|
virtual | ~ComBetweenFeet () |
|
| ComBetweenFeet (const std::string &name, const DevicePtr_t &robot, const CenterOfMassComputationPtr_t &comc, const JointPtr_t &jointLeft, const JointPtr_t &jointRight, const vector3_t pointLeft, const vector3_t pointRight, const JointPtr_t &jointReference, const vector3_t pointRef, std::vector< bool > mask) |
|
virtual | ~DifferentiableFunction () |
|
LiegroupElement | operator() (vectorIn_t argument) const |
|
void | value (LiegroupElementRef result, vectorIn_t argument) const |
|
void | jacobian (matrixOut_t jacobian, vectorIn_t argument) const |
|
const ArrayXb & | activeParameters () const |
|
const ArrayXb & | activeDerivativeParameters () const |
|
size_type | inputSize () const |
| Get dimension of input vector. More...
|
|
size_type | inputDerivativeSize () const |
|
LiegroupSpacePtr_t | outputSpace () const |
| Get output space. More...
|
|
size_type | outputSize () const |
| Get dimension of output vector. More...
|
|
size_type | outputDerivativeSize () const |
| Get dimension of output derivative vector. More...
|
|
const std::string & | name () const |
| Get function name. More...
|
|
virtual std::ostream & | print (std::ostream &o) const |
| Display object in a stream. More...
|
|
std::string | context () const |
|
void | context (const std::string &c) |
|
void | finiteDifferenceForward (matrixOut_t jacobian, vectorIn_t arg, DevicePtr_t robot=DevicePtr_t(), value_type eps=std::sqrt(Eigen::NumTraits< value_type >::epsilon())) const |
|
void | finiteDifferenceCentral (matrixOut_t jacobian, vectorIn_t arg, DevicePtr_t robot=DevicePtr_t(), value_type eps=std::sqrt(Eigen::NumTraits< value_type >::epsilon())) const |
|
|
static EIGEN_MAKE_ALIGNED_OPERATOR_NEW ComBetweenFeetPtr_t | create (const std::string &name, const DevicePtr_t &robot, const JointPtr_t &jointLeft, const JointPtr_t &jointRight, const vector3_t pointLeft, const vector3_t pointRight, const JointPtr_t &jointReference, const vector3_t pointRef, std::vector< bool > mask=boost::assign::list_of(true)(true)(true)(true)) |
| Return a shared pointer to a new instance. More...
|
|
static ComBetweenFeetPtr_t | create (const std::string &name, const DevicePtr_t &robot, const CenterOfMassComputationPtr_t &comc, const JointPtr_t &jointLeft, const JointPtr_t &jointRight, const vector3_t pointLeft, const vector3_t pointRight, const JointPtr_t &jointReference, const vector3_t pointRef, std::vector< bool > mask=boost::assign::list_of(true)(true)(true)(true)) |
| Return a shared pointer to a new instance. More...
|
|
|
virtual void | impl_compute (LiegroupElementRef result, ConfigurationIn_t argument) const |
|
virtual void | impl_jacobian (matrixOut_t jacobian, ConfigurationIn_t arg) const |
|
| DifferentiableFunction (size_type sizeInput, size_type sizeInputDerivative, size_type sizeOutput, std::string name=std::string()) |
| Concrete class constructor should call this constructor. More...
|
|
| DifferentiableFunction (size_type sizeInput, size_type sizeInputDerivative, const LiegroupSpacePtr_t &outputSpace, std::string name=std::string()) |
| Concrete class constructor should call this constructor. More...
|
|
virtual void | impl_compute (LiegroupElementRef result, vectorIn_t argument) const =0 |
| User implementation of function evaluation. More...
|
|
virtual void | impl_jacobian (matrixOut_t jacobian, vectorIn_t arg) const =0 |
|
Constraint on the relative position of the center of mass
The value of the function is defined as the position of the center of mass in the reference frame of a joint.
\begin{eqnarray*} \mathbf{f}(\mathbf{q}) &=& \left(\begin{array}{c} ( x_{com} - x_{ref} ) \cdot u_z \\ ( R^T (e \wedge u) ) \cdot u_z \\ ( x_{com} - x_L ) \cdot (u)\\ ( x_{com} - x_R ) \cdot (u)\\ \end{array}\right) \end{eqnarray*}
where
- \(\mathbf{x}_{com}\) is the position of the center of mass,
- \(\mathbf{x_L}\) is the position of the left joint,
- \(\mathbf{x_R}\) is the position of the right joint,
- \(\mathbf{x}_{ref}\) is the desired position of the center of mass expressed in reference joint frame.
- \( u = x_R - x_L \)
- \( e = x_{com} - (\frac{x_L + x_R}{2})\)