Abstract class for action model. More...
#include <action-base.hpp>
Public Types | |
typedef ActionDataAbstractTpl< Scalar > | ActionDataAbstract |
typedef MathBaseTpl< Scalar > | MathBase |
typedef StateAbstractTpl< Scalar > | StateAbstract |
typedef MathBase::VectorXs | VectorXs |
Public Member Functions | |
ActionModelAbstractTpl (boost::shared_ptr< StateAbstract > state, const std::size_t nu, const std::size_t nr=0, const std::size_t ng=0, const std::size_t nh=0) | |
Initialize the action model. More... | |
virtual void | calc (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x) |
Compute the total cost value for nodes that depends only on the state. More... | |
virtual void | calc (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0 |
Compute the next state and cost value. More... | |
virtual void | calcDiff (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x) |
Compute the derivatives of the cost functions with respect to the state only. More... | |
virtual void | calcDiff (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)=0 |
Compute the derivatives of the dynamics and cost functions. More... | |
virtual bool | checkData (const boost::shared_ptr< ActionDataAbstract > &data) |
Checks that a specific data belongs to this model. | |
virtual boost::shared_ptr< ActionDataAbstract > | createData () |
Create the action data. More... | |
virtual const VectorXs & | get_g_lb () const |
Return the lower bound of the inequality constraints. | |
virtual const VectorXs & | get_g_ub () const |
Return the upper bound of the inequality constraints. | |
bool | get_has_control_limits () const |
Indicates if there are defined control limits. | |
virtual std::size_t | get_ng () const |
Return the number of inequality constraints. | |
virtual std::size_t | get_nh () const |
Return the number of equality constraints. | |
std::size_t | get_nr () const |
Return the dimension of the cost-residual vector. | |
std::size_t | get_nu () const |
Return the dimension of the control input. | |
const boost::shared_ptr< StateAbstract > & | get_state () const |
Return the state. | |
const VectorXs & | get_u_lb () const |
Return the control lower bound. | |
const VectorXs & | get_u_ub () const |
Return the control upper bound. | |
virtual void | print (std::ostream &os) const |
Print relevant information of the action model. More... | |
virtual void | quasiStatic (const boost::shared_ptr< ActionDataAbstract > &data, Eigen::Ref< VectorXs > u, const Eigen::Ref< const VectorXs > &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9)) |
Computes the quasic static commands. More... | |
VectorXs | quasiStatic_x (const boost::shared_ptr< ActionDataAbstract > &data, const VectorXs &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9)) |
void | set_g_lb (const VectorXs &g_lb) |
Modify the lower bound of the inequality constraints. | |
void | set_g_ub (const VectorXs &g_ub) |
Modify the upper bound of the inequality constraints. | |
void | set_u_lb (const VectorXs &u_lb) |
Modify the control lower bounds. | |
void | set_u_ub (const VectorXs &u_ub) |
Modify the control upper bounds. | |
Public Attributes | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef _Scalar | Scalar |
Protected Member Functions | |
void | update_has_control_limits () |
Update the status of the control limits (i.e. if there are defined limits) | |
Protected Attributes | |
VectorXs | g_lb_ |
Lower bound of the inequality constraints. | |
VectorXs | g_ub_ |
Lower bound of the inequality constraints. | |
bool | has_control_limits_ |
std::size_t | ng_ |
Number of inequality constraints. | |
std::size_t | nh_ |
Number of equality constraints. | |
std::size_t | nr_ |
Dimension of the cost residual. | |
std::size_t | nu_ |
Control dimension. | |
boost::shared_ptr< StateAbstract > | state_ |
Model of the state. | |
VectorXs | u_lb_ |
Lower control limits. | |
VectorXs | u_ub_ |
Upper control limits. | |
VectorXs | unone_ |
Neutral state. | |
Friends | |
template<class Scalar > | |
class | ConstraintModelManagerTpl |
template<class Scalar > | |
std::ostream & | operator<< (std::ostream &os, const ActionModelAbstractTpl< Scalar > &model) |
Print information on the action model. | |
Abstract class for action model.
An action model combines dynamics, cost functions and constraints. Each node, in our optimal control problem, is described through an action model. Every time that we want describe a problem, we need to provide ways of computing the dynamics, cost functions, constraints and their derivatives. All these is described inside the action model.
Concretely speaking, the action model describes a time-discrete action model with a first-order ODE along a cost function, i.e.
nx
-tuple,ndx
dimension,ResidualModelAbstractTpl
and ActivationModelAbstractTpl
, respetively),The computation of these equations are carried out out inside calc()
function. In short, this function computes the system acceleration, cost and constraints values (also called constraints violations). This procedure is equivalent to running a forward pass of the action model.
However, during numerical optimization, we also need to run backward passes of the action model. These calculations are performed by calcDiff()
. In short, this method builds a linear-quadratic approximation of the action model, i.e.:
\[ \begin{aligned} &\delta\mathbf{x}_{k+1} = \mathbf{f_x}\delta\mathbf{x}_k+\mathbf{f_u}\delta\mathbf{u}_k, &\textrm{(dynamics)}\\ &\ell(\delta\mathbf{x}_k,\delta\mathbf{u}_k) = \begin{bmatrix}1 \\ \delta\mathbf{x}_k \\ \delta\mathbf{u}_k\end{bmatrix}^T \begin{bmatrix}0 & \mathbf{\ell_x}^T & \mathbf{\ell_u}^T \\ \mathbf{\ell_x} & \mathbf{\ell_{xx}} & \mathbf{\ell_{ux}}^T \\ \mathbf{\ell_u} & \mathbf{\ell_{ux}} & \mathbf{\ell_{uu}}\end{bmatrix} \begin{bmatrix}1 \\ \delta\mathbf{x}_k \\ \delta\mathbf{u}_k\end{bmatrix}, &\textrm{(cost)}\\ &\mathbf{g}(\delta\mathbf{x}_k,\delta\mathbf{u}_k)<\mathbf{0}, &\textrm{(inequality constraint)}\\ &\mathbf{h}(\delta\mathbf{x}_k,\delta\mathbf{u}_k)=\mathbf{0}, &\textrm{(equality constraint)} \end{aligned} \]
where
Additionally, it is important to note that calcDiff()
computes the derivatives using the latest stored values by calc()
. Thus, we need to first run calc()
.
calc()
, calcDiff()
, createData()
Definition at line 95 of file action-base.hpp.
ActionModelAbstractTpl | ( | boost::shared_ptr< StateAbstract > | state, |
const std::size_t | nu, | ||
const std::size_t | nr = 0 , |
||
const std::size_t | ng = 0 , |
||
const std::size_t | nh = 0 |
||
) |
Initialize the action model.
[in] | state | State description |
[in] | nu | Dimension of control vector |
[in] | nr | Dimension of cost-residual vector |
[in] | ng | Number of inequality constraints |
[in] | nh | Number of equality constraints |
|
pure virtual |
Compute the next state and cost value.
[in] | data | Action data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
[in] | u | Control input \(\mathbf{u}\in\mathbb{R}^{nu}\) |
Implemented in ActionModelImpulseFwdDynamicsTpl< _Scalar >, ActionModelNumDiffTpl< _Scalar >, IntegratedActionModelRK4Tpl< _Scalar >, IntegratedActionModelRKTpl< _Scalar >, IntegratedActionModelEulerTpl< _Scalar >, ActionModelCodeGenTpl< _Scalar >, ActionModelUnicycleTpl< _Scalar >, and ActionModelLQRTpl< _Scalar >.
|
virtual |
Compute the total cost value for nodes that depends only on the state.
It updates the total cost and the next state is not computed as it is not expected to change. This function is used in the terminal nodes of an optimal control problem.
[in] | data | Action data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
Reimplemented in ActionModelImpulseFwdDynamicsTpl< _Scalar >, ActionModelNumDiffTpl< _Scalar >, IntegratedActionModelRK4Tpl< _Scalar >, IntegratedActionModelRKTpl< _Scalar >, IntegratedActionModelEulerTpl< _Scalar >, ActionModelUnicycleTpl< _Scalar >, and ActionModelLQRTpl< _Scalar >.
|
pure virtual |
Compute the derivatives of the dynamics and cost functions.
It computes the partial derivatives of the dynamical system and the cost function. It assumes that calc()
has been run first. This function builds a linear-quadratic approximation of the action model (i.e. dynamical system and cost function).
[in] | data | Action data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
[in] | u | Control input \(\mathbf{u}\in\mathbb{R}^{nu}\) |
Implemented in ActionModelImpulseFwdDynamicsTpl< _Scalar >, ActionModelNumDiffTpl< _Scalar >, IntegratedActionModelRK4Tpl< _Scalar >, IntegratedActionModelRKTpl< _Scalar >, IntegratedActionModelEulerTpl< _Scalar >, ActionModelCodeGenTpl< _Scalar >, ActionModelUnicycleTpl< _Scalar >, and ActionModelLQRTpl< _Scalar >.
|
virtual |
Compute the derivatives of the cost functions with respect to the state only.
It updates the derivatives of the cost function with respect to the state only. This function is used in the terminal nodes of an optimal control problem.
[in] | data | Action data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
Reimplemented in ActionModelImpulseFwdDynamicsTpl< _Scalar >, ActionModelNumDiffTpl< _Scalar >, IntegratedActionModelRK4Tpl< _Scalar >, IntegratedActionModelRKTpl< _Scalar >, IntegratedActionModelEulerTpl< _Scalar >, ActionModelUnicycleTpl< _Scalar >, and ActionModelLQRTpl< _Scalar >.
|
virtual |
Create the action data.
Reimplemented in ActionModelImpulseFwdDynamicsTpl< _Scalar >, ActionModelNumDiffTpl< _Scalar >, IntegratedActionModelRK4Tpl< _Scalar >, IntegratedActionModelRKTpl< _Scalar >, IntegratedActionModelEulerTpl< _Scalar >, IntegratedActionModelAbstractTpl< _Scalar >, ActionModelCodeGenTpl< _Scalar >, ActionModelUnicycleTpl< _Scalar >, and ActionModelLQRTpl< _Scalar >.
|
virtual |
Computes the quasic static commands.
The quasic static commands are the ones produced for a the reference posture as an equilibrium point, i.e. for \(\mathbf{f^q_x}\delta\mathbf{q}+\mathbf{f_u}\delta\mathbf{u}=\mathbf{0}\)
[in] | data | Action data |
[out] | u | Quasic static commands |
[in] | x | State point (velocity has to be zero) |
[in] | maxiter | Maximum allowed number of iterations |
[in] | tol | Tolerance |
Reimplemented in ActionModelImpulseFwdDynamicsTpl< _Scalar >, ActionModelNumDiffTpl< _Scalar >, IntegratedActionModelRK4Tpl< _Scalar >, IntegratedActionModelRKTpl< _Scalar >, and IntegratedActionModelEulerTpl< _Scalar >.
VectorXs quasiStatic_x | ( | const boost::shared_ptr< ActionDataAbstract > & | data, |
const VectorXs & | x, | ||
const std::size_t | maxiter = 100 , |
||
const Scalar | tol = Scalar(1e-9) |
||
) |
[in] | data | Action data |
[in] | x | State point (velocity has to be zero) |
[in] | maxiter | Maximum allowed number of iterations |
[in] | tol | Tolerance |
|
virtual |
Print relevant information of the action model.
[out] | os | Output stream object |
Reimplemented in ActionModelImpulseFwdDynamicsTpl< _Scalar >, ActionModelNumDiffTpl< _Scalar >, IntegratedActionModelRK4Tpl< _Scalar >, IntegratedActionModelRKTpl< _Scalar >, IntegratedActionModelEulerTpl< _Scalar >, ActionModelUnicycleTpl< _Scalar >, and ActionModelLQRTpl< _Scalar >.
|
protected |
Indicates whether any of the control limits is finite
Definition at line 315 of file action-base.hpp.