5 #ifndef __pinocchio_symmetric3_hpp__ 6 #define __pinocchio_symmetric3_hpp__ 8 #include "pinocchio/macros.hpp" 13 template<
typename _Scalar,
int _Options>
17 typedef _Scalar Scalar;
18 enum { Options = _Options };
19 typedef Eigen::Matrix<Scalar,3,1,Options> Vector3;
20 typedef Eigen::Matrix<Scalar,6,1,Options> Vector6;
21 typedef Eigen::Matrix<Scalar,3,3,Options> Matrix3;
22 typedef Eigen::Matrix<Scalar,2,2,Options> Matrix2;
23 typedef Eigen::Matrix<Scalar,3,2,Options> Matrix32;
25 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
28 Symmetric3Tpl(): m_data() {}
30 template<
typename Sc,
int N,
int Opt>
31 explicit Symmetric3Tpl(
const Eigen::Matrix<Sc,N,N,Opt> & I)
33 EIGEN_STATIC_ASSERT(N==3,THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE)
34 assert( (I-I.transpose()).isMuchSmallerThan(I) );
36 m_data(1) = I(1,0); m_data(2) = I(1,1);
37 m_data(3) = I(2,0); m_data(4) = I(2,1); m_data(5) = I(2,2);
40 explicit Symmetric3Tpl(const Vector6 & I) : m_data(I) {}
42 Symmetric3Tpl(
const Scalar & a0,
const Scalar & a1,
const Scalar & a2,
43 const Scalar & a3,
const Scalar & a4,
const Scalar & a5)
44 { m_data << a0,a1,a2,a3,a4,a5; }
46 static Symmetric3Tpl Zero() {
return Symmetric3Tpl(Vector6::Zero()); }
47 void setZero() { m_data.setZero(); }
49 static Symmetric3Tpl Random() {
return RandomPositive(); }
53 a = Scalar(std::rand())/RAND_MAX*2.0-1.0,
54 b = Scalar(std::rand())/RAND_MAX*2.0-1.0,
55 c = Scalar(std::rand())/RAND_MAX*2.0-1.0,
56 d = Scalar(std::rand())/RAND_MAX*2.0-1.0,
57 e = Scalar(std::rand())/RAND_MAX*2.0-1.0,
58 f = Scalar(std::rand())/RAND_MAX*2.0-1.0;
60 m_data << a, b, c, d, e, f;
63 static Symmetric3Tpl Identity() {
return Symmetric3Tpl(1, 0, 1, 0, 0, 1); }
64 void setIdentity() { m_data << 1, 0, 1, 0, 0, 1; }
67 bool operator==(
const Symmetric3Tpl & other)
const 68 {
return m_data == other.m_data; }
70 bool operator!=(
const Symmetric3Tpl & other)
const 71 {
return !(*
this == other); }
73 bool isApprox(
const Symmetric3Tpl & other,
74 const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
const 75 {
return m_data.isApprox(other.m_data,prec); }
77 void fill(
const Scalar value) { m_data.fill(value); }
85 const Scalar & x = v[0], & y = v[1], & z = v[2];
88 x*z , y*z , -x*x-y*y );
94 const Scalar & x = v.v[0], & y = v.v[1], & z = v.v[2];
96 m_data[1]-x*y,m_data[2]+x*x+z*z,
97 m_data[3]-x*z,m_data[4]-y*z,m_data[5]+x*x+y*y);
102 const Scalar & x = v.v[0], & y = v.v[1], & z = v.v[2];
104 m_data[1]-=x*y; m_data[2]+=x*x+z*z;
105 m_data[3]-=x*z; m_data[4]-=y*z; m_data[5]+=x*x+y*y;
110 friend Matrix3 operator- (
const Symmetric3Tpl & S,
const Eigen::MatrixBase <D> & M)
112 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(D,3,3);
113 Matrix3 result (S.matrix());
129 const Scalar & x = v[0], & y = v[1], & z = v[2];
132 m* x*z,m* y*z,-m*(x*x+y*y));
141 const Scalar & x = v.v[0], & y = v.v[1], & z = v.v[2];
143 m_data[1]-v.m* x*y, m_data[2]+v.m*(x*x+z*z),
144 m_data[3]-v.m* x*z, m_data[4]-v.m* y*z,
145 m_data[5]+v.m*(x*x+y*y));
150 const Scalar & x = v.v[0], & y = v.v[1], & z = v.v[2];
151 m_data[0]+=v.m*(y*y+z*z);
152 m_data[1]-=v.m* x*y; m_data[2]+=v.m*(x*x+z*z);
153 m_data[3]-=v.m* x*z; m_data[4]-=v.m* y*z; m_data[5]+=v.m*(x*x+y*y);
157 const Vector6 & data ()
const {
return m_data;}
158 Vector6 & data () {
return m_data;}
172 a = Scalar(std::rand())/RAND_MAX*2.0-1.0,
173 b = Scalar(std::rand())/RAND_MAX*2.0-1.0,
174 c = Scalar(std::rand())/RAND_MAX*2.0-1.0,
175 d = Scalar(std::rand())/RAND_MAX*2.0-1.0,
176 e = Scalar(std::rand())/RAND_MAX*2.0-1.0,
177 f = Scalar(std::rand())/RAND_MAX*2.0-1.0;
179 a*b+b*c+d*e, b*b+c*c+e*e,
180 a*d+b*e+d*f, b*d+c*e+e*f, d*d+e*e+f*f );
183 Matrix3 matrix()
const 186 res(0,0) = m_data(0); res(0,1) = m_data(1); res(0,2) = m_data(3);
187 res(1,0) = m_data(1); res(1,1) = m_data(2); res(1,2) = m_data(4);
188 res(2,0) = m_data(3); res(2,1) = m_data(4); res(2,2) = m_data(5);
191 operator Matrix3 ()
const {
return matrix(); }
193 Scalar vtiv (
const Vector3 & v)
const 195 const Scalar & x = v[0];
196 const Scalar & y = v[1];
197 const Scalar & z = v[2];
199 const Scalar xx = x*x;
200 const Scalar xy = x*y;
201 const Scalar xz = x*z;
202 const Scalar yy = y*y;
203 const Scalar yz = y*z;
204 const Scalar zz = z*z;
206 return m_data(0)*xx + m_data(2)*yy + m_data(5)*zz + 2.*(m_data(1)*xy + m_data(3)*xz + m_data(4)*yz);
219 template<
typename Vector3,
typename Matrix3>
220 static void vxs(
const Eigen::MatrixBase<Vector3> & v,
222 const Eigen::MatrixBase<Matrix3> & M)
224 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Vector3,3);
225 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix3,3,3);
227 const Scalar & a = S3.data()[0];
228 const Scalar & b = S3.data()[1];
229 const Scalar & c = S3.data()[2];
230 const Scalar & d = S3.data()[3];
231 const Scalar & e = S3.data()[4];
232 const Scalar & f = S3.data()[5];
235 const typename Vector3::RealScalar & v0 = v[0];
236 const typename Vector3::RealScalar & v1 = v[1];
237 const typename Vector3::RealScalar & v2 = v[2];
239 Matrix3 & M_ =
const_cast<Eigen::MatrixBase<Matrix3> &
>(M).derived();
240 M_(0,0) = d * v1 - b * v2;
241 M_(1,0) = a * v2 - d * v0;
242 M_(2,0) = b * v0 - a * v1;
244 M_(0,1) = e * v1 - c * v2;
245 M_(1,1) = b * v2 - e * v0;
246 M_(2,1) = c * v0 - b * v1;
248 M_(0,2) = f * v1 - e * v2;
249 M_(1,2) = d * v2 - f * v0;
250 M_(2,2) = e * v0 - d * v1;
263 template<
typename Vector3>
264 Matrix3
vxs(
const Eigen::MatrixBase<Vector3> & v)
const 280 template<
typename Vector3,
typename Matrix3>
281 static void svx(
const Eigen::MatrixBase<Vector3> & v,
283 const Eigen::MatrixBase<Matrix3> & M)
285 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Vector3,3);
286 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix3,3,3);
288 const Scalar & a = S3.data()[0];
289 const Scalar & b = S3.data()[1];
290 const Scalar & c = S3.data()[2];
291 const Scalar & d = S3.data()[3];
292 const Scalar & e = S3.data()[4];
293 const Scalar & f = S3.data()[5];
295 const typename Vector3::RealScalar & v0 = v[0];
296 const typename Vector3::RealScalar & v1 = v[1];
297 const typename Vector3::RealScalar & v2 = v[2];
299 Matrix3 & M_ =
const_cast<Eigen::MatrixBase<Matrix3> &
>(M).derived();
300 M_(0,0) = b * v2 - d * v1;
301 M_(1,0) = c * v2 - e * v1;
302 M_(2,0) = e * v2 - f * v1;
304 M_(0,1) = d * v0 - a * v2;
305 M_(1,1) = e * v0 - b * v2;
306 M_(2,1) = f * v0 - d * v2;
308 M_(0,2) = a * v1 - b * v0;
309 M_(1,2) = b * v1 - c * v0;
310 M_(2,2) = d * v1 - e * v0;
321 template<
typename Vector3>
322 Matrix3
svx(
const Eigen::MatrixBase<Vector3> & v)
const 336 m_data += s2.m_data;
return *
this;
339 template<
typename V3in,
typename V3out>
341 const Eigen::MatrixBase<V3in> & vin,
342 const Eigen::MatrixBase<V3out> & vout)
344 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(V3in,Vector3);
345 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(V3out,Vector3);
347 Eigen::MatrixBase<V3out> & vout_ =
const_cast<Eigen::MatrixBase<V3out>&
>(vout);
349 vout_[0] = S3.m_data(0) * vin[0] + S3.m_data(1) * vin[1] + S3.m_data(3) * vin[2];
350 vout_[1] = S3.m_data(1) * vin[0] + S3.m_data(2) * vin[1] + S3.m_data(4) * vin[2];
351 vout_[2] = S3.m_data(3) * vin[0] + S3.m_data(4) * vin[1] + S3.m_data(5) * vin[2];
354 template<
typename V3>
355 Vector3 operator*(
const Eigen::MatrixBase<V3> & v)
const 358 rhsMult(*
this,v,res);
374 const Scalar& operator()(
const int &i,
const int &j)
const 376 return ((i!=2)&&(j!=2)) ? m_data[i+j] : m_data[i+j+1];
381 assert( (S-S.transpose()).isMuchSmallerThan(S) );
383 m_data(1)-S(1,0), m_data(2)-S(1,1),
384 m_data(3)-S(2,0), m_data(4)-S(2,1), m_data(5)-S(2,2) );
389 assert( (S-S.transpose()).isMuchSmallerThan(S) );
391 m_data(1)+S(1,0), m_data(2)+S(1,1),
392 m_data(3)+S(2,0), m_data(4)+S(2,1), m_data(5)+S(2,2) );
404 m_data(0) - m_data(5), m_data(1),
405 m_data(1), m_data(2) - m_data(5),
406 2*m_data(3), m_data(4) + m_data(4);
414 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(D,3,3);
415 assert( (R.transpose()*R).isApprox(Matrix3::Identity()) );
423 const Matrix2 Y( R.template block<2,3>(1,0) * L );
426 Sres.m_data(1) = Y(0,0)*R(0,0) + Y(0,1)*R(0,1);
427 Sres.m_data(2) = Y(0,0)*R(1,0) + Y(0,1)*R(1,1);
428 Sres.m_data(3) = Y(1,0)*R(0,0) + Y(1,1)*R(0,1);
429 Sres.m_data(4) = Y(1,0)*R(1,0) + Y(1,1)*R(1,1);
430 Sres.m_data(5) = Y(1,0)*R(2,0) + Y(1,1)*R(2,1);
433 const Vector3 r(-R(0,0)*m_data(4) + R(0,1)*m_data(3),
434 -R(1,0)*m_data(4) + R(1,1)*m_data(3),
435 -R(2,0)*m_data(4) + R(2,1)*m_data(3));
438 Sres.m_data(0) = L(0,0) + L(1,1) - Sres.m_data(2) - Sres.m_data(5);
441 Sres.m_data(0) += m_data(5);
442 Sres.m_data(1) += r(2); Sres.m_data(2)+= m_data(5);
443 Sres.m_data(3) +=-r(1); Sres.m_data(4)+= r(0); Sres.m_data(5) += m_data(5);
449 template<
typename NewScalar>
462 #endif // ifndef __pinocchio_symmetric3_hpp__
Matrix3 svx(const Eigen::MatrixBase< Vector3 > &v) const
Performs the operation .
Matrix3 vxs(const Eigen::MatrixBase< Vector3 > &v) const
Performs the operation . This operation is equivalent to applying the cross product of v on each colu...
Matrix32 decomposeltI() const
Computes L for a symmetric matrix A.
static void vxs(const Eigen::MatrixBase< Vector3 > &v, const Symmetric3Tpl &S3, const Eigen::MatrixBase< Matrix3 > &M)
Performs the operation . This operation is equivalent to applying the cross product of v on each colu...
Main pinocchio namespace.
static void svx(const Eigen::MatrixBase< Vector3 > &v, const Symmetric3Tpl &S3, const Eigen::MatrixBase< Matrix3 > &M)
Performs the operation .
Symmetric3Tpl< NewScalar, Options > cast() const