Crocoddyl
 
Loading...
Searching...
No Matches
diff-action-base.hpp
1
2// BSD 3-Clause License
3//
4// Copyright (C) 2019-2024, LAAS-CNRS, University of Edinburgh,
5// University of Oxford, Heriot-Watt University
6// Copyright note valid unless otherwise stated in individual files.
7// All rights reserved.
9
10#ifndef CROCODDYL_CORE_DIFF_ACTION_BASE_HPP_
11#define CROCODDYL_CORE_DIFF_ACTION_BASE_HPP_
12
13#include <boost/make_shared.hpp>
14#include <memory>
15#include <stdexcept>
16
17#include "crocoddyl/core/fwd.hpp"
18#include "crocoddyl/core/state-base.hpp"
19#include "crocoddyl/core/utils/math.hpp"
20
21namespace crocoddyl {
22
118template <typename _Scalar>
120 public:
121 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
122
123 typedef _Scalar Scalar;
128 typedef typename MathBase::VectorXs VectorXs;
129 typedef typename MathBase::MatrixXs MatrixXs;
130
142 DifferentialActionModelAbstractTpl(std::shared_ptr<StateAbstract> state,
143 const std::size_t nu,
144 const std::size_t nr = 0,
145 const std::size_t ng = 0,
146 const std::size_t nh = 0,
147 const std::size_t ng_T = 0,
148 const std::size_t nh_T = 0);
150
158 virtual void calc(const std::shared_ptr<DifferentialActionDataAbstract>& data,
159 const Eigen::Ref<const VectorXs>& x,
160 const Eigen::Ref<const VectorXs>& u) = 0;
161
173 virtual void calc(const std::shared_ptr<DifferentialActionDataAbstract>& data,
174 const Eigen::Ref<const VectorXs>& x);
175
188 virtual void calcDiff(
189 const std::shared_ptr<DifferentialActionDataAbstract>& data,
190 const Eigen::Ref<const VectorXs>& x,
191 const Eigen::Ref<const VectorXs>& u) = 0;
192
204 virtual void calcDiff(
205 const std::shared_ptr<DifferentialActionDataAbstract>& data,
206 const Eigen::Ref<const VectorXs>& x);
207
213 virtual std::shared_ptr<DifferentialActionDataAbstract> createData();
214
218 virtual bool checkData(
219 const std::shared_ptr<DifferentialActionDataAbstract>& data);
220
234 virtual void quasiStatic(
235 const std::shared_ptr<DifferentialActionDataAbstract>& data,
236 Eigen::Ref<VectorXs> u, const Eigen::Ref<const VectorXs>& x,
237 const std::size_t maxiter = 100, const Scalar tol = Scalar(1e-9));
238
251 const std::shared_ptr<DifferentialActionDataAbstract>& data,
252 const VectorXs& x, const std::size_t maxiter = 100,
253 const Scalar tol = Scalar(1e-9));
254
258 std::size_t get_nu() const;
259
263 std::size_t get_nr() const;
264
268 virtual std::size_t get_ng() const;
269
273 virtual std::size_t get_nh() const;
274
278 virtual std::size_t get_ng_T() const;
279
283 virtual std::size_t get_nh_T() const;
284
288 const std::shared_ptr<StateAbstract>& get_state() const;
289
293 virtual const VectorXs& get_g_lb() const;
294
298 virtual const VectorXs& get_g_ub() const;
299
303 const VectorXs& get_u_lb() const;
304
308 const VectorXs& get_u_ub() const;
309
314
318 void set_g_lb(const VectorXs& g_lb);
319
323 void set_g_ub(const VectorXs& g_ub);
324
328 void set_u_lb(const VectorXs& u_lb);
329
333 void set_u_ub(const VectorXs& u_ub);
334
338 template <class Scalar>
339 friend std::ostream& operator<<(
340 std::ostream& os,
342
348 virtual void print(std::ostream& os) const;
349
350 private:
351 std::size_t ng_internal_;
353 std::size_t nh_internal_;
355
356 protected:
357 std::size_t nu_;
358 std::size_t nr_;
359 std::size_t ng_;
360 std::size_t nh_;
361 std::size_t ng_T_;
362 std::size_t nh_T_;
363 std::shared_ptr<StateAbstract> state_;
364 VectorXs unone_;
365 VectorXs g_lb_;
366 VectorXs g_ub_;
367 VectorXs u_lb_;
368 VectorXs u_ub_;
371
377
378 template <class Scalar>
380 template <class Scalar>
381 friend class ConstraintModelManagerTpl;
382};
383
384template <typename _Scalar>
386 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
387
388 typedef _Scalar Scalar;
390 typedef typename MathBase::VectorXs VectorXs;
391 typedef typename MathBase::MatrixXs MatrixXs;
392
393 template <template <typename Scalar> class Model>
394 explicit DifferentialActionDataAbstractTpl(Model<Scalar>* const model)
395 : cost(Scalar(0.)),
396 xout(model->get_state()->get_nv()),
397 Fx(model->get_state()->get_nv(), model->get_state()->get_ndx()),
398 Fu(model->get_state()->get_nv(), model->get_nu()),
399 r(model->get_nr()),
400 Lx(model->get_state()->get_ndx()),
401 Lu(model->get_nu()),
402 Lxx(model->get_state()->get_ndx(), model->get_state()->get_ndx()),
403 Lxu(model->get_state()->get_ndx(), model->get_nu()),
404 Luu(model->get_nu(), model->get_nu()),
405 g(model->get_ng() > model->get_ng_T() ? model->get_ng()
406 : model->get_ng_T()),
407 Gx(model->get_ng() > model->get_ng_T() ? model->get_ng()
408 : model->get_ng_T(),
409 model->get_state()->get_ndx()),
410 Gu(model->get_ng() > model->get_ng_T() ? model->get_ng()
411 : model->get_ng_T(),
412 model->get_nu()),
413 h(model->get_nh() > model->get_nh_T() ? model->get_nh()
414 : model->get_nh_T()),
415 Hx(model->get_nh() > model->get_nh_T() ? model->get_nh()
416 : model->get_nh_T(),
417 model->get_state()->get_ndx()),
418 Hu(model->get_nh() > model->get_nh_T() ? model->get_nh()
419 : model->get_nh_T(),
420 model->get_nu()) {
421 xout.setZero();
422 Fx.setZero();
423 Fu.setZero();
424 r.setZero();
425 Lx.setZero();
426 Lu.setZero();
427 Lxx.setZero();
428 Lxu.setZero();
429 Luu.setZero();
430 g.setZero();
431 Gx.setZero();
432 Gu.setZero();
433 h.setZero();
434 Hx.setZero();
435 Hu.setZero();
436 }
438
439 Scalar cost;
440 VectorXs xout;
441 MatrixXs Fx;
442 MatrixXs
444 VectorXs r;
445 VectorXs Lx;
446 VectorXs Lu;
447 MatrixXs Lxx;
448 MatrixXs Lxu;
450 MatrixXs Luu;
451 VectorXs g;
452 MatrixXs Gx;
454 MatrixXs Gu;
456 VectorXs h;
457 MatrixXs Hx;
459 MatrixXs Hu;
461};
462
463} // namespace crocoddyl
464
465/* --- Details -------------------------------------------------------------- */
466/* --- Details -------------------------------------------------------------- */
467/* --- Details -------------------------------------------------------------- */
468#include "crocoddyl/core/diff-action-base.hxx"
469
470#endif // CROCODDYL_CORE_DIFF_ACTION_BASE_HPP_
Manage the individual constraint models.
Abstract class for differential action model.
virtual std::size_t get_ng() const
Return the number of inequality constraints.
void set_g_lb(const VectorXs &g_lb)
Modify the lower bound of the inequality constraints.
std::shared_ptr< StateAbstract > state_
Model of the state.
virtual const VectorXs & get_g_lb() const
Return the lower bound of the inequality constraints.
virtual std::size_t get_nh() const
Return the number of equality constraints.
const VectorXs & get_u_ub() const
Return the control upper bound.
virtual void print(std::ostream &os) const
Print relevant information of the differential action model.
void set_u_ub(const VectorXs &u_ub)
Modify the control upper bounds.
virtual void calc(const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0
Compute the system acceleration and cost value.
VectorXs g_ub_
Lower bound of the inequality constraints.
virtual const VectorXs & get_g_ub() const
Return the upper bound of the inequality constraints.
bool get_has_control_limits() const
Indicates if there are defined control limits.
std::size_t nh_T_
Number of equality terminal constraints.
VectorXs quasiStatic_x(const std::shared_ptr< DifferentialActionDataAbstract > &data, const VectorXs &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
void update_has_control_limits()
Update the status of the control limits (i.e. if there are defined limits)
virtual std::shared_ptr< DifferentialActionDataAbstract > createData()
Create the differential action data.
virtual std::size_t get_nh_T() const
Return the number of equality terminal constraints.
virtual bool checkData(const std::shared_ptr< DifferentialActionDataAbstract > &data)
Checks that a specific data belongs to this model.
const std::shared_ptr< StateAbstract > & get_state() const
Return the state.
std::size_t nr_
Dimension of the cost residual.
std::size_t nh_
Number of equality constraints.
virtual void quasiStatic(const std::shared_ptr< DifferentialActionDataAbstract > &data, Eigen::Ref< VectorXs > u, const Eigen::Ref< const VectorXs > &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
Computes the quasic static commands.
std::size_t get_nr() const
Return the dimension of the cost-residual vector.
virtual void calcDiff(const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
Compute the derivatives of the cost functions with respect to the state only.
DifferentialActionModelAbstractTpl(std::shared_ptr< StateAbstract > state, const std::size_t nu, const std::size_t nr=0, const std::size_t ng=0, const std::size_t nh=0, const std::size_t ng_T=0, const std::size_t nh_T=0)
Initialize the differential action model.
std::size_t ng_T_
Number of inequality terminal constraints.
void set_g_ub(const VectorXs &g_ub)
Modify the upper bound of the inequality constraints.
const VectorXs & get_u_lb() const
Return the control lower bound.
virtual std::size_t get_ng_T() const
Return the number of inequality terminal constraints.
void set_u_lb(const VectorXs &u_lb)
Modify the control lower bounds.
VectorXs g_lb_
Lower bound of the inequality constraints.
friend std::ostream & operator<<(std::ostream &os, const DifferentialActionModelAbstractTpl< Scalar > &model)
Print information on the differential action model.
virtual void calcDiff(const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0
Compute the derivatives of the dynamics and cost functions.
virtual void calc(const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
Compute the total cost value for nodes that depends only on the state.
std::size_t ng_
Number of inequality constraints.
std::size_t get_nu() const
Return the dimension of the control input.
Abstract class for an integrated action model.
Abstract class for the state representation.
MatrixXs Fx
Jacobian of the dynamics w.r.t. the state .
MatrixXs Fu
Jacobian of the dynamics w.r.t. the control .
VectorXs h
Equality constraint values.
MatrixXs Luu
Hessian of the cost w.r.t. the control .
VectorXs g
Inequality constraint values.
VectorXs Lx
Jacobian of the cost w.r.t. the state .
MatrixXs Lxx
Hessian of the cost w.r.t. the state .
VectorXs Lu
Jacobian of the cost w.r.t. the control .