a given matrix according to a given eigenvector estimate.
void computeLowestEigenvector(const MatrixLike &mat, const Eigen::PlainObjectBase< VectorLike1 > &largest_eigenvector_est, const Eigen::PlainObjectBase< VectorLike2 > &lowest_eigenvector_est, const bool compute_largest=true, const int max_it=10, const typename MatrixLike::Scalar rel_tol=1e-8)
Compute the lagest eigenvector of a given matrix according to a given eigenvector estimate.
VectorLike::Scalar retrieveLargestEigenvalue(const Eigen::MatrixBase< VectorLike > &eigenvector)
Compute the lagest eigenvalue of a given matrix. This is taking the eigenvector computed by the funct...
Compute the largest eigenvalues and the associated principle eigenvector via power iteration.
Definition: eigenvalues.hpp:18