This example shows how to position the end effector of a manipulator robot to a given pose (position and orientation). The example employs a simple Jacobian-based iterative algorithm, which is called closed-loop inverse kinematics (CLIK).
Python
1 from __future__
import print_function
4 from numpy.linalg
import norm, solve
8 model = pinocchio.buildSampleModelManipulator()
9 data = model.createData()
23 dMi = oMdes.actInv(data.oMi[JOINT_ID])
24 err = pinocchio.log(dMi).vector
32 v = - J.T.dot(solve(J.dot(J.T) + damp * np.eye(6), err))
35 print(
'%d: error = %s' % (i, err.T))
39 print(
"Convergence achieved!")
41 print(
"\nWarning: the iterative algorithm has not reached convergence to the desired precision")
43 print(
'\nresult: %s' % q.flatten().tolist())
44 print(
'\nfinal error: %s' % err.T)
Eigen::Matrix< typename LieGroupCollection::Scalar, Eigen::Dynamic, 1, LieGroupCollection::Options > neutral(const LieGroupGenericTpl< LieGroupCollection > &lg)
Visit a LieGroupVariant to get the neutral element of it.
void integrate(const LieGroupGenericTpl< LieGroupCollection > &lg, const Eigen::MatrixBase< ConfigIn_t > &q, const Eigen::MatrixBase< Tangent_t > &v, const Eigen::MatrixBase< ConfigOut_t > &qout)
Visit a LieGroupVariant to call its integrate method.
void forwardKinematics(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, DataTpl< Scalar, Options, JointCollectionTpl > &data, const Eigen::MatrixBase< ConfigVectorType > &q, const Eigen::MatrixBase< TangentVectorType1 > &v, const Eigen::MatrixBase< TangentVectorType2 > &a)
Update the joint placements, spatial velocities and spatial accelerations according to the current jo...
void computeJointJacobian(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, DataTpl< Scalar, Options, JointCollectionTpl > &data, const Eigen::MatrixBase< ConfigVectorType > &q, const JointIndex jointId, const Eigen::MatrixBase< Matrix6Like > &J)
Computes the Jacobian of a specific joint frame expressed in the local frame of the joint and store t...
Explanation of the code
First of all, we import the necessary libraries and we create the Model
and Data
objects:
from __future__ import print_function
import numpy as np
from numpy.linalg import norm, solve
import pinocchio
model = pinocchio.buildSampleModelManipulator()
data = model.createData()
The end effector corresponds to the 6th joint
and its desired pose is given as
oMdes = pinocchio.SE3(np.eye(3), np.array([1., 0., 1.]))
Next, we define an initial configuration
q = pinocchio.neutral(model)
This is the starting point of the algorithm. A priori, any valid configuration would work. We decided to use the robot's neutral configuration, returned by algorithm neutral
. For a simple manipulator such as the one in this case, it simply corresponds to an all-zero vector, but using this method generalizes well to more complex kinds of robots, ensuring validity.
Next, we set some computation-related values
eps = 1e-4
IT_MAX = 1000
DT = 1e-1
damp = 1e-6
corresponding to the desired position precision (we will see later what it exactly means), a maximum number of iterations (to avoid infinite looping in case the position is not reachable), a positive "time step" defining the convergence rate, and a fixed damping factor for the pseudoinversion (see below).
Then, we begin the iterative process. At each iteration, we begin by computing the forward kinematics:
pinocchio.forwardKinematics(model,data,q)
Next, we compute the error between the desired pose and the current one.
dMi = oMdes.actInv(data.oMi[JOINT_ID])
err = pinocchio.log(dMi).vector
Here,
data.oMi[JOINT_ID]
corresponds to the placement of the sixth joint (previously computed by
forwardKinematics
),
dMi
corresponds to the transformation between the desired pose and the current one, and
err
is the error. In order to compute the error, we employed
log
: this is a
Motion
object, and it is one way of computing an error in \(SO(3)\) as a six-dimensional vector.
If the error norm is below the previously-defined threshold, we have found the solution and we break out of the loop
if norm(err) < eps:
success = True
break
Notice that, strictly speaking, the norm of a spatial velocity does not make physical sense, since it mixes linear and angular quantities. A more rigorous implementation should treat the linar part and the angular part separately. In this example, however, we choose to slightly abuse the notation in order to keep it simple.
If we have reached the maximum number of iterations, it means a solution has not been found. We take notice of the failure and we also break
if i >= IT_MAX:
success = False
break
Otherwise, we search for another configuration trying to reduce the error.
We start by computing the Jacobian.
J = pinocchio.computeJointJacobian(model,data,q,JOINT_ID)
Next, we can compute the evolution of the configuration by solving the inverse kinematics. In order to avoid problems at singularities, we employ the damped pseudo-inverse: \(v = - J^T (J J^T + \lambda I)^{-1} e\) implementing the equation as
v = - J.T.dot(solve(J.dot(J.T) + damp * np.eye(6), err))
Notice that this way to compute the damped pseudo-inverse was chosen mostly because of its simplicity of implementation. It is not necessarily the best nor the fastest way, and using a fixed damping factor \(\lambda\) is not necessarily the best course of action.
Finally, we can add the obtained tangent vector to the current configuration
q = pinocchio.integrate(model,q,v*DT)
where integrate
in our case amounts to a simple sum. The resulting error will be verified in the next iteration.
At the end of the loop, we display the result:
if success:
print("Convergence achieved!")
else:
print("\nWarning: the iterative algorithm has not reached convergence to the desired precision")
print('\nresult: %s' % q.flatten().tolist())
print('\nfinal error: %s' % err.T)
C++
The equivalent C++ implemetation is given below
1 #include "pinocchio/parsers/sample-models.hpp" 2 #include "pinocchio/spatial/explog.hpp" 3 #include "pinocchio/algorithm/kinematics.hpp" 4 #include "pinocchio/algorithm/jacobian.hpp" 5 #include "pinocchio/algorithm/joint-configuration.hpp" 7 int main(
int ,
char ** )
13 const int JOINT_ID = 6;
14 const pinocchio::SE3 oMdes(Eigen::Matrix3d::Identity(), Eigen::Vector3d(1., 0., 1.));
17 const double eps = 1e-4;
18 const int IT_MAX = 1000;
19 const double DT = 1e-1;
20 const double damp = 1e-6;
26 typedef Eigen::Matrix<double, 6, 1> Vector6d;
28 Eigen::VectorXd v(model.
nv);
45 pinocchio::Data::Matrix6 JJt;
46 JJt.noalias() = J * J.transpose();
47 JJt.diagonal().array() += damp;
48 v.noalias() = - J.transpose() * JJt.ldlt().solve(err);
51 std::cout << i <<
": error = " << err.transpose() << std::endl;
55 std::cout <<
"Convergence achieved!" << std::endl;
57 std::cout <<
"\nWarning: the iterative algorithm has not reached convergence to the desired precision" << std::endl;
59 std::cout <<
"\nresult: " << q.transpose() << std::endl;
60 std::cout <<
"\nfinal error: " << err.transpose() << std::endl;
void integrate(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, const Eigen::MatrixBase< ConfigVectorType > &q, const Eigen::MatrixBase< TangentVectorType > &v, const Eigen::MatrixBase< ReturnType > &qout)
Integrate a configuration vector for the specified model for a tangent vector during one unit time...
MotionTpl< Scalar, Options > log6(const SE3Tpl< Scalar, Options > &M)
Log: SE3 -> se3.
int nv
Dimension of the velocity vector space.
Eigen::Matrix< Scalar, 6, Eigen::Dynamic, Options > Matrix6x
The 6d jacobian type (temporary)
void forwardKinematics(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, DataTpl< Scalar, Options, JointCollectionTpl > &data, const Eigen::MatrixBase< ConfigVectorType > &q)
Update the joint placements according to the current joint configuration.
void neutral(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, const Eigen::MatrixBase< ReturnType > &qout)
Return the neutral configuration element related to the model configuration space.
void computeJointJacobian(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, DataTpl< Scalar, Options, JointCollectionTpl > &data, const Eigen::MatrixBase< ConfigVectorType > &q, const JointIndex jointId, const Eigen::MatrixBase< Matrix6Like > &J)
Computes the Jacobian of a specific joint frame expressed in the local frame of the joint and store t...
SE3GroupAction< D >::ReturnType actInv(const D &d) const
by = aXb.actInv(ay)
void manipulator(ModelTpl< Scalar, Options, JointCollectionTpl > &model)
Create a 6-DOF kinematic chain shoulder-elbow-wrist.
Explanation of the code
The code follows exactly the same steps as Python. Apart from the usual syntactic discrepancies between Python and C++, we can identify two major differences. The first one concerns the Jacobian computation. In C++, you need to pre-allocate its memory space, set it to zero, and pass it as an input
pinocchio::Data::Matrix6x J(6,model.nv);
J.setZero();
pinocchio::computeJointJacobian(model,data,q,JOINT_ID,J);
This allows to always use the same memory space, avoiding re-allocation and achieving greater efficiency.
The second difference consists in the way the velocity is computed
pinocchio::Data::Matrix6 JJt;
JJt.noalias() = J * J.transpose();
JJt.diagonal().array() += damp;
v.noalias() = - J.transpose() * JJt.ldlt().solve(err);
This code is longer than the Python version, but equivalent to it. Notice we explicitly employ the ldlt
decomposition.