10 #ifndef CROCODDYL_CORE_ACTION_BASE_HPP_
11 #define CROCODDYL_CORE_ACTION_BASE_HPP_
13 #include <boost/make_shared.hpp>
14 #include <boost/shared_ptr.hpp>
17 #include "crocoddyl/core/fwd.hpp"
18 #include "crocoddyl/core/state-base.hpp"
19 #include "crocoddyl/core/utils/math.hpp"
94 template <
typename _Scalar>
97 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
99 typedef _Scalar Scalar;
103 typedef typename MathBase::VectorXs VectorXs;
115 const std::size_t nu,
const std::size_t nr = 0,
116 const std::size_t ng = 0,
const std::size_t nh = 0);
126 virtual void calc(
const boost::shared_ptr<ActionDataAbstract>& data,
127 const Eigen::Ref<const VectorXs>& x,
128 const Eigen::Ref<const VectorXs>& u) = 0;
141 virtual void calc(
const boost::shared_ptr<ActionDataAbstract>& data,
142 const Eigen::Ref<const VectorXs>& x);
156 virtual void calcDiff(
const boost::shared_ptr<ActionDataAbstract>& data,
157 const Eigen::Ref<const VectorXs>& x,
158 const Eigen::Ref<const VectorXs>& u) = 0;
171 virtual void calcDiff(
const boost::shared_ptr<ActionDataAbstract>& data,
172 const Eigen::Ref<const VectorXs>& x);
184 virtual bool checkData(
const boost::shared_ptr<ActionDataAbstract>& data);
199 virtual void quasiStatic(
const boost::shared_ptr<ActionDataAbstract>& data,
200 Eigen::Ref<VectorXs> u,
201 const Eigen::Ref<const VectorXs>& x,
202 const std::size_t maxiter = 100,
203 const Scalar tol = Scalar(1e-9));
217 const VectorXs& x,
const std::size_t maxiter = 100,
218 const Scalar tol = Scalar(1e-9));
243 const boost::shared_ptr<StateAbstract>&
get_state()
const;
293 template <
class Scalar>
302 virtual void print(std::ostream& os)
const;
324 template <
class Scalar>
328 template <
typename _Scalar>
330 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
332 typedef _Scalar Scalar;
334 typedef typename MathBase::VectorXs VectorXs;
335 typedef typename MathBase::MatrixXs MatrixXs;
337 template <
template <
typename Scalar>
class Model>
340 xnext(model->get_state()->get_nx()),
341 Fx(model->get_state()->get_ndx(), model->get_state()->get_ndx()),
342 Fu(model->get_state()->get_ndx(), model->get_nu()),
344 Lx(model->get_state()->get_ndx()),
346 Lxx(model->get_state()->get_ndx(), model->get_state()->get_ndx()),
347 Lxu(model->get_state()->get_ndx(), model->get_nu()),
348 Luu(model->get_nu(), model->get_nu()),
350 Gx(model->get_ng(), model->get_state()->get_ndx()),
351 Gu(model->get_ng(), model->get_nu()),
353 Hx(model->get_nh(), model->get_state()->get_ndx()),
354 Hu(model->get_nh(), model->get_nu()) {
402 #include "crocoddyl/core/action-base.hxx"
Abstract class for action model.
virtual std::size_t get_ng() const
Return the number of inequality constraints.
void set_g_lb(const VectorXs &g_lb)
Modify the lower bound of the inequality constraints.
const boost::shared_ptr< StateAbstract > & get_state() const
Return the state.
VectorXs u_lb_
Lower control limits.
VectorXs u_ub_
Upper control limits.
virtual std::size_t get_nh() const
Return the number of equality constraints.
virtual void print(std::ostream &os) const
Print relevant information of the action model.
void set_u_ub(const VectorXs &u_ub)
Modify the control upper bounds.
const VectorXs & get_u_ub() const
Return the control upper bound.
VectorXs g_ub_
Lower bound of the inequality constraints.
bool get_has_control_limits() const
Indicates if there are defined control limits.
VectorXs quasiStatic_x(const boost::shared_ptr< ActionDataAbstract > &data, const VectorXs &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
virtual const VectorXs & get_g_lb() const
Return the lower bound of the inequality constraints.
void update_has_control_limits()
Update the status of the control limits (i.e. if there are defined limits)
boost::shared_ptr< StateAbstract > state_
Model of the state.
std::size_t nu_
Control dimension.
VectorXs unone_
Neutral state.
ActionModelAbstractTpl(boost::shared_ptr< StateAbstract > state, const std::size_t nu, const std::size_t nr=0, const std::size_t ng=0, const std::size_t nh=0)
Initialize the action model.
std::size_t nr_
Dimension of the cost residual.
std::size_t nh_
Number of equality constraints.
virtual bool checkData(const boost::shared_ptr< ActionDataAbstract > &data)
Checks that a specific data belongs to this model.
virtual void calcDiff(const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0
Compute the derivatives of the dynamics and cost functions.
std::size_t get_nr() const
Return the dimension of the cost-residual vector.
void set_g_ub(const VectorXs &g_ub)
Modify the upper bound of the inequality constraints.
virtual void calc(const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0
Compute the next state and cost value.
void set_u_lb(const VectorXs &u_lb)
Modify the control lower bounds.
virtual void calc(const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
Compute the total cost value for nodes that depends only on the state.
friend std::ostream & operator<<(std::ostream &os, const ActionModelAbstractTpl< Scalar > &model)
Print information on the action model.
VectorXs g_lb_
Lower bound of the inequality constraints.
virtual const VectorXs & get_g_ub() const
Return the upper bound of the inequality constraints.
const VectorXs & get_u_lb() const
Return the control lower bound.
virtual void calcDiff(const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
Compute the derivatives of the cost functions with respect to the state only.
std::size_t ng_
Number of inequality constraints.
virtual boost::shared_ptr< ActionDataAbstract > createData()
Create the action data.
std::size_t get_nu() const
Return the dimension of the control input.
virtual void quasiStatic(const boost::shared_ptr< ActionDataAbstract > &data, Eigen::Ref< VectorXs > u, const Eigen::Ref< const VectorXs > &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
Computes the quasic static commands.
Manage the individual constraint models.
Abstract class for the state representation.
VectorXs xnext
evolution state
MatrixXs Fx
Jacobian of the dynamics w.r.t. the state .
MatrixXs Fu
Jacobian of the dynamics w.r.t. the control .
VectorXs h
Equality constraint values.
MatrixXs Luu
Hessian of the cost w.r.t. the control .
VectorXs g
Inequality constraint values.
VectorXs Lx
Jacobian of the cost w.r.t. the state .
MatrixXs Lxx
Hessian of the cost w.r.t. the state .
VectorXs Lu
Jacobian of the cost w.r.t. the control .