Base class for rigid transformation. More...
#include <spatial/se3-base.hpp>
Public Member Functions | |
template<typename D > | |
SE3GroupAction< D >::ReturnType | act (const D &d) const |
ay = aXb.act(by) | |
template<typename D > | |
SE3GroupAction< D >::ReturnType | actInv (const D &d) const |
by = aXb.actInv(ay) | |
Derived & | derived () |
const Derived & | derived () const |
void | disp (std::ostream &os) const |
bool | isApprox (const Derived &other, const Scalar &prec=Eigen::NumTraits< Scalar >::dummy_precision()) const |
bool | isIdentity (const typename traits< Derived >::Scalar &prec=Eigen::NumTraits< typename traits< Derived >::Scalar >::dummy_precision()) const |
bool | isNormalized (const Scalar &prec=Eigen::NumTraits< Scalar >::dummy_precision()) const |
void | normalize () |
Normalize *this in such a way the rotation part of *this lies on SO(3). | |
PlainType | normalized () const |
operator ActionMatrixType () const | |
operator HomogeneousMatrixType () const | |
bool | operator!= (const Derived &other) const |
SE3GroupAction< Derived >::ReturnType | operator* (const Derived &m2) const |
bool | operator== (const Derived &other) const |
PINOCCHIO_SE3_TYPEDEF_TPL (Derived) | |
ConstAngularRef | rotation () const |
AngularRef | rotation () |
void | rotation (const AngularType &R) |
ActionMatrixType | toActionMatrix () const |
The action matrix \( {}^aX_b \) of \( {}^aM_b \). More... | |
ActionMatrixType | toActionMatrixInverse () const |
The action matrix \( {}^bX_a \) of \( {}^aM_b \). More... | |
ActionMatrixType | toDualActionMatrix () const |
HomogeneousMatrixType | toHomogeneousMatrix () const |
ConstLinearRef | translation () const |
LinearRef | translation () |
void | translation (const LinearType &t) |
Friends | |
std::ostream & | operator<< (std::ostream &os, const SE3Base< Derived > &X) |
Base class for rigid transformation.
The rigid transform aMb can be seen in two ways:
The rigid displacement is stored as a rotation matrix and translation vector by: \( ^aM_b x = {}^aR_b x + {}^aAB \) where \(^aAB\) is the vector from origin A to origin B expressed in coordinates A.
Definition at line 30 of file se3-base.hpp.
|
inline |
Definition at line 122 of file se3-base.hpp.
|
inline |
Definition at line 130 of file se3-base.hpp.
|
inline |
Definition at line 146 of file se3-base.hpp.
|
inline |
The action matrix \( {}^aX_b \) of \( {}^aM_b \).
With \( {}^aM_b = \left( \begin{array}{cc} R & t \\ 0 & 1 \\ \end{array} \right) \),
\[ {}^aX_b = \left( \begin{array}{cc} R & \hat{t} R \\ 0 & R \\ \end{array} \right) \]
Definition at line 60 of file se3-base.hpp.
|
inline |
The action matrix \( {}^bX_a \) of \( {}^aM_b \).
Definition at line 70 of file se3-base.hpp.